CN107999085B - 氧化还原-水解偶联反应制备双金属氧化物用于VOCs低温催化燃烧 - Google Patents

氧化还原-水解偶联反应制备双金属氧化物用于VOCs低温催化燃烧 Download PDF

Info

Publication number
CN107999085B
CN107999085B CN201610844743.6A CN201610844743A CN107999085B CN 107999085 B CN107999085 B CN 107999085B CN 201610844743 A CN201610844743 A CN 201610844743A CN 107999085 B CN107999085 B CN 107999085B
Authority
CN
China
Prior art keywords
solution
reaction
vocs
catalytic combustion
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610844743.6A
Other languages
English (en)
Other versions
CN107999085A (zh
Inventor
贾宏鹏
陈金
许珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Urban Environment of CAS
Original Assignee
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Urban Environment of CAS filed Critical Institute of Urban Environment of CAS
Priority to CN201610844743.6A priority Critical patent/CN107999085B/zh
Publication of CN107999085A publication Critical patent/CN107999085A/zh
Application granted granted Critical
Publication of CN107999085B publication Critical patent/CN107999085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本专利是关于一种Mn‑X(X=Fe、Co、Al等)双金属金属氧化物催化剂的合成新方法及其在挥发性有机物(VOCs)低温催化燃烧领域的应用。该方法的实施步骤包括了:将KMnO4和金属强酸盐(如Fe(NO3)3·9H2O、Co(NO3)2等)溶解于一定体积的去离子水中形成溶液1;将3倍理论当量的H2O2用去离子水稀释形成溶液2;在室温条件下,将溶液2逐滴加入到溶液1中,反应过程中伴有大量气体的生成;将生成的沉淀过夜老化后进行过滤、洗涤、烘干和高温焙烧后即可以得到所需的Mn‑X双金属催化剂。该方法具有简单、快速的特点,可避免传统共沉淀法所面临的沉淀不完全、双金属混合不均匀等问题;并且所合成的金属氧化物具有比表面积大、纳米颗粒尺寸小等优点,有利于VOCs催化燃烧反应在其表面的进行。在甲苯低温催化燃烧反应中,所合成的Mn‑X双金属催化剂取得了理想的催化效果。

