CN107987287A - 光致亚硝基交联水凝胶材料及其制备方法与应用 - Google Patents

光致亚硝基交联水凝胶材料及其制备方法与应用 Download PDF

Info

Publication number
CN107987287A
CN107987287A CN201711132465.2A CN201711132465A CN107987287A CN 107987287 A CN107987287 A CN 107987287A CN 201711132465 A CN201711132465 A CN 201711132465A CN 107987287 A CN107987287 A CN 107987287A
Authority
CN
China
Prior art keywords
component
group
class
dissolved
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711132465.2A
Other languages
English (en)
Other versions
CN107987287B (zh
Inventor
林秋宁
朱麟勇
华宇杰
张依晴
包春燕
钟学鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Guanghe Medical Technology Co., Ltd.
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201711132465.2A priority Critical patent/CN107987287B/zh
Publication of CN107987287A publication Critical patent/CN107987287A/zh
Application granted granted Critical
Publication of CN107987287B publication Critical patent/CN107987287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/046Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0019Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/04Printing inks based on proteins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/14Printing inks based on carbohydrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Manufacturing & Machinery (AREA)
  • Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及光致亚硝基交联水凝胶材料及其制备方法与应用。将组分A‑邻硝基苄基类光扳机修饰的高分子衍生物溶于生物相容性介质得到溶液A;将溶液A混合均匀或加入含有组分B的溶液B得到水凝胶前体溶液;水凝胶前体溶液在光源照射下,组分A中的邻硝基苄基类光扳机在光激发下产生亚硝基,该亚硝基可与自身发生二聚交联形成水凝胶,或与组分B中的亲核体或亲电体发生加成交联形成水凝胶。本发明还提供制备水凝胶用的试剂盒,以及水凝胶在组织工程和再生医学、3D打印及作为细胞、蛋白或药物载体上的应用。本发明可将水凝胶前体溶液喷涂或涂抹于组织表面在光照下实现原位凝胶,尤其适用于术后创面封闭和组织液渗漏封堵。

Description

光致亚硝基交联水凝胶材料及其制备方法与应用
技术领域
本发明属于生物材料技术领域,具体涉及一种光致亚硝基交联水凝胶材料及其制备方法与应用。
背景技术
水凝胶是一类高度含水的具有三维网络交联结构的聚合物材料,由于其具有优异的生物相容性及一定的机械强度,可以高度拟合生物组织的微环境,因此广泛应用于组织工程和再生医学领域。原位固化的水凝胶在临床应用中具有优异的组织赋型性。当前,可原位固化的水凝胶根据成胶机理的不同主要有温敏型(如LeGoo,羟丁基壳聚糖等)、双组份注射型(如Fibrin Glue,Adherus AutoSpray等)、光敏型(如FocalSeal,ChonDux等)等。
其中,光敏型水凝胶材料由于其成胶过程中光的非物理接触、时空精确可控等优势,更具备临床的实际操作性。自由基引发的光聚合交联(Hubbell et.al.U.S.Pat.No.6060582A,issued May 9,2000)以及在它基础上进一步发展的thiol-ene反应(Christopher Bowmanet.al.U.S.Pat.NO.US7288608B2,issued October 30,2007)是当前光引发自由基聚合交联制备水凝胶的两种典型方式,具有成胶速度快(2s左右成胶),胶的强度可控等优势。但是在自由基引发聚合交联的体系中,必须有小分子光引发剂的参与,而且光照产生的自由基不可避免会对细胞或生物组织造成损伤;此外,自由基对氧气也极其敏感,使得薄层原位水凝胶构筑十分困难;更为重要的是,由该方法原位构筑的水凝胶几乎没有组织粘附能力,使水凝胶的临床固定成为困扰,是该技术临床转化的壁垒。
为了规避自由基引发聚合交联方式的缺陷,朱麟勇研究组于2014年提出了基于邻硝基苄醇受紫外光照产生醛基,进一步交联多胺基高分子衍生物制备水凝胶的非自由基光偶合交联技术(Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724.;Linyong Zhuet.al.PCT.No. 2016082725A1,issued Jun 2,2016),在利用该技术实施临床上原位成胶的过程中完全规避了自由基的产生,能够有效解决自由基的毒性以及氧阻聚,具有优异的生物相容性,且胶层薄厚可调;同时,邻硝基苄醇受光照产生的醛基也会与组织表面富含的蛋白胺基交联,实现胶层与组织的化学键键连固定,解决传统光敏型水凝胶的组织粘附与整合等难题。然而,醛基与胺基的交联速度相比自由基交联模式大幅度减慢(初始成胶时间在30s左右,完全成胶时间在2min左右),不利于临床操作,因而限制了该类非自由基光偶合交联技术的临床转化。
发明内容
本发明的第一个目的就是为了克服上述现有技术存在的缺陷而提供一种光致亚硝基交联水凝胶材料的制备方法。
本发明的第一个目的可以通过以下技术方案来实现:
光致亚硝基交联水凝胶材料制备方法,包括以下步骤:将组分A-邻硝基苄基类光扳机修饰的高分子衍生物溶于生物相容性介质得到溶液A;将溶液A混合均匀得到水凝胶前体溶液;水凝胶前体溶液在光源照射下,组分A中的邻硝基苄基类光扳机在光激发下产生的亚硝基具有极强的反应活性,可以与自身发生二聚交联形成水凝胶。
进一步地,光致亚硝基交联水凝胶材料制备方法,包括以下步骤:将溶液A与溶液B混合均匀得到水凝胶前体溶液;水凝胶前体溶液在光源照射下,组分A中的邻硝基苄基类光扳机在光激发下产生的亚硝基具有极强的反应活性,与溶液B中组分B中的亲核体(如羟基、巯基、磺酸基官能团等)发生加成交联形成水凝胶。
进一步地,光致亚硝基交联水凝胶材料制备方法,包括以下步骤:将溶液A与溶液B混合均匀得到水凝胶前体溶液;水凝胶前体溶液在光源照射下,组分A中的邻硝基苄基类光扳机在光激发下产生的亚硝基具有极强的反应活性,与溶液B中组分B中的亲电体(如羰基、双键官能团等)发生加成交联形成水凝胶。
组分A为式A所示邻硝基苄基类光扳机修饰的高分子衍生物:
具体结构式为结构式A-I或结构式A-Ⅱ,
其中,R’选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、亚烷基、改性烷基或改性亚烷基等,
R1选自氢、醚键类取代基、酯键类取代基、碳酸酯键类取代基、胺基甲酸酯键类取代基、巯基甲酸酯键类取代基或磷酸酯键类取代基等,
R2,R3,R4,R5可自由的选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、亚烷基、改性烷基或改性亚烷基等,
P1与R2,R3,R4,R5中任意的一个或多个基团相连接,式A、A-I、A-Ⅱ中,P1为一种亲水或水溶性天然高聚物或合成聚合物,或P1独立的选自多种亲水或水溶性天然高聚物或合成聚合物;
式A、A-I、A-Ⅱ中,n≥2,即单条P1高分子链上的邻硝基苄基类光扳机(即式A、A-I、A-Ⅱ中括号内的结构)的平均个数大于或等于2;
进一步地,所述烷基为具有1~30个碳原子的饱和或不饱和脂肪族直链或支链的烷基;
所述亚烷基为具有1~30个碳原子的饱和或不饱和脂肪族直链或支链的亚烷基;
所述改性烷基为烷基的任意碳原子被选自卤原子、-OH、-SH、-NO2、-CN、-CHO、 -COOH、酯基、酰胺基、芳基、亚芳基、-CO-、-O-、-S-、-SO-、-SO2-、伯胺基、仲胺基、叔胺基、季铵盐基、饱和或不饱和的单环或双环亚环烃基、桥联脂杂环中的至少一种基团置换所得的基团,所述改性烷基具有1~30个原子,其碳碳单键可任意地被碳碳双键或碳碳叁键替换;
所述改性亚烷基为亚烷基的任意碳原子被选自卤原子、-OH、-SH、-NO2、-CN、-CHO、-COOH、酯基、酰胺基、芳基、亚芳基、-CO-、-O-、-S-、-SO-、-SO2-、伯胺基、仲胺基、叔胺基、季铵盐基、饱和或不饱和的单环或双环亚环烃基、桥联脂杂环中的至少一种基团置换所得的基团,所述改性亚烷基具有1~30个原子,其碳碳单键可任意地被碳碳双键或碳碳叁键替换;
所述醚键类取代基选自以下结构:
-(CH2)xCH3、-(CH2CH2O)xCH3、-(CH2)x(CH2CH2O)yCH3、或等,其中x和y≥0 且为整数;
所述酯键类取代基选自以下结构:
-CO(CH2)xCH3、-CO(CH2CH2O)xCH3、-CO(CH2)x(CH2CH2O)yCH3等,其中x和y≥0 且为整数;
所述碳酸酯键类取代基选自以下结构:
-COO(CH2)xCH3、-COO(CH2CH2O)xCH3、-COO(CH2)x(CH2CH2O)yCH3等,其中x和 y≥0且为整数;
所述胺基甲酸酯键类取代基选自以下结构:
-CONH(CH2)xCH3、-CONH(CH2CH2O)xCH3、-CONH(CH2)x(CH2CH2O)yCH3等,其中 x和y≥0且为整数;
所述巯基甲酸酯键类取代基选自以下结构:
-COS(CH2)xCH3、-COS(CH2CH2O)xCH3、-COS(CH2)x(CH2CH2O)yCH3等,其中x和y ≥0且为整数;
所述磷酸酯键类取代基选自以下结构:
-POOO(CH2)xCH3、-POOO(CH2CH2O)xCH3、-POOO(CH2)x(CH2CH2O)yCH3等,其中 x和y≥0且为整数;
所述芳基为5~10元芳香单环或芳香稠合双环结构;
所述杂芳基为环上含有选自O、S、N或Si中的至少一种杂原子的5~10元芳香单环或芳香稠合双环结构;
所述卤原子各自独立地选自F、Cl、Br、I。
对于式A、A-I、A-Ⅱ结构,还存在一些优选结构,即R2,R3,R4,R5中至少两个相互连接,与碳原子一起形成饱和或不饱和的脂环或脂杂环,或形成芳环或芳杂环。
所述脂环为饱和或不饱和的3~10元单环或多环脂环;
所述脂杂环为环上含有选自O、S、N或Si中的至少一种杂原子的饱和或不饱和的3-10元单环或多环脂杂环,所述脂杂环上含有S原子时,其任选为-S-、-SO-或-SO2-;所述脂环或脂杂环上的H还可任意地被卤原子、硝基、芳基、烷基或改性烷基取代;