Description

氧化还原-水解偶联反应制备双金属氧化物用于VOCs低温催 化燃烧
技术领域
本发明涉及一种适用于VOCs低温催化燃烧的Mn-X双金属氧化物的合成新方法,属于化学催化剂及其制备技术领域。
背景技术
随着经济的发展和人们生活水平的日益提高,环境污染问题越来越受到人们的关注。工业“三废”是重要的环境污染源,其中废气具有弥散性强、污染范围广、难以回收集中处理等特点,是工业污染防治的重点。挥发性有机物(VOCs)在废气污染中占有相当大的比重,主要来源于石油化工、印刷、涂装等行业,其种类多样包括了脂肪烃、芳香烃、卤代烃、醇、酯、醛类等。VOCs分子可与空气中氮氧化物(NOx)形成光化学烟雾、O3等有害物质对环境造成直接的破坏,部分VOCs分子对人体还具有致畸、致癌、致突变的“三致”效应,因此有必要从污染源头上控制VOCs的排放。目前,VOCs的净化手段主要有吸附法、直接燃烧法、低温等离子法、催化燃烧法等。其中,催化燃烧法是一种借助催化剂的作用,使VOCs分子在较低的起燃温度下发生无焰燃烧的净化手段;在反应过程中VOCs完全氧化生成无毒无害的H2O和CO2。催化燃烧相较于其他VOCs消除手段,具有反应温度低、二次污染小、VOCs处理浓度高等特点,是一种适用于工业尾气中VOCs净化的技术手段。
在VOCs的催化燃烧反应中,催化剂扮演着至关重要的角色。根据催化剂中其主要作用的金属种类不同,可分为贵金属和非贵金属催化剂。贵金属催化剂所使用的贵金属主要有Pt、Ru、Pd等,具有活性高、起燃温度低等优点;然而,在使用过程中贵金属催化剂面临着材料成本高、易中毒失活等问题,限制了其在VOCs净化中的大规模使用。非贵金属催化剂由于所使用的金属价格低廉,大大降低了应用成本,因而其开发和利用一直是人们研究的重点。目前,已报道的用于VOCs催化燃烧的非贵金属催化剂主要包含了Cu、Fe、Mn、Co、V等过渡非贵金属材料。这些过渡金属对于不同的VOCs表现出了迥异的催化反应性能,其中Mn基金属氧化物在不同物种VOCs的催化燃烧中均有报道,被认为是一种具有广谱催化性能的催化材料。然而,单金属氧化物在反应过程中易发生烧结,导致催化剂的使用寿命缩短,因此往往需要通过引入第二金属以提高非贵金属催化剂的使用寿命。
目前,Mn-X双金属氧化物的合成方法主要包括了共沉淀法和浸渍法,这些方法面临着双金属混合不充分、反应周期长、废水废渣较多等问题。因此,本发明旨在采用将H2O2还原KMnO4和非贵金属强酸盐水解双反应偶联的方法快速制备出具有原子级高度分散性的Mn-X双金属氧化物,并将其用于甲苯的催化燃烧反应中。
发明内容
本发明要解决的技术问题是,克服现有合成技术的不足,提供一种简便、快捷的Mn-X双金属催化剂合成方法。这种方法合成的催化剂具有高表面积、原子高度分散的特点,有利于VOCs分子与催化活性中心的充分接触,在较低的反应温度下即可实现VOCs分子的充分氧化,适用于工业尾气中高浓度VOCs的净化处理。
为了解决以上技术问题,本发明的解决方案是:
提供一种快速制备高分散Mn-X双金属氧化物的合成方法,具体实施步骤如下:
将KMnO4和一定量的金属强酸盐溶解于一定体积的去离子水中,形成深紫色的水溶液1,其中KMnO4的浓度约为0.02 g/mL,所加金属强酸盐水解反应换算成H+的浓度为0.125-0.375 mol/L,当调节Mn/X金属比例的时,根据H+的消耗需要补充适量的酸;
将3倍理论当量分析纯(含量30%)的H2O2配制成溶液2;
在室温条件下,伴以快速搅拌将溶液2逐滴加入溶液1中,形成大量沉淀;
将沉淀静置过夜老化,过滤并用水洗涤3-5次;
在110oC条件下烘干过夜,在空气中焙烧至400oC并保持2 h,即可得到Mn-X双金属氧化物,过筛出40-60目的催化剂颗粒。
在本发明中,所用的第二金属阳离子包括了Al3+、Co2+、Ni2+、Fe3+等,其对阴离子包括Cl-、NO3 -、SO4 2-等。
在本发明中,所需的外加酸包括了HCl、HNO3、H2SO4
在本发明中,所用的H2O2浓度为30%,并稀释10-20倍。