所述芳环为5~10元芳香单环或芳香稠合双环;
所述芳杂环为环上含有选自O、S、N或Si中的至少一种杂原子的5~10元芳香单环或芳香稠合双环;所述芳环或芳杂环上的H还可任意地被卤原子、硝基、芳基、烷基或改性烷基取代。
进一步地,脂环或脂杂环的优选结构包括:
等;
进一步地,芳环或芳杂环的优选结构包括:
等;
当式A、A-I、A-Ⅱ结构中R2,R3,R4,R5中至少两个相互连接,与碳原子一起形成饱和或不饱和的脂环或脂杂环,或形成芳环或芳杂环时,P1还可以连接于R2,R3,R4, R5之间形成的饱和或不饱和脂环或脂杂环,或形成的芳环或芳杂环。
对于P1与R2,R3,R4,R5中任意的一个或多个基团相连接,或连接于R2,R3,R4, R5之间形成的饱和或不饱和脂环或脂杂环,或形成的芳环或芳杂环上时,
连接键选自羟基类所获得的连接键P1-O-;或选自巯基类所获得的连接键P1-S-;或选自胺基类所获得的连接键P1-NH-;或选自烷烃类所获得的连接键P1-;或选自酯键类所获得的连接键P1-COO-;或选自酰胺键类所获得的连接键P1-CONH-,该连接键的一端与P1相连,另一端连接在式A、A-I、A-Ⅱ所示分子的苯环上。
邻硝基苄基类光扳机修饰的高分子衍生物中的高分子P1可以是亲水或水溶性天然高聚物包括天然多糖类物质及其修饰物或降解物,蛋白及其修饰物或降解物等,所述天然多糖类物质包括透明质酸、羧甲基纤维素、甲基纤维素、羟乙基纤维素、羟丙基纤维素、海藻酸、葡聚糖、琼脂糖、肝素、硫酸软骨素、乙二醇壳聚糖、丙二醇壳聚糖、壳聚糖乳酸盐、羧甲基壳聚糖或壳聚糖季铵盐等,所述蛋白包括各种亲水性或水溶性动植物蛋白、胶原蛋白、血清蛋白、丝素蛋白、弹性蛋白,所述蛋白降解物包括明胶或多肽等,亲水或水溶性合成聚合物包括两臂或多臂聚乙二醇、聚乙烯亚胺、树枝体、合成多肽、聚赖氨酸、聚谷氨酸、聚丙烯酸、聚甲基丙烯酸、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮等。
以上接枝或聚合的水溶或亲水性高分子衍生物中,单条高分子链上的邻硝基苄基类光扳机的平均个数大于或等于2(即n≥2)。
所述邻硝基苄基类光扳机修饰的高分子衍生物可以是同时含有一种或一种以上不同基团的亲水或水溶性高分子,或者是一种或一种以上不同基团的亲水或水溶性高分子的混合物。所述亲水或水溶性高分子指亲水或水溶性天然高聚物,或亲水或水溶性合成聚合物。
R’的一些优选结构包括:
-H、-CH3、-CH2CH3、-CH=CH-CH=CH-CH3、-F、-Cl、-Br、-I、-CF3、-CCl3、-CBr3、 -CI3、-CN、-COOH、-Ph、等。
R2,R3,R4,R5的一些优选结构包括:
-H、-OH、-SH、-NH2、-F、-Cl、-Br、-I、-CF3、-CCl3、-CBr3、-CI3、-NO2、-CN、 -CHO、-COOH、-COONH2、-SO3H等;
烷基类取代基优选结构,如直链烷基-(CH2)xCH3、支链烷基-(CH2)x(CY’Y”)yCH3(Y’,Y”为氢、烷基或改性烷基)等,其中x和y≥0且为整数;
醚类取代基优选结构,如-O(CH2)xCH3、-O(CH2CH2O)xCH3、-O(CH2)x(CH2CH2O)yCH3等,其中x和y≥0且为整数;
硫醚类取代基优选结构,如-S(CH2)xCH3、-S(CH2CH2O)xCH3、 -S(CH2)x(CH2CH2O)yCH3等,其中x和y≥0且为整数;
胺基类取代基优选结构,如-NH(CH2)xCH3、-NH(CH2)x(CY’Y”)yCH3、 -N(CY’Y”)x(CY’Y”)y(Y,Y’为氢、烷基或改性烷基)等,其中x和y≥0且为整数;
酯类取代基优选结构,如-COO(CH2)xCH3、-COO(CH2CH2O)xCH3、 -COO(CH2)x(CH2CH2O)yCH3等,其中x和y≥0且为整数;
酰胺类取代基优选结构,如-CONH(CH2)xCH3、-CONH(CH2CH2O)xCH3、 -CONH(CH2)x(CH2CH2O)yCH3等,其中x和y≥0且为整数;
芳香族类取代基优选结构,如-Ph、等。
可选地,所述式A-I可选自以下组分A-1~组分A-50中的结构:
可选地,所述式A-Ⅱ可选自以下组分A-51~组分A-68中的结构:
组分A-1~组分A-68中,n≥2,HA为透明质酸;CMC为羧甲基纤维素;Alg为海藻酸;CS为硫酸软骨素;PGA为聚谷氨酸;PEG为聚乙二醇;Chitosan为壳聚糖;Gelatin 为明胶;PLL为聚赖氨酸;Dex为葡聚糖;Hep为肝素。
本发明进一步提供所述邻硝基苄基类光扳机修饰的高分子衍生物的制备方法。
本发明中,邻硝基苄基类光扳机修饰的高分子衍生物的制备方法为化学标记法或人工聚合的方法。
其中,化学标记法是利用高分子与邻硝基苄基类光扳机中所含的化学基团间的化学反应而连接,可以是含羧基的高分子与含羟基/巯基/胺基的邻硝基苄基类小分子标记(参考文献O.P.Oommen,S.Wang,M.Kisiel,M.Sloff,J.Hilborn,O.P.Varghese,Adv.Funct.Mater.2013,23,1273.);也可以是含羟基的高分子与含羧基的或含溴的邻硝基苄基类小分子标记(参考文献K.Peng,I.Tomatsu,A.V.Korobko,A.Kros,Soft Matter 2010,6,85;L.Li, N.Wang,X.Jin,R.Deng,S.Nie,L.Sun,Q.Wu,Y.Wei,C.Gong,Biomaterials 2014,35,3903.);也可以是含胺基的高分子与含羧基的或含溴的邻硝基苄基类小分子标记(参考文献L.Li,N.Wang,X.Jin,R.Deng,S.Nie,L.Sun,Q.Wu,Y.Wei,C.Gong,Biomaterials 2014,35,3903.)等标记方法。
人工聚合的方法是利用邻硝基苄基衍生物功能单体与其它共单体共聚,可以是无规自由基聚合方法,也可以是控制自由基聚合方法(比如ATRP聚合、RAFT聚合方法)等。
本发明中,邻硝基苄基类光扳机修饰的高分子衍生物的一些可实施的制备方法如下:
第一种可实施的制备方法为:将含有羧基的水溶性聚合物或高分子于蒸馏水中溶解,加入含有活性官能团羟基或巯基或胺基的邻硝基苄基小分子后,加入缩合剂1-乙基-(3- 二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl)和活化剂羟基苯并三唑(HOBt),然后在室温下搅拌24-48h。反应结束后,将反应液加入透析袋中用稀盐酸溶液透析2-3d,然后冷冻干燥,即可得到所述的邻硝基苄基修饰的高分子衍生物。
第二种可实施的制备方法为:将含有羧基的水溶性聚合物或高分子于0.01mol/L2-(N- 吗啉)乙磺酸MES缓冲溶液(pH=5.2)中,搅拌至完全溶解,将邻硝基苄基小分子溶于二甲基亚砜后加入上述反应液,将4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM)溶于MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应 24h。然后将反应液倒入透析袋中,用去离子水透析2-3d,然后冷冻干燥,即可得到所述的邻硝基苄基修饰的高分子衍生物。
第一种可实施方式与第二种可实施方式中,所述含有羧基的水溶性聚合物或高分子可以为聚乙二醇类、含羧基的多糖类(如:透明质酸、羧甲基纤维素、海藻酸等)、含羧基的蛋白或多肽类(如:明胶等),优选为多臂羧基聚乙二醇、透明质酸、羧甲基纤维素、明胶。进一步优选为透明质酸。
第三种可实施的制备方法为:将含有羟基或胺基的水溶性聚合物于蒸馏水中溶解,加入含有活性官能团羧基的邻硝基苄基小分子后,加入缩合剂1-乙基-(3-二甲基胺基丙基) 碳二亚胺盐酸盐(EDC-HCl)和催化剂对甲苯磺酸吡啶盐(DPTS),然后在室温下搅拌24-48h。反应结束后,将反应液倒入难溶性溶剂中重沉淀(比如修饰的聚乙二醇衍生物可倒入乙醚中重沉淀,多糖类高分子衍生物可倒入乙醇中重沉淀),然后溶于水中用透析袋透析2-3d,冷冻干燥后,即可得到所述的邻硝基苄基修饰的高分子衍生物。
第四种可实施的制备方法为:将含有羟基或胺基的水溶性聚合物于蒸馏水中溶解,加入含有活性官能团溴的邻硝基苄基小分子后,加入碳酸钾作为碱,在室温下反应24-48h。反应结束后,将反应液倒入难溶性溶剂(比如修饰的聚乙二醇衍生物可倒入乙醚中,修饰的多糖类高分子衍生物可倒入乙醇中)中重沉淀,然后溶于水中用透析袋透析2-3d,冷冻干燥后,即可得到所述的邻硝基苄基修饰的高分子衍生物。
第三种可实施方式与第四种可实施方式中,上述含有羟基或胺基的水溶性聚合物可以为含羟基或胺基的聚乙二醇类或天然多糖类或蛋白/多肽类,优选为多臂羟基聚乙二醇、多臂胺基聚乙二醇、乙二醇壳聚糖、丙二醇壳聚糖、羧甲基壳聚糖、壳聚糖乳酸盐类或天然多糖类,或聚赖氨酸、明胶等,进一步优选为乙二醇壳聚糖、多臂羟基聚乙二醇。
上述反应中,水溶性聚合物中的羧基、羟基或胺基与小分子邻硝基苄基类衍生物的摩尔比优选为1:0.1-2;胺基修饰的邻硝基苄基类小分子与1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl)、活化剂羟基苯并三唑(HOBt)的摩尔比优选为1:2:1.5;胺基修饰的邻硝基苄基类小分子与4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM) 的摩尔比优选为1:7.5;羧基修饰的邻硝基苄基类小分子与1-乙基-(3-二甲基胺基丙基) 碳二亚胺盐酸盐(EDC-HCl)、催化剂DPTS的摩尔比优选为1:2:1.5;溴代的邻硝基苄基类小分子与碳酸钾的摩尔比优选为1:2。
第五种可实施的制备方法为:将邻硝基苄基可聚合单体衍生物与一种或几种可聚合共单体经过聚合即可得邻硝基苄基修饰的合成共聚物。经过多次溶解-重沉淀的方法将其纯化。
上述邻硝基苄基可聚合单体衍生物可以为丙烯酸酯类化合物、甲基丙烯酸酯类化合物、丙烯酰胺类化合物、甲基丙烯酰胺类化合物,优选为甲基丙烯酸酯类化合物和丙烯酰胺类化合物,进一步优选为甲基丙烯酸酯类化合物。
上述可聚合共单体中至少一种必须是水溶性共单体,可以为甲基丙烯酸聚乙二醇酯 (PEG-MA)、丙烯酸聚乙二醇酯、甲基丙烯酸(MAA)、丙烯酸(AA)、丙烯酸羟乙酯、丙烯酰胺(AM)等任意具有水溶性的可聚合单体,优选为甲基丙烯酸聚乙二醇酯 (PEG-MA)。其它共单体根据不同的应用而选择。
上述邻硝基苄基可聚合单体衍生物与水溶性共单体的聚合摩尔比可以为1:20-1:2,优选为1:9-1:3,进一步优选为1:4。
上述聚合方法可以是无规自由基聚合、也可以是控制自由基聚合(比如RAFT聚合、ATRP聚合等)。优选为无规自由基聚合。即邻硝基苄基可聚合单体衍生物与共单体共溶于一定的溶剂中,加入自由基引发剂充分溶解后,经过三次冷冻-抽真空循环操作后,在加热条件下反应过夜。待反应结束后,将反应液倒入无水乙醚中沉淀,经过多次溶解-重沉淀的纯化过程,真空干燥后即可得到含邻硝基苄基的共聚合物。(参考文献G.Delaittre,T.Pauloehrl,M.Bastmeyer,C.Barner-Kowollik,Macromolecules 2012,45,1792-1802.)。
所述组分B选自以下高分子中的一种或一种以上的混合物:含羟基类基团的高分子衍生物、含巯基类基团的高分子衍生物、含磺酸类基团的高分子衍生物、含羰基类基团的高分子衍生物、含双键类基团的高分子衍生物。
所述组分B还可以为含羟基类基团、巯基类基团、磺酸类基团、羰基类基团、双键类基团中一种或一种以上基团的高分子。
对于组分B,含羟基类基团的高分子衍生物,具有结构式B-Ⅰ;含巯基类基团的高分子衍生物,具有结构式B-Ⅱ;含磺酸类基团的高分子衍生物,具有结构式B-Ⅲ;含羰基类基团的高分子衍生物,具有结构式B-Ⅳ;含双键类基团的高分子衍生物,具有结构式B-Ⅴ:
B-Ⅰ、B-Ⅱ、B-Ⅲ、B-Ⅳ、B-Ⅴ中,X选自O,S,N等杂原子,R’,R1,R2,R3选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、羧基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、改性烷基等;此处,羟基、巯基、胺基、硝基、氰基、醛基、酮基、羧基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、改性烷基等的定义与上文中关于组分A结构式中定义一致。
可选地,R1,R2,R3可相互连接,与碳原子一起形成饱和或不饱和的脂环或脂杂环;
此外,n≥2,P2、P3、P4、P5、P6独立的选自亲水或水溶性天然高聚物或合成聚合物。
含羟基类高分子衍生物,式B-Ⅰ所示结构,代表含n个羟基基团的水溶性或亲水性的高分子。含巯基类高分子衍生物,式B-Ⅱ所示结构,代表含n个巯基基团的水溶性或亲水性的高分子。含磺酸类高分子衍生物,式B-Ⅲ所示结构,代表含n个磺酸基团的水溶性或亲水性的高分子。含羰基类高分子衍生物,式B-Ⅳ所示结构,代表含n个羰基基团的水溶性或亲水性的高分子。含双键类高分子衍生物,式B-Ⅴ所示结构,代表含n个双键基团的水溶性或亲水性的高分子。
所述水溶性或亲水性高分子指亲水或水溶性天然高聚物及其修饰物,或亲水或水溶性合成聚合物及其修饰物。
亲水或水溶性天然高聚物包括天然多糖类物质及其修饰物或降解物,蛋白及其修饰物或降解物等,所述天然多糖类物质包括透明质酸、羧甲基纤维素、甲基纤维素、羟乙基纤维素、羟丙基纤维素、海藻酸、葡聚糖、琼脂糖、肝素、硫酸软骨素、乙二醇壳聚糖、丙二醇壳聚糖、壳聚糖乳酸盐、羧甲基壳聚糖或壳聚糖季铵盐等,所述蛋白包括各种亲水性或水溶性动植物蛋白、胶原蛋白、血清蛋白、丝素蛋白、弹性蛋白,所述蛋白降解物包括明胶或多肽等。
亲水或水溶性合成聚合物包括两臂或多臂聚乙二醇、聚乙烯亚胺、树枝体、合成多肽、聚赖氨酸、聚谷氨酸、聚丙烯酸、聚甲基丙烯酸、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮等。
另外,所述的含羟基、巯基、磺酸基、羰基、双键类高分子衍生物也可以是同时含有以上一种或一种以上不同基团的亲水或水溶性高分子,或者含有一种或一种以上不同基团的亲水或水溶性高分子的混合物。
所述式B-Ⅰ优选选自以下组分B-1中的结构;所述式B-Ⅱ优选选自以下组分B-2~组分B-7中的结构;所述式B-Ⅲ优选选自以下组分B-8~组分B-9中的结构;所述式B-Ⅳ优选选自以下组分B-10~组分B-17中的结构;所述式B-Ⅴ优选选自以下组分B-18~组分 B-26:
组分B-1~组分B-26中,n≥2,组分B-1为葡聚糖;组分B-2为两臂巯基聚乙二醇;组分B-3为四臂巯基聚乙二醇;组分B-4为巯基修饰的透明质酸;组分B-5为巯基修饰的壳聚糖;组分B-6为巯基修饰的葡聚糖;组分B-7为巯基修饰的肝素;组分B-8为硫酸软骨素;组分B-9为肝素;组分B-10为氧化葡聚糖;组分B-11为氧化透明质酸;组分B-12 为氧化海藻酸;组分B-13为氧化羧甲基纤维素;组分B-14为氧化硫酸软骨素;组分B-15 为两臂醛基聚乙二醇;组分B-16为四臂醛基聚乙二醇;组分B-17为醛基聚合物;组分B-18为双键修饰的透明质酸;组分B-19为双键修饰的羧甲基纤维素;组分B-20为双键修饰的海藻酸;组分B-21为双键修饰的硫酸软骨素;组分B-22为双键修饰的葡聚糖;组分B-23为双键修饰的壳聚糖;组分B-24为双键修饰的明胶;组分B-25为两臂双键聚乙二醇;组分B-26为四臂双键聚乙二醇。
含羟基类基团的高分子衍生物,即羟基修饰的高分子衍生物可以是天然多糖类(如透明质酸、羧甲基纤维素、甲基纤维素、羟乙基纤维素、羟丙基纤维素、海藻酸、葡聚糖、琼脂糖、肝素、硫酸软骨素、乙二醇壳聚糖、丙二醇壳聚糖、壳聚糖乳酸盐、羧甲基壳聚糖、壳聚糖季铵盐等)及其修饰物或降解物;也可以是蛋白及多肽类(如亲水性或水溶性动植物蛋白、胶原蛋白、血清蛋白、丝素蛋白、弹性蛋白、明胶等)及其修饰物、改性物和降解的多肽类;也可以是合成的亲水或水溶性共聚物,例如聚乙二醇类(如两臂或多臂羧基聚乙二醇)、聚乙烯亚胺、树枝体、合成多肽、聚赖氨酸、聚谷氨酸、聚丙烯酸、聚甲基丙烯酸、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮的聚合物及其修饰物。优选为聚乙二醇、葡聚糖。
含巯基类基团的高分子衍生物,即巯基修饰的高分子衍生物的制备方法为化学标记法,具体是利用高分子与含巯基的衍生物中所含化学基团间的化学反应而连接,可以是含羧基的高分子与含胺基或含酰肼或含羟胺的小分子标记(参考文献Amy Fu,Kihak Gwon,Julia A.Kornfield,Biomacromolecules.2015,16,497.;Tugba Ozdemir,Swati Pradhan-Bhatt, Xinqiao Jia,ACS Biomater.Sci.Eng.2016,2,2217.),也可以是含羟基的高分子与含羧基或含溴的小分子标记(参考文献Rayun Choi,Yong-Min Huh,Seungjoo Haam,Langmuir.2010, 26,17520.),也可以是含胺基的高分子与含羧基或含溴的小分子标记(参考文献Hanwei Zhang,Aisha Qadeer,Weiliam Chen,Biomacromolecules.2011,12,1428.)等标记方法。
含巯基类基团的高分子衍生物的制备方法包括以下几种:
第一种可实施的制备方法为:将含有羧基的水溶性聚合物或高分子于蒸馏水中溶解,加入含有活性官能团胺基或酰肼或羟胺的带巯基的小分子后,加入缩合剂1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl)和活化剂羟基苯并三唑(HOBt),然后在室温下搅拌24-48h。反应结束后,将反应液加入透析袋中用稀盐酸溶液透析2-3d,然后冷冻干燥,即可得到所述的巯基修饰的高分子衍生物。
第二种可实施的制备方法为:将含有羟基或胺基的水溶性聚合物或高分子于蒸馏水中溶解,加入含有活性官能团羧基的带巯基的小分子后,加入缩合剂1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl)和催化剂4-(二甲胺基)吡啶,然后在室温下搅拌24-48h。反应结束后,将反应液倒入难溶性溶剂中重沉淀(比如修饰的聚乙二醇衍生物可倒入乙醚中重沉淀,多糖类高分子衍生物可倒入乙醇中重沉淀),然后溶于水中用透析袋透析2-3d,冷冻干燥后,即可得到所述的巯基修饰的高分子衍生物。
第三种可实施的制备方法为:将含有羟基或胺基的水溶性聚合物或高分子于蒸馏水中溶解,加入含有活性官能团溴的带巯基保护基的小分子后,加入碳酸钾作为碱,在室温下反应24-48h。反应结束后,将反应液倒入难溶性溶剂(比如修饰的聚乙二醇衍生物可倒入乙醚中,修饰的多糖类高分子衍生物可倒入乙醇中)中重沉淀,然后将粗产物溶于蒸馏水中,加入DTT脱保护,反应一段时间后,将反应液倒入透析袋透析2-3d,冷冻干燥后,即可得到所述的巯基修饰的高分子衍生物。
上述含有羧基的水溶性聚合物或高分子可以为聚乙二醇类、含羧基的多糖类(如:透明质酸、羧甲基纤维素、海藻酸、肝素等),优选为多臂羧基聚乙二醇、透明质酸、肝素,进一步优选为透明质酸、肝素。
上述含有羟基的水溶性聚合物或高分子可以为聚乙二醇类或天然多糖类,优选为多臂聚乙二醇、葡聚糖,进一步优选为葡聚糖。上述含有胺基的水溶性聚合物或高分子可以为聚乙二醇类或天然多糖类或蛋白及多肽类,优选为多臂胺基聚乙二醇、乙二醇壳聚糖、丙二醇壳聚糖、羧甲基壳聚糖、壳聚糖乳酸盐类或蛋白及多肽类,进一步优选为羧甲基壳聚糖。
上述反应中,水溶性高分子中的羧基、羟基或胺基与小分子巯基类衍生物的摩尔比优选为1:0.1-2;胺基或酰肼或羟胺修饰的含巯基类小分子与1-乙基-(3-二甲基胺基丙基) 碳二亚胺盐酸盐(EDC-HCl)、活化剂羟基苯并三唑(HOBt)的摩尔比优选为1:1.5:1.5,羧基修饰的含巯基类小分子与1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl)、催化剂4-(二甲胺基)吡啶的摩尔比优选为1:1.5:1.5,溴代的含巯基类小分子与碳酸钾的摩尔比优选为1:2。
含羰基类基团的高分子衍生物,可实施的制备方法为:邻二醇氧化法、羟基氧化法、化学标记法和人工聚合法等。其中,邻二醇氧化法是利用高碘酸钠氧化含邻二醇结构的高分子衍生物得到醛基(参考文献Brendan P.Purcell,David Lobb,Jason A.Burdick,Nat.Mater. 2014,13,653.),羟基氧化法是将含羟基的高分子衍生物直接氧化为醛基(参考文献Daniel D.Mckinnon,Dylan W.Domaile,Kristi S.Anseth,Adv.Mater.2014,26,865.)。化学标记法是利用高分子与含醛基的衍生物中所含化学基团间的化学反应而连接,可以是含羟基或含胺基的高分子与含有活性官能团羧基的带醛基的小分子标记(参考文献Caixia Ding, Xiaozhong Qu,Zhenzhong Yang,Biomacromolecules.2010,11,1043)。人工聚合的方法是利用醛基衍生物功能单体与其它共单体共聚(参考文献Mathew Patenaude,Scott Campbell, Todd Hoare,Biomacromolecules.2014,15,781),可以是无规自由基聚合方法,也可以是控制自由基聚合方法(比如ATRP聚合、RAFT聚合方法)等。
含羰基类基团的高分子衍生物,优选为醛基修饰的高分子衍生物。含醛基类基团的高分子衍生物的制备方法包括以下几种:
第一种可实施的制备方法为:将含有邻二醇结构的水溶性高分子衍生物于蒸馏水中溶解,加入一定量的高碘酸钠,室温下搅拌反应5-12h,加入乙二醇淬灭反应。然后将反应液倒入透析袋中透析2-3d,然后冷冻干燥,即可得到所述的含醛基的高分子衍生物。
上述含有邻二醇结构的水溶性高分子衍生物可以为多糖类(如葡聚糖、透明质酸、羧甲基纤维素、海藻酸、硫酸软骨素等),优选为葡聚糖、透明质酸、羧甲基纤维素,进一步优选为葡聚糖。
上述反应中,水溶性高分子中的邻二醇结构与高碘酸钠的摩尔比优选为1:0.1-2;高分子溶液的质量浓度优选为1.0%-10%w/v。
第二种可实施的制备方法为:将一定量的草酰氯溶于二氯甲烷中,用丙酮/干冰浴冷却,加入1:5二氯甲烷稀释的二甲基亚砜溶液,然后逐滴加入含羟基高分子衍生物的二氯甲烷溶液,加入三乙胺反应2h,反应后溶液升温至室温,在乙醚溶液中重沉淀,即可得到所述的含醛基的高分子衍生物。
上述含有羟基的水溶性高分子可以为聚乙二醇类,优选为多臂羟基聚乙二醇。
上述反应中,水溶性高分子中的羟基与草酰氯、二甲基亚砜、三乙胺的摩尔比优选为 1:10:10:200。
第三种可实施的制备方法为:将含有羟基的高分子衍生物,对甲酰苯甲酸,4-(二甲胺基)吡啶(DMAP)溶于二氯甲烷中,然后加入1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl)的二氯甲烷溶液,室温下反应24h。反应后过滤除去不溶物,将滤液倒入异丙醇中重沉淀。粗产物重新溶于水后,倒入透析袋中透析2-3d,然后冷冻干燥,即可得到所述的含醛基的高分子衍生物。