在本发明中,所合成的Mn-X双金属具有高比表面积,其比表面积随Mn/X比例的不同而发生改变,其变化范围在170-220 m2/g之间。
在本发明中,所合成的Mn-X双金属氧化物中Mn和第二金属(X)可达到原子级的相互混合。
本发明所合成的催化材料具有金属分散性好,和较大的比表面积,有利于污染物在催化剂表面的吸附,且能提供更多的活性位点。对苯系物如高浓度甲苯的催化燃烧反应有很高的催化活性,且制备原料易得,工艺简便。
附图说明
图1为本发明催化剂的合成路线图。
图2为本发明实施例1所合成材料的扫面电镜图。
图3为本发明实施例1所合成材料的透射电镜-EDX图。
图4为本发明实施例2所合成材料的扫面电镜图。
图5为本发明实施例1合成的3Mn1Fe双金属氧化物催化降解甲苯,转化率和反应温度变化关系曲线。
图6为本发明实施例2合成的5Mn1Fe双金属氧化物催化降解甲苯,转化率和反应温度变化关系曲线。
图7为本发明实施例2合成的5Mn1Fe双金属氧化物催化降解甲苯,矿化率和反应温度变化关系曲线。
图8为本发明实施例2合成的5Mn1Fe双金属氧化物催化降解甲苯,反应温度为215oC下的催化剂寿命曲线。
图9为本发明实施例3合成的2Mn1Co双金属氧化物催化降解甲苯,转化率和反应温度变化关系曲线。
图10为本发明实施例4合成的3Mn1Al双金属氧化物催化降解甲苯,转化率和反应温度变化关系曲线。
图11为本发明实施例5采用传统共沉淀法合成的Cop-3Mn1Fe双金属氧化物催化降解甲苯,转化率和反应温度变化关系曲线。
具体实施方式
下面结合附图和实施例来对本发明进一步详细说明,其中部分制备条件仅是作为典型情况的说明,并非是对本发明的限定。
实施例1:
(1)将6 g的KMnO4和5.1 g Fe(NO3)3·9H2O溶解于200-300 mL的去离子水中,形成深紫色的水溶液1,其中Mn和Fe的摩尔比为3:1;
(2)将19.35mL分析纯(含量30%)的H2O2用200-300 mL去离子水稀释成溶液2;
(3)在室温条件下并伴以快速搅拌,将溶液2逐滴加入溶液1中,反应过程中形成大量沉淀,并伴有大量的O2生成;
(4)将沉淀静置过夜老化,过滤并用水洗涤3-5次;
(5)在110oC条件下烘干过夜,在空气中焙烧至400oC并保持2 h,即可得到Mn/Fe摩尔比为3:1的3Mn1Fe双金属氧化物催化剂;
(6)经扫面电镜表征,实例1所合成的3Mn1Fe在微观尺度上为无定形纳米颗粒,见图2;经透射电镜-EDX表征,所合成的3Mn1Fe中Mn和Fe充分混合均匀分布,见图3;经N2静态吸脱附表征,并采用BET方法计算其比表面积为180.7 m2/g;
(7)在固定床反应器内,评价高浓度甲苯催化燃烧性能,催化剂用量为0.2 g,催化剂经过筛处理后成为40-60目的固体颗粒,反应气体流速为66.6 mL/min,反应气体中甲苯的浓度为1000ppm,模拟空气中O2和N2的比例为21/79,用气相色谱仪在线分析。催化反应结果见图5,可以看出在该催化剂的作用下,当温度为165 oC时甲苯的净化率达到90%,催化活性明显高于实施例5采用共沉淀法合成具有相同金属摩尔比的Cop-3Mn1Fe双金属氧化物。
实施例2:
(1)将6 g的KMnO4,3.1 g的Fe(NO3)3·9H2O和1.48 g浓硝酸溶于200-300 mL的去离子水中,形成深紫色的水溶液1,其中Mn和Fe的摩尔比为5:1;
(2)将19.35 mL分析纯(含量30%)的H2O2用200-300 mL去离子水稀释成溶液2;
(3)在室温并伴以快速搅拌的条件下,将溶液2逐滴加入溶液1中形成大量沉淀,并伴有大量的O2生成;
(4)将沉淀静置过夜老化,过滤并用水洗涤3-5次;
(5)在110oC条件下烘干过夜,在空气中焙烧至400oC并保持2 h,即可得到5Mn1Fe双金属氧化物;
(6)经扫面电镜表征,实例2所合成的5Mn1Fe双金属氧化物在微观尺度上为无定形纳米颗粒,见图4;经XRD表征为非晶态结构;经N2静态吸脱附表征,并通过BET方法计算其比表面积为191.8 m2/g;