上述含有羟基的水溶性高分子可以为聚乙二醇类,优选为多臂羟基聚乙二醇。
上述反应中,水溶性高分子中的羟基与对甲酰苯甲酸、4-(二甲胺基)吡啶、1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐的摩尔比优选为1:8:4:8。
醛基修饰的合成共聚物的制备方法为:将醛基保护的可聚合单体衍生物与一种或几种可聚合共单体经过聚合,再脱保护即可得醛基修饰的合成共聚物。经过多次溶解-重沉淀的方法将其纯化。
上述醛基保护的可聚合单体衍生物可以为丙烯酸酯类、甲基丙烯酸酯类、丙烯酰胺类、甲基丙烯酰胺类,优选为甲基丙烯酸酯类和丙烯酰胺类,进一步优选为丙烯酰胺类。
上述可聚合共单体中至少一种必须是水溶性共单体,可以为甲基丙烯酸聚乙二醇酯 (PEG-MA)、丙烯酸聚乙二醇酯、甲基丙烯酸(MAA)、丙烯酸(AA)、丙烯酸羟乙酯、丙烯酰胺(AM)等任意具有水溶性的可聚合单体,优选为甲基丙烯酸聚乙二醇酯 (PEG-MA)。其它共单体根据不同的应用而选择。
上述醛基保护的可聚合单体衍生物与水溶性共单体的聚合摩尔比可以为1:20-1:1,优选为1:10-1:2,进一步优选为1:7。
含双键类基团的高分子衍生物的制备方法包括以下几种:
第一种可实施的制备方法为:将含羟基或胺基的水溶性高分子溶于去离子水,冷却至 0-4℃,加入丙烯酸酐或甲基丙烯酸酐,再缓慢滴加5M NaOH,反应24h,然后将反应液倒入透析袋中,用去离子水透析2-3d,然后冷冻干燥,即可得到所述的双键修饰的高分子衍生物。
上述含有羟基或胺基的水溶性聚合物或高分子可以为聚乙二醇类、含羟基或胺基的多糖类(如:透明质酸、海藻酸、羧甲基纤维素、羧甲基壳聚糖、葡聚糖、硫酸软骨素等)、含羟基或胺基的蛋白或多肽类(如:明胶等),优选为透明质酸、明胶、海藻酸、羧甲基纤维素、硫酸软骨素,进一步优选为透明质酸。
第二种可实施的制备方法为:将含羟基或胺基的水溶性高分子溶于去离子水,加热至 40℃搅拌溶解,加入丙烯酸缩水甘油酯或甲基丙烯酸缩水甘油酯,再加入5M NaOH,反应2-3h后,将反应液倒入透析袋中,用去离子水透析2-3d,然后冷冻干燥,即可得到所述的双键修饰的高分子衍生物。
上述含有羟基或胺基的水溶性聚合物或高分子可以为聚乙二醇类、含羟基或胺基的多糖类(如:透明质酸、海藻酸、羧甲基纤维素、羧甲基壳聚糖、葡聚糖、硫酸软骨素等)、含羟基或胺基的蛋白或多肽类(如:明胶等),优选为透明质酸、明胶、羧甲基壳聚糖,进一步优选为羧甲基壳聚糖。
第三种可实施的制备方法为:含羟基或胺基的水溶性高分子溶于无水二甲基亚砜中,加入三乙胺,再加入丙烯酰氯或甲基丙烯酰氯(溶于二氯甲烷中),反应10h,反应结束后,将反应液倒入乙醇中重沉淀,过滤得到的粗产物重新溶于去离子水中,透析2-3d,然后冷冻干燥,即可得到所述的双键修饰的高分子衍生物。
上述含有羟基或胺基的水溶性聚合物或高分子可以为聚乙二醇类、含羟基或胺基的多糖类(如:葡聚糖等),优选为多臂聚乙二醇、葡聚糖,进一步优选为葡聚糖。
本发明目的一所述水凝胶的制备方法中,生物相容性介质选自蒸馏水、生理盐水、缓冲液和细胞培养基溶液,根据不同的应用,可选取不同的介质。
本发明目的一所述水凝胶的制备方法中,溶液A(或加入溶液B)混合均匀形成的水凝胶前体溶液中,邻硝基苄基基团与羟基/巯基/磺酸基/羰基/双键的摩尔比可以为 1:0.02-50,优选为1:0.1-10,聚合物总浓度可以为0.1%wt-60%wt,优选为1%wt-10%wt。
本发明目的一所述水凝胶的制备方法中,光源的波长根据邻硝基苄基类光扳机的吸收波长来确定,可以为250-500nm,优选为300-450nm,进一步优选为365、375、385、395、405nm。
本发明的第二个目的是提供用本发明方法制备得到的水凝胶,可以称为光致亚硝基交联水凝胶。
本发明的第三个目的是:提供了用本发明方法制备水凝胶的试剂盒,包含:组分A,以及有关水凝胶制备及应用的说明书。
或,用本发明方法制备水凝胶的试剂盒,包含:组分A,组分B,以及有关水凝胶制备及应用的说明书。
组分A为式A-Ⅰ或A-Ⅱ所示邻硝基苄基类光扳机修饰的高分子衍生物。
组分B为式B-Ⅰ所示含羟基类高分子衍生物,式B-Ⅱ所示含巯基类高分子衍生物,式B-Ⅲ所示含磺酸类高分子衍生物,式B-Ⅳ所示含羰基类高分子衍生物,式B-Ⅴ所示含双键类高分子衍生物。
本发明试剂盒中还可包含生物相容性介质,如蒸馏水、生理盐水、缓冲液和细胞培养基。
本发明试剂盒中的说明书上记载着水凝胶的应用包括其在术后创面封闭、组织液渗漏封堵、止血材料、组织工程支架材料、3D打印的生物墨水及作为细胞、蛋白或药物载体上的应用。
本发明的第四个目的是提供光致亚硝基交联水凝胶的应用。
本发明提供了上述光致亚硝基交联水凝胶用于制备术后创面封闭用品的应用。
本发明还提供了上述光致亚硝基交联水凝胶用于制备组织液渗漏封堵用品的应用。
本发明还提供了上述光致亚硝基交联水凝胶用于制备止血材料的应用。
本发明还提供了上述光致亚硝基交联水凝胶用于制备组织工程支架材料-软骨修复材料的应用。
本发明还提供了上述光致亚硝基交联水凝胶用于制备组织工程支架材料-骨修复材料的应用。
本发明还提供了上述光致亚硝基交联水凝胶作为3D打印材料-生物墨水的应用。
本发明还提供了上述光致亚硝基交联水凝胶在制备细胞、蛋白、药物载体上的应用。
本发明制备方法采用的技术原理是:邻硝基苄基类光扳机在光激发下产生的亚硝基具有极强的反应活性,可以与自身发生二聚交联形成水凝胶,也可以与组分B中的亲核体(如羟基、巯基、磺酸基团等)发生加成交联形成水凝胶,也可以与组分B中的亲电体 (如羰基、双键基团等)发生加成交联形成水凝胶。本发明制备原理可称为光致亚硝基交联,是一种新型的光交联制备水凝胶的方法。具体交联机理如下式所示:
(1)光致亚硝基-二聚交联
(2)光致亚硝基-亲核加成交联
(3)光致亚硝基-亲电加成交联
之前报道的非自由基光偶合交联(Linyong Zhu et.al.PCT.No.WO2016082725A1,issued Jun 2,2016)中,由于光照剂量不足、高分子上硝基苯的标记量不够等原因,只能产生极少量的亚硝基,且很快被水中的活泼氢淬灭,达不到有效的亚硝基交联条件,因此只能发生醛基-胺基的席夫碱交联。而本专利中由于光照剂量充足,及高分子上硝基苯的标记量足够,使得光照下瞬间产生大量的亚硝基,能够达到亚硝基与活性基团(如羟基、巯基、磺酸基、羰基、双键等)交联的条件。下式为之前报道的醛基-胺基光偶合交联中亚硝基淬灭的示意:
另外,光照产生的亚硝基基团比光照产生的醛基基团具有更高的反应活性,能大幅度提高交联效率,进而缩短交联时间,提高水凝胶的力学强度,同时亚硝基更容易与组织表面的各种活性基团反应,可以大幅提高水凝胶与组织的粘附力。
该类光致亚硝基交联技术在已报道的非自由基光偶合交联技术(Linyong Zhuet.al. PCT.No.WO2016082725A1,issued Jun 2,2016)无自由基毒性及无氧阻聚的优势上,进一步具有下列创新点:
(1)本发明公开的光致亚硝基交联具有光交联效率高、速度快的优势,光照产生的亚硝基比醛基具有更强的反应活性,不仅能与自身发生二聚交联,而且能与多种活性基团(羟基、巯基、磺酸基、羰基、双键等)进行交联,大幅度缩短了水凝胶的成胶时间(初始凝胶时间由醛基-胺基交联的30s左右提高到了5s左右),同时,由于一次光照可实现多重交联,其交联效率明显要优于单纯的单重光交联;
(2)本发明公开的光致亚硝基交联具有组织粘附力强的优势,光照产生的亚硝基能与组织表面富含的蛋白巯基/胺基/羧基发生反应,实现水凝胶与组织的共价键连接一体化整合,同时由于亚硝基的反应活性及交联效率高于醛基,可提高水凝胶与组织的粘附力(粘附力由24kPa左右提高到63kPa左右);
(3)凝胶的化学结构、组成和降解性以及强度、厚薄可调,可以根据不同的应用而灵活地调节凝胶材料的组成和性质,尤其可以在创面原位成薄胶,特别适用于术后创面的封闭和修复,也适用于组织液渗漏封堵,同时可作为止血材料,也可作为组织工程支架材料,也可以用于3D打印的生物墨水,还可以为细胞、蛋白或药物提供一种原位载体,有效应用于再生医学。
附图说明
注:NB为本发明组分A-1中的邻硝基苄基类光扳机。其中,HA-NB即为组分A-1。
图1为水凝胶前体溶液(2%HA-NB/2%HA-SH和2%HA-NB/2%CMCh)光照成胶的实时流变图。
图2为该水凝胶(2%HA-NB/2%HA-SH和2%HA-NB/2%CMCh)的粘附力测试图。
图3为该水凝胶(组分A-1/组分B-4)的压缩测试图。
图4为该水凝胶(组分A-1/组分B-4)的生物相容性测试图。
图5为该水凝胶(组分A-1/组分B-4)的创面封闭的效果直观图。
图6为该水凝胶(组分A-1/组分B-4)作为止血材料的效果直观图。
图7为该水凝胶(组分A-1/组分B-4)作为软骨组织工程支架材料的效果直观图。
图8为该水凝胶(组分A-1/组分B-4)作为硬骨组织工程支架材料的效果直观图。
图9为该水凝胶(组分A-1/组分B-4)作为生物墨水的打印效果直观图。
具体实施方式
下面结合附图以及实施例对本发明作进一步描述,但这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何限制。本领域技术人员在不背离本发明精神和保护范围的情况下作出的其它任何变化和修改,仍包括在本发明保护范围之内。
实施例一:组分A-1的合成
(1)化合物1的合成:按参考文献Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724.公开的方法进行合成。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.13(t, J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J =7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]328.1507.
(2)组分A-1的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 1(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋 (MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物A-1 (1.85g),根据核磁氢谱图,可计算出化合物1的标记率大约为3.42%。
实施例二:组分A-2的合成
(1)化合物2的合成:按参考文献James F.Cameron.;Jean M.J.Frechet.J.Am.Chem.Soc.1991,113,4303.公开的方法进行合成。
(2)化合物3的合成:将化合物2(1g,3.2mmol)和乙二胺(1.1mL)溶于甲醇 (50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物3(0.89g,产率82%)。1H NMR (400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(m,1H),4.13(t,J=6.1Hz,2H),3.99(s, 3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26- 2.17(m,2H),1.33(d,J=6.9Hz,3H).MS(ESI):[M+H]342.1624.