(7)在固定床反应器内,评价高浓度甲苯催化燃烧性能,催化剂用量为0.2 g,经过筛处理后为40-60目的固体颗粒,反应气体流速为66.6 mL/min,反应气体中甲苯的浓度为1000ppm,模拟空气中O2和N2的比例为21/79,其催化反应结果见图6和图7,可以看出该催化剂的催化效果明显优于实例1的3Mn1Fe催化剂,在其作用下甲苯在反应温度为147 oC时消除率可达到90%,甲苯完全矿化温度在215 oC,并且如图8所示,该材料表现出优异的催化稳定性。
实施例3:
(1)将6 g的KMnO4和5.52 g的Co(NO3)2·6H2O溶解于200-300 mL的去离子水中,形成深紫色的水溶液1,其中Mn和Co的摩尔比为2:1;
(2)将19.35 mL分析纯(含量30%)的H2O2用200-300 mL去离子水稀释成溶液2;
(3)在室温并伴以快速搅拌的条件下,将溶液2逐滴加入溶液1中形成大量沉淀,并伴有大量的O2生成;
(4)将沉淀静置过夜老化,过滤并用水洗涤3-5次;
(5)在110oC条件下烘干过夜,在空气中焙烧至400oC并保持2 h,即可得到2Mn1Co双金属氧化物;
(6)经XRD表征,该催化剂为非晶态氧化物;
(7)在固定床反应器内,评价高浓度甲苯催化燃烧性能,催化剂用量为0.2 g,催化剂经过过筛处理后为40-60目的固体颗粒,反应气体流速为66.6 mL/min,反应气体中甲苯的浓度为1000ppm,模拟空气中O2和N2的比例为21/79,用气相色谱仪在线分析。催化反应结果见图9,当反应温度为203 oC时,甲苯的净化率为90%。
实施例4:
(1)将6 g的KMnO4和4.02 g的Al(NO3)3·9H2O溶解于200-300 mL的去离子水中,形成深紫色的水溶液1,其中Mn和Al的摩尔比为3:1;
(2)将19.35 mL分析纯(含量30%)的H2O2用200-300 mL去离子水稀释成溶液2;
(3)在室温并伴以快速搅拌的条件下,将溶液2逐滴加入溶液1中形成大量沉淀,并伴有大量的O2生成;
(4)将沉淀静置过夜老化,过滤并用水洗涤3-5次;
(5)在110oC条件下烘干过夜,在空气中焙烧至400oC并保持2 h,即可得到3Mn1Al双金属氧化物;
(6)经XRD表征,该催化剂为非晶态氧化物;
(7)在固定床反应器内,评价高浓度甲苯催化燃烧性能,催化剂用量为0.2 g,并催化剂经过过筛处理后为40-60目的固体颗粒,反应气体流速为66.6 mL/min,反应气体中甲苯的浓度为1000ppm,模拟空气中O2和N2的比例为21/79,用气相色谱仪在线分析。催化反应结果见图11,其催化甲苯降解的活性要明显逊色于Mn与Fe、Co等过渡金属形成的双金属氧化物。
实施例5
(1)将10 g含量为50wt.%的Mn(NO3)4水溶液和3.76 g的Fe(NO3)3·9H2O溶解于200-300 mL的去离子水中,形成黄色的水溶液1,其中Mn和Fe的摩尔比为3:1;
(2)将11.73 mL分析纯(含量25%)的NH3·H2O用200-300 mL去离子水稀释成溶液2;
(3)在室温并伴以快速搅拌的条件下,将溶液2逐滴加入溶液1中形成大量沉淀;
(4)将沉淀静置过夜老化,过滤并用水洗涤3-5次;
(5)在110oC条件下烘干过夜,在空气中焙烧至400oC并保持2 h,即可得到Cop-3Mn1Fe双金属氧化物;
(6)经XRD表征,该催化剂为非晶态氧化物;
(7)在固定床反应器内,评价高浓度甲苯催化燃烧性能,催化剂用量为0.2 g,并催化剂经过过筛处理后为40-60目的固体颗粒,反应气体流速为66.6 mL/min,反应气体中甲苯的浓度为1000ppm,模拟空气中O2和N2的比例为21/79,用气相色谱仪在线分析。催化反应结果见图11,甲苯在反应温度为206 oC下转化率可达到90%。
上述实例只为说明和了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明实质所作的等效变换,同样属于本发明的保护范围。