(3)组分A-2的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 3(68mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋 (MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物A-2 (1.92g),根据核磁氢谱图,可计算出化合物3的标记率大约为3.29%。
实施例三:组分A-3的合成
(1)化合物4的合成:按参考文献Michael C.Pirrung.;Yong Rok Lee.;Kaapjoo.;James B.Springer.J.Org.Chem.1999,64,5042.公开的方法进行合成。
(2)化合物5的合成:将化合物4(1g,2.7mmol)和乙二胺(1.1mL)溶于甲醇 (50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物5(0.80g,产率74%)。1H NMR (400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),6.35(dd,J=10.0,15.0Hz,1H),6.04(m, 1H),5.8(m,1H),5.4(m,1H),4.96(m,1H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J= 11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.75(d, J=6.5Hz,3H).MS(ESI):[M+H]394.1908.
(3)组分A-3的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 5(79mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋 (MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物A-3 (1.73g),根据核磁氢谱图,可计算出化合物5的标记率大约为2.97%。
实施例四:组分A-4的合成
(1)化合物6的合成:按参考文献Isabelle Aujard.;Chouaha Benbrahim.;Ludovic Jullien.Chem.Eur.J.2006,12,6865.公开的方法进行合成。
(2)化合物7的合成:将化合物6(1g,3.1mmol)和乙二胺(1.1mL)溶于甲醇 (50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物7(0.85g,产率78%)。1H NMR (400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,1H),4.13(t,J=6.1Hz,2H),3.99(s, 3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26- 2.17(m,2H).MS(ESI):[M+H]353.1426.
(3)组分A-4的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 7(70mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋 (MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物A-4 (1.78g),根据核磁氢谱图,可计算出化合物7的标记率大约为2.49%。
实施例五:组分A-5的合成
(1)化合物8的合成:按参考文献Alexander G.Russell.;Dario M.Bassani.;JohnS. Snaith.J.Org.Chem.2010,75,4648.公开的方法进行合成。
(2)化合物9的合成:将化合物8(1g,2.9mmol)和乙二胺(1.1mL)溶于甲醇 (50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物9(0.78g,产率72%)。1H NMR (400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,1H),4.13(t,J=6.1Hz,2H),3.99(s, 3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26- 2.17(m,2H).MS(ESI):[M+H]372.1424.
(3)组分A-5的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 9(74mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋 (MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物A-5 (1.76g),根据核磁氢谱图,可计算出化合物9的标记率大约为3.08%。
实施例六:组分A-6的合成
(1)化合物10的合成:按参考文献Alexandre Specht.;MauriceGoeldner.Angew.Chem. Int.Ed.2004,43,2008.公开的方法进行合成。
(2)化合物11的合成:将化合物10(1g,2.7mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物11(0.68g,产率63%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,1H),4.13(t,J=6.1Hz, 2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz, 2H),2.26-2.17(m,2H).MS(ESI):[M+H]396.1374.
(3)组分A-6的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 11(79mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-6(1.79g),根据核磁氢谱图,可计算出化合物11的标记率大约为2.34%。
实施例七:组分A-7的合成
(1)化合物12的合成:按参考文献Jack E.Baldwin.;Adrian W.McConnaughie.;Sung Bo Shin.Tetrahedron.1990,46,6879.公开的方法进行合成。
(2)化合物13的合成:将化合物12(1g,2.4mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物13(0.61g,产率57%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.75(ddd,J=8.2,1.4,0.4Hz,1H),7.22(s,1H), 7.57(tdd,J=7.3,1.4,0.7Hz,1H),7.49(dd,J=7.9,1.4Hz,1H),7.36(ddd,J=8.1,7.3,1.4Hz, 1H),4.96(s,1H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t, J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]449.1618.
(3)组分A-7的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 13(90mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-7(1.72g),根据核磁氢谱图,可计算出化合物13的标记率大约为2.38%。
实施例八:组分A-8的合成
(1)化合物14的合成:按参考文献Pauloehrl,T.;Delaittre,G.;Bruns,M.;Meiβler,M.;H.G.;Bastmeyer,M.;Barner-Kowollik,C.Angew.Chem.Int.Ed.2012,51,9181.公开的方法进行合成。
(2)化合物15的合成:将化合物14(1g,2.6mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物15(0.90g,产率83%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.13(t,J=6.1Hz, 2H),3.99(s,3H),3.90-3.80(m,1H),3.63-3.52(m,1H),3.32(dd,J=11.6,5.7Hz,2H),2.82 (t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),2.00-1.34(m,6H).MS(ESI): [M+H]412.2027.
(3)组分A-8的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 15(82mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-8(1.86g),根据核磁氢谱图,可计算出化合物15的标记率大约为3.43%。
实施例九:组分A-9的合成
(1)化合物16的合成:按参考文献Patchornik Abraham.;Amit B.;WoodwardR.B.J. Am.Chem.Soc.1970,92,6333.公开的方法进行合成。
(2)化合物17的合成:将化合物16(1g,2.5mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物17(0.80g,产率75%)。1H NMR(400MHz,CDCl3):δ=8.02-7.23(m,5H),7.71(s,1H),7.22(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H), 2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]432.1713.
(3)组分A-9的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 17(86mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-9(1.82g),根据核磁氢谱图,可计算出化合物17的标记率大约为3.24%。
实施例十:组分A-10的合成
(1)化合物18的合成:按参考文献Patchornik Abraham.;Amit B.;WoodwardR.B.J. Am.Chem.Soc.1970,92,6333.公开的方法进行合成。
(2)化合物19的合成:将化合物18(1g,2.7mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物19(0.76g,产率71%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.25(q,J=6.5Hz, 2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz, 2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.32(t,J=6.5Hz,3H).MS(ESI):[M+H] 400.1742.
(3)组分A-10的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 19(80mg,0.2mmoL)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物A-10(1.88g),根据核磁氢谱图,可计算出化合物19的标记率大约为3.01%。
实施例十一:组分A-11的合成
(1)化合物20的合成:按参考文献Kalbag,S.M.;Roeske,R.W.J.Am.Chem.Soc.1975,97,440.公开的方法进行合成。
(2)化合物21的合成:将化合物20(1g,2.3mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物21(0.84g,产率79%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.63(q,J=6.9Hz, 1H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.67(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t, J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.48(d,J=6.9Hz,3H).MS (ESI):[M+H]457.1976.
(3)组分A-11的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 21(91mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-11(1.76g),根据核磁氢谱图,可计算出化合物21的标记率大约为3.15%。
实施例十二:组分A-12的合成
(1)化合物22的合成:按参考文献Patchornik Abraham.;Amit B.;WoodwardR.B.J. Am.Chem.Soc.1970,92,6333.公开的方法进行合成。
(2)化合物23的合成:将化合物22(1g,2.7mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物23(0.76g,产率71%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.25(q,J=6.5Hz, 2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz, 2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.32(t,J=6.5Hz,3H).MS(ESI):[M+H] 416.1422.
(3)组分A-12的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 23(80mg,0.2mmoL)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-12(1.88g),根据核磁氢谱图,可计算出化合物23的标记率大约为3.01%。
实施例十三:组分A-13的合成
(1)化合物24的合成:按参考文献Engels,J.;Schlaeger,E.J.J.Med.Chem.1977,20, 907.公开的方法进行制备化合物24。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.25(q,J=6.5Hz,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.32(t, J=6.5Hz,3H).MS(ESI):[M+H]435.1432.
(2)组分A-13的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 24(87mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-13(1.73g),根据核磁氢谱图,可计算出化合物24的标记率大约为3.08%。
实施例十四:组分A-14的合成
(1)化合物25的合成:按参考文献Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724. 公开的方法进行制备化合物25。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H), 2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]362.1124.
(2)组分A-14的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 25(72mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-14(1.72g),根据核磁氢谱图,可计算出化合物25的标记率大约为3.09%。
实施例十五:组分A-15的合成
(1)化合物26的合成:按参考文献Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724. 公开的方法进行制备化合物26。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H), 2.44(t,J=7.2Hz,2H),2.35(s,3H),2.26-2.17(m,2H).MS(ESI):[M+H]342.1617.
(2)组分A-15的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 26(68mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-15(1.88g),根据核磁氢谱图,可计算出化合物26的标记率大约为3.28%。
实施例十六:组分A-16的合成
(1)化合物27的合成:按参考文献Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724. 公开的方法进行制备化合物27。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H), 2.76(q,J=6.5Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.22(t,J=6.5Hz,3H). MS(ESI):[M+H]388.1554.
(2)组分A-16的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 27(77mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-16(1.68g),根据核磁氢谱图,可计算出化合物27的标记率大约为2.98%。
实施例十七:组分A-17的合成
(1)化合物28的合成:按参考文献Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724. 公开的方法进行制备化合物28。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.45(q,J=7.26Hz,4H),3.32(dd,J=11.6,5.7Hz,2H), 2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.20(t,J=7.26Hz,6H). MS(ESI):[M+H]399.2271.
(2)组分A-17的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 28(80mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-17(1.76g),根据核磁氢谱图,可计算出化合物28的标记率大约为3.02%。
实施例十八:组分A-18的合成
(1)化合物29的合成:按参考文献Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724. 公开的方法进行制备化合物29。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H), 2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),2.08(s,3H).MS(ESI):[M+H]386.1523.
(2)组分A-18的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 29(77mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-18(1.82g),根据核磁氢谱图,可计算出化合物29的标记率大约为3.15%。
实施例十九:组分A-19的合成
(1)化合物30的合成:按参考文献Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724. 公开的方法进行制备化合物30。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H), 2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),2.08(s,3H).MS(ESI):[M+H]385.1712.
(2)组分A-19的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物30(77mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-19(1.74g),根据核磁氢谱图,可计算出化合物30的标记率大约为3.12%。
实施例二十:组分A-20的合成
(1)化合物31的合成:按参考文献Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv.Mater.2016,28,2724. 公开的方法进行制备化合物31。1H NMR(400MHz,CDCl3):δ=8.02-7.23(m,5H),7.71(s, 1H),4.96(s,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t, J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]404.1882.
(2)组分A-20的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 31(80mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-20(1.81g),根据核磁氢谱图,可计算出化合物31的标记率大约为3.21%。
实施例二十一:组分A-21的合成
(1)化合物32的合成:按参考文献Emmanuel Riguet.;ChristianG.Bochet.Org.Lett. 2007,26,5453.公开的方法进行合成。
(2)化合物33的合成:将化合物32(1g,3.4mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物33(0.85g,产率78%)。1H NMR(400MHz,CDCl3):δ=8.05(d,J=9.54Hz,1H),7.24(d,J=2.72Hz,1H),6.92(dd, J=9.54,2.72Hz,1H),4.85(s,2H),3.56-3.68(m,4H),3.49-3.56(m,2H),3.42-3.49(m, 2H),3.32(t,J=5.9Hz,2H),2.82(t,J=5.9Hz,2H).MS(ESI):[M+H]346.1454.
(3)组分A-21的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 33(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-21(1.76g),根据核磁氢谱图,可计算出化合物33的标记率大约为2.84%。
实施例二十二:组分A-22的合成
(1)化合物34的合成:按参考文献Isabelle Aujard.;Chouaha Benbrahim.;Ludovic Jullien.Chem.Eur.J.2006,12,6865.公开的方法进行合成。
(2)化合物35的合成:将化合物34(1g,3.2mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物35(0.96g,产率88%)。1H NMR(400MHz,CDCl3):δ=8.05(d,J=9.54Hz,1H),7.28(d,J=8.00Hz,2H),7.24(d,J =2.72Hz,1H),6.92(dd,J=9.54,2.72Hz,1H),6.78(d,8.00Hz,2H),4.96(s,2H),4.83(s, 2H),3.32(t,J=5.9Hz,2H),2.82(t,J=5.9Hz,2H).MS(ESI):[M+H]346.1454.
(3)组分A-22的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 35(69mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-22(1.83g),根据核磁氢谱图,可计算出化合物35的标记率大约为3.12%。
实施例二十三:组分A-23的合成
(1)化合物36的合成:按参考文献Filiz Bley.;Klaus Schaper.;Helmut Gorner.Photochem.Photobiol.2008,84,162.公开的方法进行合成。
(2)化合物37的合成:将化合物36(1g,3.5mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物37(0.83g,产率76%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),5.92(s,2H),4.96(s,2H),4.83(s,2H),3.32(t,J =5.9Hz,2H),2.82(t,J=5.9Hz,2H).MS(ESI):[M+H]314.0932.