Claims (3)

1.VOCs低温催化燃烧的Mn-X双金属氧化物催化剂的制备方法,其特征在于,所述制备方法采用氧化还原-水解偶联反应,根据还原电位的差异(1)-(3)提出H2O2快速还原KMnO4制MnOx的化学反应(4),依据反应(5)金属盐离子Xn+水解生成的H+可促进反应(4)的进行,从而使KMnO4的还原和第二金属阳离子的水解反应发生偶联,生成Mn-X双金属氧化物:
(1)O2 + 2H+ + 2e- = H2O2, Eq = 0.695 V;
(2)MnO4 + 4H+ + 3e- = MnO2 + 2H2O, Eq = 1.697 V;
(3)MnO2 + 4H+ + 2e- = Mn2+ + 2H2O, Eq = 1.507 V;
(4)2MnO4 + 3H2O2 + 2H+= 2MnO2 + 3O2 + H2O;
(5)Xn+ + H2O = X(OH)n + nH+
所述Xn+选自Al3+、Co2+、Ni2+或Fe3+
所述Mn-X双金属氧化物催化剂的比表面积在170-220 m2/g之间;
所述Mn-X双金属氧化物中的Mn和第二金属X达到原子级的相互混合;
所述制备方法包括如下合成步骤:
(a)将KMnO4和一定量的金属强酸盐溶解于一定体积的去离子水中,形成深紫色的水溶液1,其中KMnO4的浓度为0.02 g/mL,所加金属强酸盐水解反应转化出H+的浓度为0.125-0.375 mol/L,当调节Mn/X金属比例时,根据H+的消耗需要补充适量的酸;
(b)将3倍理论当量分析纯的H2O2稀释成溶液2;所用的H2O2浓度为30%,并稀释10-20倍;
(c)在室温条件下,伴以快速搅拌将溶液2逐滴加入溶液1中形成大量沉淀;
(d)将沉淀静置过夜老化,过滤并用去离子水洗涤3-5次;
(e)在110oC条件下烘干过夜,在空气中焙烧至400oC并保持2 h,即可得到Mn-X双金属氧化物,过筛出40-60目的催化剂颗粒。
2.根据权利要求1所述的制备方法,其特征在于,所述的金属强酸盐中的阴离子为Cl-、NO3 -或SO4 2-
3.根据权利要求1或2所述的制备方法,其特征在于,所需的外加酸为HCl、HNO3或H2SO4
CN201610844743.6A 2016-09-23 2016-09-23 氧化还原-水解偶联反应制备双金属氧化物用于VOCs低温催化燃烧 Active CN107999085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610844743.6A CN107999085B (zh) 2016-09-23 2016-09-23 氧化还原-水解偶联反应制备双金属氧化物用于VOCs低温催化燃烧

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610844743.6A CN107999085B (zh) 2016-09-23 2016-09-23 氧化还原-水解偶联反应制备双金属氧化物用于VOCs低温催化燃烧

Publications (2)

Publication Number Publication Date
CN107999085A CN107999085A (zh) 2018-05-08
CN107999085B true CN107999085B (zh) 2020-07-10

Family

ID=62047114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610844743.6A Active CN107999085B (zh) 2016-09-23 2016-09-23 氧化还原-水解偶联反应制备双金属氧化物用于VOCs低温催化燃烧

Country Status (1)