(3)组分A-23的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 37(63mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-23(1.84g),根据核磁氢谱图,可计算出化合物37的标记率大约为3.17%。
实施例二十四:组分A-24的合成
(1)化合物38的合成:按参考文献Filiz Bley.;Klaus Schaper.;Helmut Gorner.Photochem.Photobiol.2008,84,162.公开的方法进行合成。
(2)化合物39的合成:将化合物38(1g,3.0mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物39(0.77g,产率71%)。1H NMR(400MHz,CDCl3):δ=4.96(s,2H),4.83(s,2H),3.32(t,J=5.9Hz,2H),3.27-3.21 (m,4H),2.84(t,J=6.5Hz,2H),2.82(t,J=5.9Hz,2H),2.75(t,J=6.3Hz,2H),2.00-1.91 (m,4H).MS(ESI):[M+H]365.1828.
(3)组分A-24的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 39(73mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-24(1.87g),根据核磁氢谱图,可计算出化合物39的标记率大约为3.06%。
实施例二十五:组分A-25的合成
(1)化合物40的合成:按参考文献Emmanuel Riguet.;ChristianG.Bochet.Org.Lett. 2007,26,5453.公开的方法进行合成。
(2)化合物41的合成:将化合物40(1g,3.6mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物41(0.93g,产率85%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.24(s,2H),3.32(t,J =5.9Hz,2H),3.27-3.21(m,2H),2.82(t,J=5.9Hz,2H),2.75(t,J=6.3Hz,2H),2.00-1.91 (m,2H).MS(ESI):[M+H]309.1522.
(3)组分A-25的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 41(62mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-25(1.82g),根据核磁氢谱图,可计算出化合物41的标记率大约为3.12%。
实施例二十六:组分A-26的合成
(1)化合物42的合成:按参考文献Singh,A.K.;Khade,P.K.Tetrahedron.2005,61,10007.公开的方法进行合成。
(2)化合物43的合成:将化合物42(1g,3.4mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物43(0.90g,产率82%)。1H NMR(400MHz,CDCl3):δ=8.31-7.12(m,5H),4.96(s,2H),4.83(s,2H),3.32(t,J=5.9 Hz,2H),2.82(t,J=5.9Hz,2H).MS(ESI):[M+H]320.1254.
(3)组分A-26的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 43(64mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-26(1.87g),根据核磁氢谱图,可计算出化合物43的标记率大约为3.21%。
实施例二十七:组分A-27的合成
(1)化合物44的合成:按参考文献Felix Friedrich.;Mike Heilemann.;Alexander Heckel. Chem.Commun.2015,51,15382.公开的方法进行合成。
(2)化合物45的合成:将化合物44(1g,3.0mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物45(0.80g,产率74%)。1H NMR(400MHz,CDCl3):δ=8.31-7.12(m,5H),4.96(s,2H),4.83(s,2H),3.32(t,J=5.9 Hz,2H),2.82(t,J=5.9Hz,2H).MS(ESI):[M+H]360.1254.
(3)组分A-27的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 45(72mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-27(1.78g),根据核磁氢谱图,可计算出化合物45的标记率大约为2.12%。
实施例二十八:组分A-28的合成
(1)化合物46的合成:按参考文献Grazyna Groszek.;Agnieszka Nowak-Krol.;Barbara Filipek.Eur.J.Med.Chem.2009,44,5103.公开的方法进行合成。
(2)化合物47的合成:将化合物46(1g,3.3mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物47(0.97g,产率89%)。1H NMR(400MHz,CDCl3):δ=8.04(s,1H),7.42(s,1H),4.96(s,2H),4.13(t,J=6.1Hz, 2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz, 2H),2.26-2.17(m,2H).MS(ESI):[M+H]328.1507.
(3)组分A-28的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 47(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-28(1.85g),根据核磁氢谱图,可计算出化合物47的标记率大约为3.43%。
实施例二十九:组分A-29的合成
(1)化合物48的合成:按参考文献Thomas F.Greene.;Shu Wang.;MaryJ.Meegan.J. Med.Chem.2016,59,90.公开的方法进行合成。
(2)化合物49的合成:将化合物48(1g,3.3mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物49(0.95g,产率87%)。1H NMR(400MHz,CDCl3):δ=7.95(s,1H),7.12(s,1H),4.96(s,2H),4.13(t,J=6.1Hz, 2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz, 2H),2.26-2.17(m,2H).MS(ESI):[M+H]328.1507.
(3)组分A-29的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 49(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-29(1.86g),根据核磁氢谱图,可计算出化合物49的标记率大约为3.52%。
实施例三十:组分A-30的合成
(1)化合物50的合成:按参考文献Yu-Shan.;Mohane Selvaraj Coumar.;Hsing-Pang Hsieh.J.Med.Chem.2009,52,4941.公开的方法进行合成。
(2)化合物51的合成:将化合物50(1g,3.3mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物51(0.89g,产率81%)。1H NMR(400MHz,CDCl3):δ=7.64(s,1H),7.02(s,1H),4.96(s,2H),4.13(t,J=6.1Hz, 2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz, 2H),2.26-2.17(m,2H).MS(ESI):[M+H]328.1507.
(3)组分A-30的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 51(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-30(1.82g),根据核磁氢谱图,可计算出化合物51的标记率大约为3.39%。
实施例三十一:组分A-31的合成
(1)化合物52的合成:按参考文献Sarit S.Agasti.;Apiwat Chompoosor.;Vincent M. Rotello.J.Am.Chem.Soc.2009,131,5728.公开的方法进行合成。
(2)化合物53的合成:将化合物52(1g,2.9mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物53(0.91g,产率84%)。1H NMR(400MHz,CDCl3):δ=7.91(s,1H),4.96(s,2H),4.13(t,J=6.1Hz,2H),3.99(s, 3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26- 2.17(m,2H).MS(ESI):[M+H]373.1373.
(3)组分A-31的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 53(75mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-31(1.87g),根据核磁氢谱图,可计算出化合物53的标记率大约为3.45%。
实施例三十二:组分A-32的合成
(1)化合物54的合成:按参考文献Chandramouleeswaran Subramani.;Xi Yu.;Vincent M.Rotello.J.Mater.Chem.2011,21,14156.公开的方法进行合成。
(2)化合物55的合成:将化合物54(1g,2.7mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物55(0.84g,产率78%)。1H NMR(400MHz,CDCl3):δ=4.96(s,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.32(dd,J =11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS (ESI):[M+H]403.1432.
(3)组分A-32的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 55(80mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-32(1.81g),根据核磁氢谱图,可计算出化合物55的标记率大约为3.09%。
实施例三十三:组分A-33的合成
组分A-33的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL 0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取NB混合物(化合物1/化合物55,60mg,1:1)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-33(1.87g),根据核磁氢谱图,可计算出NB混合物(化合物1/化合物55)的标记率大约为3.52%。
实施例三十四:组分A-34的合成
(1)化合物56的合成:按参考文献Pauloehrl,T.;Delaittre,G.;Bruns,M.;Meiβler,M.;H.G.;Bastmeyer,M.;Barner-Kowollik,C.Angew.Chem.Int.Ed.2012,51,9181.公开的方法进行合成。
(2)化合物57的合成:将化合物56(1g,3.3mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物57(0.93g,产率85%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),3.99(s,3H),3.32(t,J =5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.55(t,J=6.1Hz,2H),2.44(t,J=7.2Hz,2H),2.26- 2.17(m,2H).MS(ESI):[M+H]326.1721.
(3)组分A-34的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 57(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-34(1.82g),根据核磁氢谱图,可计算出化合物57的标记率大约为3.21%。
实施例三十五:组分A-35的合成
(1)化合物58的合成:按参考文献Pauloehrl,T.;Delaittre,G.;Bruns,M.;Meiβler,M.;H.G.;Bastmeyer,M.;Barner-Kowollik,C.Angew.Chem.Int.Ed.2012,51,9181.公开的方法进行合成。
(2)化合物59的合成:将化合物58(1g,3.3mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物59(0.82g,产率75%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.03(t,J=6.1Hz, 2H),3.99(s,3H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz, 2H),2.26-2.17(m,2H).MS(ESI):[M+H]360.1013.
(3)组分A-35的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 59(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-35(1.87g),根据核磁氢谱图,可计算出化合物59的标记率大约为2.76%。
实施例三十六:组分A-36的合成
(1)化合物60的合成:按参考文献Pauloehrl,T.;Delaittre,G.;Bruns,M.;Meiβler,M.;H.G.;Bastmeyer,M.;Barner-Kowollik,C.Angew.Chem.Int.Ed.2012,51,9181.公开的方法进行合成。
(2)化合物61的合成:将化合物60(1g,3.3mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物61(0.80g,产率73%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),3.99(s,3H),3.45(t,J =6.1Hz,2H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H), 2.26-2.17(m,2H).MS(ESI):[M+H]327.1625.
(3)组分A-36的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 61(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-36(1.76g),根据核磁氢谱图,可计算出化合物61的标记率大约为3.21%。
实施例三十七:组分A-37的合成
组分A-37的合成:将羧甲基纤维素Carboxymethyl cellulose(2g,90kDa)溶于100mL 0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物1(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏羧甲基纤维素衍生物A-37(1.89g),根据核磁氢谱图,可计算出化合物1的标记率大约为2.25%。
实施例三十八:组分A-38的合成
组分A-38的合成:将海藻酸Alginic acid(2g)溶于100mL 0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物1(65mg,0.2mmol) 溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h) 加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏海藻酸衍生物A-38(1.82g),根据核磁氢谱图,可计算出化合物1的标记率大约为3.17%。
实施例三十九:组分A-39的合成
组分A-39的合成:将硫酸软骨素Chondroitin sulfate(2g)溶于100mL 0.01mol/L2- (N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物1(65mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6-二甲氧基三嗪 -2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次 (每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000) 中,用去离子水透析2-3d,冷冻干燥即可得到光敏硫酸软骨素衍生物A-39(1.73g),根据核磁氢谱图,可计算出化合物1的标记率大约为2.98%。
实施例四十:组分A-40的合成
组分A-40的合成:将聚谷氨酸PGA(1g)溶于50mL蒸馏水中至完全溶解,加入羟基苯并三唑(HOBt,0.3g,2.3mmol),然后将溶于甲醇中的化合物1(0.5g,1.6mmol) 和1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl,0.5g,2.6mmol)加入到上述溶液中室温反应48h后,先用含氯化钠的稀盐酸溶液(pH=3.5)透析1d,再用纯水透析1d后,冷冻干燥即可得到光敏聚谷氨酸衍生物A-40(0.92g),根据其核磁氢谱图,可以计算出化合物1的修饰度大约为21.3%。
实施例四十一:组分A-41的合成
组分A-41的合成:将四臂聚乙二醇羧酸衍生物4-PEG-COOH(0.5g,10kDa)溶于20mL无水二甲基亚砜DMSO中至完全溶解,取化合物1(130mg,0.4mmoL)溶于5mL 无水二甲基亚砜DMSO后加入上述反应液,加入0.2mL三乙胺TEA,再加入六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷PyBop(210mg,0.4mmol),于室温下反应24h,然后在乙醚中重沉淀,将粗产物溶于水后倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到光敏聚乙二醇衍生物A-41(0.45g),根据核磁氢谱图,可计算出化合物1的标记率大约为98%。
实施例四十二:组分A-42的合成
(1)化合物62的合成:按参考文献Pauloehrl,T.;Delaittre,G.;Bruns,M.;Meiβler,M.;H.G.;Bastmeyer,M.;Barner-Kowollik,C.Angew.Chem.Int.Ed.2012,51,9181.公开的方法进行合成。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.90-3.80(m,1H),3.79(t,J=6.1Hz,2H),3.70(t,J= 7.2Hz,2H),3.63-3.52(m,1H),3.56(t,J=7.2Hz,2H),2.00-1.34(m,6H).MS(ESI):[M+H] 372.1627.
(2)组分A-42的合成:将透明质酸Hyaluronic acid(1g,340kDa)溶于50mL水中,将化合物62(0.2g,0.48mmol)、EDC-HCl(0.76g,3.96mmol)和DPTS(0.12g, 0.48mmol)依次加入到上述溶液中,室温下搅拌反应48h。反应结束后,将反应液倒入冷的乙醇中多次重沉淀纯化,收集到的沉淀干燥后将其溶于无水DMSO中,加入对甲苯磺酸将二氢吡喃保护基团脱掉即可得到光敏透明质酸衍生物A-42(0.86g)。根据其核磁氢谱图,可计算出化合物62的修饰度大约为10%。
实施例四十三:组分A-43的合成
(1)化合物63的合成:按参考文献Pauloehrl,T.;Delaittre,G.;Bruns,M.;Meiβler,M.;H.G.;Bastmeyer,M.;Barner-Kowollik,C.Angew.Chem.Int.Ed.2012,51,9181.公开的方法进行合成。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.90-3.80(m,1H),3.63-3.52(m,1H),2.44(t,J=7.2 Hz,2H),2.26-2.17(m,2H),2.00-1.34(m,6H).MS(ESI):[M+H]370.1512.
(2)组分A-43的合成:将1g壳聚糖加入到75mL异丙醇中形成壳聚糖的悬浮液,然后将化合物63(0.2g,0.54mmol)、EDC-HCl(0.76g,3.96mmol)和NHS(0.46g, 4.0mmol)依次加入到上述溶液中,室温下搅拌反应48h。反应结束后,将混合物溶液过滤,滤液用甲醇/水混合溶剂透析三次、甲醇透析两次后,冷冻干燥即可得到化合物63标记的壳聚糖(0.9g)。将化合物63标记的壳聚糖溶于DMSO中,加入对甲苯磺酸脱除二氢吡喃保护即可得到光敏壳聚糖衍生物A-43,根据其核磁氢谱图,可计算出化合物63的修饰度大约为12.5%。
实施例四十四:组分A-44的合成
组分A-44的合成:将聚赖氨酸PLL(1g)溶于50mL水中,将化合物63(0.2g,0.54mmol)、EDC-HCl(0.76g,3.96mmol)和NHS(0.46g,4.0mmol)依次加入到上述溶液中,室温下搅拌反应48h。反应结束后,将反应液倒入冷的乙醇中多次重沉淀纯化,收集到的沉淀干燥后将其溶于无水DMSO中,加入对甲苯磺酸将二氢吡喃保护基团脱掉即可得到光敏聚赖氨酸衍生物A-44(0.84g)。根据其核磁氢谱图,可计算出化合物63的修饰度大约为15.6%。
实施例四十五:组分A-45的合成
组分A-45的合成:将明胶Gelatin(1g)溶于50mL蒸馏水中至完全溶解,将化合物63(0.2g,0.54mmol)、EDC-HCl(0.76g,3.96mmol)和NHS(0.46g,4.0mmol) 依次加入到上述溶液中,室温下搅拌反应48h。反应结束后,将反应液倒入冷的乙醇中多次重沉淀纯化,收集到的沉淀干燥后将其溶于无水DMSO中,加入对甲苯磺酸将二氢吡喃保护基团脱掉即可得到光敏明胶衍生物A-45(0.83g),根据其核磁氢谱图,可以计算出化合物63的修饰度大约为11.2%。
实施例四十六:组分A-46的合成
组分A-46的合成:将葡聚糖Dextran(1g)溶于50mL水中,将化合物63(0.23g,0.54mmol)、EDC-HCl(0.76g,3.96mmol)和DPTS(0.12g,0.48mmol)依次加入到上述溶液中,室温下搅拌反应48h。反应结束后,将反应液倒入冷的乙醇中多次重沉淀纯化,收集到的沉淀干燥后将其溶于无水DMSO中,加入对甲苯磺酸将二氢吡喃保护基团脱掉即可得到光敏葡聚糖衍生物A-46(0.92g)。根据其核磁氢谱图,可计算出化合物63 的修饰度大约为18.2%。
实施例四十七:组分A-47的合成
(1)化合物64的合成:按参考文献Pauloehrl,T.;Delaittre,G.;Bruns,M.;Meiβler,M.;H.G.;Bastmeyer,M.;Barner-Kowollik,C.Angew.Chem.Int.Ed.2012,51,9181.公开的方法进行合成。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI): [M+H]286.0943.
(2)组分A-47的合成:将巯基修饰的肝素Hep-SH(1g)溶于50mL蒸馏水中至完全溶解,加入羟基苯并三唑(HOBt,0.3g,2.3mmol),然后将溶于甲醇中的化合物64 (0.5g,1.6mmol)和1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl,0.5g, 2.6mmol)加入到上述溶液中室温反应48h后,先用含氯化钠的稀盐酸溶液(pH=3.5) 透析1d,再用纯水透析1d后,冷冻干燥即可得到光敏肝素衍生物A-47(0.86g),根据其核磁氢谱图,可以计算出化合物64的修饰度大约为10.2%。
实施例四十八:组分A-48的合成
(1)化合物65的合成:按参考文献Pauloehrl,T.;Delaittre,G.;Bruns,M.;Meiβler,M.;H.G.;Bastmeyer,M.;Barner-Kowollik,C.Angew.Chem.Int.Ed.2012,51,9181.公开的方法进行合成。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.96(s,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.90-3.80(m,1H),3.63-3.52(m,1H),3.04(t,J=7.2 Hz,2H),2.00-1.34(m,6H).MS(ESI):[M+H]391.0518.
(2)组分A-48的合成:将1g壳聚糖加入到75mL异丙醇中形成壳聚糖的悬浮液,25mL的NaOH溶液(10mol/L)分五次慢慢加入到上述壳聚糖的悬浮液中并继续搅拌半小时左右。然后将化合物65(0.2g)加入到上述溶液中并在60℃条件下反应3h。反应结束后,将混合物溶液过滤,滤液用甲醇/水混合溶剂透析三次、甲醇透析两次后,冷冻干燥即可得到化合物65标记的壳聚糖(0.92g)。将化合物65标记的壳聚糖溶于DMSO 中,加入对甲苯磺酸脱除二氢吡喃保护即可得到光敏壳聚糖衍生物A-48(0.84g),根据其核磁氢谱图,可计算出化合物65的修饰度大约为12.4%。
实施例四十九:组分A-49的合成
组分A-49的合成:将PEG-4OH(1g,0.05mmol)溶于无水乙腈中,加入K2CO3(55.3 mg,0.4mmol)搅拌30min后,加入化合物65(0.17g,0.4mmol)于室温下继续反应 24h。反应结束后,将大部分溶剂除掉,在乙醚中重沉淀,并多次洗涤,然后将化合物65 标记的聚乙二醇溶于DMSO中,加入对甲苯磺酸脱除二氢吡喃保护即可得到光敏聚乙二醇衍生物A-49(0.93g),根据核磁氢谱图,可计算出化合物65的修饰度大约为95%。
实施例五十:组分A-50的合成
(1)化合物66的合成:将化合物65(0.5g,1.29mmol)和乙二醇(0.24g,3.87mmol)溶于无水乙腈中,加入K2CO3(0.5g,3.87mmol)做碱,回流过夜反应。待反应结束后,减压旋蒸掉溶剂,过柱纯化,即可得到化合物66(0.34g,72%)。1H NMR(400MHz,CDCl3): δ=7.71(s,1H),7.22(s,1H),4.96(s,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.90-3.80(m, 1H),3.79(t,J=6.1Hz,2H),3.70(t,J=7.2Hz,2H),3.63-3.52(m,1H),3.56(t,J=7.2Hz, 2H),2.00-1.34(m,6H).MS(ESI):[M+H]372.1627.
(2)化合物67的合成:将化合物66(0.64g,1.72mmol)和三乙胺(0.34g,3.44mmol)溶于干燥的二氯甲烷中,冰浴条件下,甲基丙烯酰氯(0.27g,2.58mmol)慢慢逐滴加入到上述溶液中,滴加完后室温条件下过夜反应。反应结束后,减压旋蒸掉溶剂,过柱纯化即可得到化合物67(0.49g,65%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H), 6.25(s,1H),5.68(s,1H),4.96(s,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.90-3.80(m, 1H),3.79(t,J=6.1Hz,2H),3.70(t,J=7.2Hz,2H),3.63-3.52(m,1H),3.56(t,J=7.2Hz, 2H),2.00-1.34(m,6H),1.87(s,3H).MS(ESI):[M+H]440.1942.
(3)组分A-50的合成:称取化合物67(0.28g,0.63mmol)、共单体PEG-MA(0.882 g,2.52mmol)和引发剂偶氮二异丁腈(11mg)加入到史莱克管中,并加入无水THF溶解,经过多次冷冻-抽真空循环操作处理后,将该反应体系于75℃条件下反应24h。反应结束后,将反应液倒入冷的乙醚中多次重沉淀纯化,收集到的沉淀干燥后将其溶于无水 DMSO中,加入对甲苯磺酸将二氢吡喃保护基团脱掉即可得到光敏共聚物衍生物A-50 (0.84g)。根据核磁氢谱图,可计算出化合物67在共聚物中的含量大约为15.5%。根据 GPC测得合成高分子的分子量在25kDa左右,根据投料比计算可得n为12,x为10,y 为40。
实施例五十一:组分A-51的合成
(1)化合物68的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物69的合成:将化合物68(1g,3.2mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物69(0.83g,产率76%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.33(t,J=7.3Hz,2H),4.13(t,J= 6.1Hz,2H),3.99(s,3H),3.39(t,J=7.3Hz,2H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J= 5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]342.1612.
(3)组分A-51的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 69(68mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-51(1.91g),根据核磁氢谱图,可计算出化合物69的标记率大约为3.43%。
实施例五十二:组分A-52的合成
(1)化合物70的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物71的合成:将化合物70(1g,3.1mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物71(0.96g,产率88%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.33(m,2H),4.13(t,J=6.1Hz, 2H),3.99(s,3H),3.52(m,1H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t, J=7.2Hz,2H),2.26-2.17(m,2H),1.33(d,J=6.9Hz,3H).MS(ESI):[M+H]356.1804.
(3)组分A-52的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 71(71mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-52(1.86g),根据核磁氢谱图,可计算出化合物71的标记率大约为3.51%。
实施例五十三:组分A-53的合成
(1)化合物72的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物73的合成:将化合物72(1g,2.6mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物73(0.78g,产率73%)。1H NMR(400MHz,CDCl3):δ=8.02-7.23(m,5H),7.71(s,1H),7.22(s,1H),4.33(m,2H), 4.13(t,J=6.1Hz,2H),3.99(s,3H),3.52(m,1H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J= 5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]418.1943.
(3)组分A-53的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 73(83mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-53(1.84g),根据核磁氢谱图,可计算出化合物73的标记率大约为3.21%。
实施例五十四:组分A-54的合成
(1)化合物74的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物75的合成:将化合物74(1g,2.5mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物75(0.88g,产率82%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.85(t,J=7.3Hz,2H),4.13(t,J= 6.1Hz,2H),3.99(s,3H),3.90-3.80(m,1H),3.63-3.52(m,1H),3.39(t,J=7.3Hz,2H), 3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m, 2H),2.00-1.34(m,6H).MS(ESI):[M+H]426.2272.
(3)组分A-54的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 75(85mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋 (MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物A-54 (1.89g),根据核磁氢谱图,可计算出化合物75的标记率大约为3.42%。
实施例五十五:组分A-55的合成
(1)化合物76的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物77的合成:将化合物76(1g,2.4mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物77(0.77g,产率72%)。1H NMR(400MHz,CDCl3):δ=8.02-7.23(m,5H),7.71(s,1H),7.22(s,1H),4.85(t,J=7.3 Hz,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.39(t,J=7.3Hz,2H),3.32(dd,J=11.6,5.7 Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H] 446.1961.
(3)组分A-55的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 77(89mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-55(1.74g),根据核磁氢谱图,可计算出化合物77的标记率大约为2.93%。
实施例五十六:组分A-56的合成
(1)化合物78的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物79的合成:将化合物78(1g,2.6mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物79(0.72g,产率67%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.85(t,J=7.3Hz,2H),4.25(q,J= 6.5Hz,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.39(t,J=7.3Hz,2H),3.32(dd,J=11.6, 5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.32(t,J= 6.5Hz,3H).MS(ESI):[M+H]414.1822.
(3)组分A-56的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 79(83mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-56(1.84g),根据核磁氢谱图,可计算出化合物79的标记率大约为3.21%。
实施例五十七:组分A-57的合成
(1)化合物80的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物81的合成:将化合物80(1g,2.3mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物81(0.91g,产率85%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.85(t,J=7.3Hz,2H),4.63(q,J= 6.9Hz,1H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.67(s,3H),3.39(t,J=7.3Hz,2H),3.32 (dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H), 1.48(d,J=6.9Hz,3H).MS(ESI):[M+H]471.2026.
(3)组分A-57的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 81(91mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-57(1.72g),根据核磁氢谱图,可计算出化合物81的标记率大约为2.83%。
实施例五十八:组分A-58的合成
(1)化合物82的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物83的合成:将化合物82(1g,2.6mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物83(0.72g,产率67%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H),4.85(t,J=7.3Hz,2H),4.25(q,J= 6.5Hz,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.39(t,J=7.3Hz,2H),3.32(dd,J=11.6, 5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.32(t,J= 6.5Hz,3H).MS(ESI):[M+H]430.1682.
(3)组分A-58的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物83(83mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-58(1.84g),根据核磁氢谱图,可计算出化合物83的标记率大约为3.21%。
实施例五十九:组分A-59的合成
(1)化合物84的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。1H NMR(400MHz,CDCl3): δ=7.71(s,1H),7.22(s,1H),4.85(t,J=7.3Hz,2H),4.25(q,J=6.5Hz,2H),4.13(t,J=6.1 Hz,2H),3.99(s,3H),3.39(t,J=7.3Hz,2H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9 Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H),1.32(t,J=6.5Hz,3H).MS(ESI):[M+H] 449.1525.
(2)组分A-59的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 84(90mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-59(1.71g),根据核磁氢谱图,可计算出化合物84的标记率大约为2.45%。
实施例六十:组分A-60的合成
(1)化合物85的合成:按实施例51的方法,制备化合物85。1H NMR(400MHz, CDCl3):δ=7.71(s,1H),4.85(t,J=7.3Hz,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.39(t, J=7.3Hz,2H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J=5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]377.1241.
(2)组分A-60的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 85(75mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-60(1.78g),根据核磁氢谱图,可计算出化合物85的标记率大约为3.02%。
实施例六十一:组分A-61的合成
(1)化合物86的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物87的合成:将化合物86(1g,3.2mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物87(0.97g,产率89%)。1H NMR(400MHz,CDCl3):δ=8.04(s,1H),7.42(s,1H),4.85(t,J=7.3Hz,2H),4.13(t,J= 6.1Hz,2H),3.99(s,3H),3.39(t,J=7.3Hz,2H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J= 5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]342.1632.
(3)组分A-61的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 87(68mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-61(1.89g),根据核磁氢谱图,可计算出化合物87的标记率大约为3.42%。
实施例六十二:组分A-62的合成
(1)化合物88的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物89的合成:将化合物88(1g,3.2mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物89(0.99g,产率91%)。1H NMR(400MHz,CDCl3):δ=7.95(s,1H),7.12(s,1H),4.85(t,J=7.3Hz,2H),4.13(t,J= 6.1Hz,2H),3.99(s,3H),3.39(t,J=7.3Hz,2H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J= 5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]342.1632.
(3)组分A-62的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 89(68mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-62(1.93g),根据核磁氢谱图,可计算出化合物89的标记率大约为3.32%。
实施例六十三:组分A-63的合成
(1)化合物90的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。
(2)化合物91的合成:将化合物90(1g,3.2mmol)和乙二胺(1.1mL)溶于甲醇(50mL)中,回流过夜反应后,减压旋蒸,将粗产物溶于甲醇中,在乙酸乙酯中重沉淀。经过多次溶解-重沉淀后,过滤、真空干燥即可得到化合物91(0.90g,产率83%)。1H NMR(400MHz,CDCl3):δ=7.64(s,1H),7.02(s,1H),4.85(t,J=7.3Hz,2H),4.13(t,J= 6.1Hz,2H),3.99(s,3H),3.39(t,J=7.3Hz,2H),3.32(dd,J=11.6,5.7Hz,2H),2.82(t,J= 5.9Hz,2H),2.44(t,J=7.2Hz,2H),2.26-2.17(m,2H).MS(ESI):[M+H]342.1632.
(3)组分A-63的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物 91(68mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物 A-63(1.82g),根据核磁氢谱图,可计算出化合物91的标记率大约为3.29%。
实施例六十四:组分A-64的合成
组分A-64的合成:将透明质酸Hyaluronic acid(2g,340kDa)溶于100mL 0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取NB混合物(化合物69/化合物91,60mg,1:1)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取 4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES 缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏透明质酸衍生物A-64(1.93g),根据核磁氢谱图,可计算出NB混合物(化合物69/化合物91)的标记率大约为3.45%。
实施例六十五:组分A-65的合成
组分A-65的合成:将羧甲基纤维素Carboxymethyl cellulose(2g,340kDa)溶于100 mL 0.01mol/L 2-(N-吗啉)乙磺酸MES缓冲溶液(pH=5.2),搅拌至完全溶解,称取化合物69(68mg,0.2mmol)溶于10mL二甲基亚砜DMSO后加入上述反应液,称取4-(4,6- 二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐DMTMM(0.4g,1.5mmol)溶于3mL MES缓冲溶液,分三次(每隔1h)加入上述反应液中,35℃下反应24h。然后将反应液倒入透析袋(MWCO 7000)中,用去离子水透析2-3d,冷冻干燥即可得到光敏羧甲基纤维素衍生物A-65(1.85g),根据核磁氢谱图,可计算出化合物69的标记率大约为2.62%。
实施例六十六:组分A-66的合成
(1)化合物92的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。1H NMR(400MHz,CDCl3): δ=7.71(s,1H),7.22(s,1H),4.85(t,J=7.3Hz,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H), 3.90-3.80(m,1H),3.63-3.52(m,1H),3.39(t,J=7.3Hz,2H),2.44(t,J=7.2Hz,2H),2.26- 2.17(m,2H),2.00-1.34(m,6H).MS(ESI):[M+H]384.1643.
(2)组分A-66的合成:将1g壳聚糖加入到75mL异丙醇中形成壳聚糖的悬浮液,然后将化合物92(0.2g,0.52mmol)、EDC-HCl(0.76g,3.96mmol)和NHS(0.46g, 4.0mmol)依次加入到上述溶液中,室温下搅拌反应48h。反应结束后,将混合物溶液过滤,滤液用甲醇/水混合溶剂透析三次、甲醇透析两次后,冷冻干燥即可得到化合物92标记的壳聚糖(0.9g)。将化合物92标记的壳聚糖溶于DMSO中,加入对甲苯磺酸脱除二氢吡喃保护即可得到光敏壳聚糖衍生物A-66,根据其核磁氢谱图,可计算出化合物92的修饰度大约为12.4%。
实施例六十七:组分A-67的合成
(1)化合物93的合成:按参考文献Stefan Walbert.;Wolfgang Pfleiderer.;Ulrich E. Steiner.Helv.Chim.Acta.2001,84,1601.公开的方法进行合成。1H NMR(400MHz,CDCl3): δ=7.71(s,1H),7.22(s,1H),4.85(t,J=7.3Hz,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H), 3.90-3.80(m,1H),3.63-3.52(m,1H),3.39(t,J=7.3Hz,2H),3.04(t,J=7.2Hz,2H),2.00- 1.34(m,6H).MS(ESI):[M+H]405.0625.
(2)组分A-67的合成:将PEG-4OH(1g,0.05mmol)溶于无水乙腈中,加入K2CO3(55.3mg,0.4mmol)搅拌30min后,加入化合物93(0.16g,0.4mmol)于室温下继续反应24h。反应结束后,将大部分溶剂除掉,在乙醚中重沉淀,并多次洗涤,然后将化合物93标记的聚乙二醇溶于DMSO中,加入对甲苯磺酸脱除二氢吡喃保护即可得到光敏聚乙二醇衍生物A-67(0.82g),根据核磁氢谱图,可计算出化合物93的修饰度大约为97%。
实施例六十八:组分A-68的合成
(1)化合物94的合成:将化合物93(0.5g,1.29mmol)和乙二醇(0.24g,3.87mmol)溶于无水乙腈中,加入K2CO3(0.5g,3.87mmol)做碱,回流过夜反应。待反应结束后,减压旋蒸掉溶剂,过柱纯化,即可得到化合物94(0.34g,72%)。
(2)化合物95的合成:将化合物94(0.64g,1.72mmol)和三乙胺(0.34g,3.44mmol)溶于干燥的二氯甲烷中,冰浴条件下,甲基丙烯酰氯(0.27g,2.58mmol)慢慢逐滴加入到上述溶液中,滴加完后室温条件下过夜反应。反应结束后,减压旋蒸掉溶剂,过柱纯化即可得到化合物95(0.49g,65%)。1H NMR(400MHz,CDCl3):δ=7.71(s,1H),7.22(s,1H), 6.25(s,1H),5.68(s,1H),4.85(t,J=7.3Hz,2H),4.13(t,J=6.1Hz,2H),3.99(s,3H),3.90- 3.80(m,1H),3.79(t,J=6.1Hz,2H),3.70(t,J=7.2Hz,2H),3.63-3.52(m,1H),3.56(t,J=7.2Hz,2H),3.39(t,J=7.3Hz,2H),2.00-1.34(m,6H),1.87(s,3H).MS(ESI):[M+H]454.2022.
(3)组分A-68的合成:称取化合物95(0.28g,0.63mmol)、共单体PEG-MA(0.882 g,2.52mmol)和引发剂偶氮二异丁腈(11mg)加入到史莱克管中,并加入无水THF溶解,经过多次冷冻-抽真空循环操作处理后,将该反应体系于75℃条件下反应24h。反应结束后,将反应液倒入冷的乙醚中多次重沉淀纯化,收集到的沉淀干燥后将其溶于无水 DMSO中,加入对甲苯磺酸将二氢吡喃保护基团脱掉即可得到光敏共聚物衍生物A-68 (0.85g)。根据核磁氢谱图,可计算出化合物95在共聚物中的含量大约为16.5%。根据 GPC测得合成高分子的分子量在25kDa左右,根据投料比计算可得n为12,x为10,y 为40。
实施例六十九:组分B-4的合成
组分B-4的合成:将透明质酸Hyaluronic acid(0.5g,48kDa)溶于50mL蒸馏水中至完全溶解,加入羟基苯并三唑(HOBt,0.2g),1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl,0.1g),3,3’-二硫代双(丙酰肼)(DTP,0.1g),用稀盐酸溶液调节 PH至4.75,反应24h,然后加入DTT继续反应5h后,将反应液倒入透析袋(MWCO 3500) 中,用去离子水透析2-3d,冷冻干燥即可得到HA-SH(0.45g),根据核磁氢谱图,可计算出巯基的含量大约为20%。
实施例七十:组分B-5的合成
组分B-5的合成:将羧甲基壳聚糖Carboxymethyl chitosan(1g)溶于100mL去离子水,加入N-乙酰基半胱氨酸(1.77g,10mmol),再加入1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐EDC-HCl(1.91g,10mmol),然后用盐酸调节PH至5左右,室温下搅拌反应5h,然后将反应液倒入透析袋(MWCO 3500)中,用5mM HCl溶液透析1d,然后用5mM HCl/1%NaCl溶液透析1d,最后用1mM HCl溶液透析1d,冷冻干燥即可得到CMCh-SH(0.9g),根据核磁氢谱图,可计算出巯基的含量大约为10%。
实施例七十一:组分B-6的合成
组分B-6的合成:将40kDa葡聚糖Dextran(12g,0.3mmol)溶于50mL DMSO中至完全溶解,加入3-巯基丙酸(636.8mg,6.0mmol),1,3-二环己基碳二亚胺(910.7mg, 9.0mmol),4-(二甲胺基)吡啶(1099.5mg,9.0mmol),于室温下反应48h,然后在丙酮中重沉淀,将粗产物溶于水后倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到Dex-SH(11.5g),根据核磁氢谱图,可计算出巯基的含量大约为20%。
实施例七十二:组分B-7的合成
组分B-7的合成:将肝素Heparin(0.5g,12kDa)溶于50mL蒸馏水中至完全溶解,加入羟基苯并三唑(HOBt,0.2g),1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐(EDC-HCl,0.1g),巯基乙胺(0.1g),用稀盐酸溶液调节PH至5-6,反应24h后,将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到Hep-SH(0.45g),根据核磁氢