Country Link
CN (1) CN107999085B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743562B (zh) * 2019-10-24 2022-08-09 黑龙江科技大学 一种催化甲苯燃烧Ni-α-MnO2催化剂的合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041887A (zh) * 1988-10-18 1990-05-09 英国石油公司 用于将甲烷转化成高级烃的化学方法和催化剂
US5658541A (en) * 1995-03-16 1997-08-19 Monsato Company Process for removal of divalent sulfur compounds from waste gases
CN101240203A (zh) * 2008-03-14 2008-08-13 广东工业大学 一种用于二甲醚催化燃烧的催化剂及其制备方法和应用
CN101875013A (zh) * 2009-10-23 2010-11-03 北京工业大学 用于催化消除VOCs的CuO和Fe2O3负载介孔氧化锰的制备方法
CN101912784A (zh) * 2010-08-13 2010-12-15 北京工业大学 介孔Co3O4/β-MnO2或NiO/β-MnO2催化剂的制备方法和应用
CN104276691A (zh) * 2014-09-23 2015-01-14 同济大学 一种强化除铁锰反应沉淀耦合池
CN105921146A (zh) * 2016-05-23 2016-09-07 中国科学院城市环境研究所 H2O2快速还原法制备Mn基金属氧化物催化剂及其在VOCs低温催化燃烧中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041887A (zh) * 1988-10-18 1990-05-09 英国石油公司 用于将甲烷转化成高级烃的化学方法和催化剂
US5658541A (en) * 1995-03-16 1997-08-19 Monsato Company Process for removal of divalent sulfur compounds from waste gases
CN101240203A (zh) * 2008-03-14 2008-08-13 广东工业大学 一种用于二甲醚催化燃烧的催化剂及其制备方法和应用
CN101875013A (zh) * 2009-10-23 2010-11-03 北京工业大学 用于催化消除VOCs的CuO和Fe2O3负载介孔氧化锰的制备方法
CN101912784A (zh) * 2010-08-13 2010-12-15 北京工业大学 介孔Co3O4/β-MnO2或NiO/β-MnO2催化剂的制备方法和应用
CN104276691A (zh) * 2014-09-23 2015-01-14 同济大学 一种强化除铁锰反应沉淀耦合池
CN105921146A (zh) * 2016-05-23 2016-09-07 中国科学院城市环境研究所 H2O2快速还原法制备Mn基金属氧化物催化剂及其在VOCs低温催化燃烧中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Marı'a Roxana Morales et al..Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts.《Applied Catalysis B: Environmental》.2007, *

Also Published As

Publication number Publication date
CN107999085A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
Jin et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst
Wang et al. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts
Shayegan et al. Surface fluorinated Ce-doped TiO2 nanostructure photocatalyst: A trap and remove strategy to enhance the VOC removal from indoor air environment
Wu et al. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2
Wu et al. Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase
Navı́o et al. Iron-doped titania semiconductor powders prepared by a sol–gel method. Part I: synthesis and characterization
Wu et al. Deactivation mechanism of PtOx/TiO2 photocatalyst towards the oxidation of NO in gas phase
Wu et al. Photocatalytic oxidation of gas-phase Hg0 by carbon spheres supported visible-light-driven CuO–TiO2
CN111889101B (zh) 用于VOCs和NO协同净化的改性复合氧化物催化剂及其制备方法
Song et al. Influences of pH value in deposition-precipitation synthesis process on Pt-doped TiO2 catalysts for photocatalytic oxidation of NO
CN105921146B (zh) H2O2快速还原法制备Mn基金属氧化物催化剂及其在VOCs低温催化燃烧中的应用
Wang et al. Low-temperature catalytic oxidation of vinyl chloride over Ru modified Co 3 O 4 catalysts
Sha et al. Tuning of electron transfer by Ni–P decoration on CeO2–TiO2 heterojunction for enhancement in photocatalytic hydrogen generation
Fu et al. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the x Pd/OMS-2 catalysts: effect of Pd loading
Fu et al. Enhanced performance of the OMS-2 catalyst by Ag loading for the oxidation of benzene, toluene, and formaldehyde
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
Kuvarega et al. Evaluation of the simulated solar light photocatalytic activity of N, Ir co-doped TiO2 for organic dye removal from water
Li et al. Visible light driven Z-scheme Fe2O3/SmFeO3/palygorskite nanostructure for photo-SCR of NOx
Zhang et al. Simultaneous catalytic elimination of formaldehyde and ozone over one‐dimensional rod‐like manganese dioxide at ambient temperature
Zhang et al. Investigation of suitable precursors for manganese oxide catalysts in ethyl acetate oxidation
US20160296915A1 (en) Exhaust gas purification catalyst and production method thereof
CN115106086A (zh) 双缺陷镍铁类水滑石光催化剂的制备方法及其产品和应用
Edrissi et al. Synthesis of cobalt chromite nanoparticles by thermolysis of mixed Cr 3+ and Co 2+ chelates of 2-mercaptopyridin N-Oxide
CN107999085B (zh) 氧化还原-水解偶联反应制备双金属氧化物用于VOCs低温催化燃烧
CN110433822B (zh) 一种用于NH3催化氧化的Co-Mn催化剂、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant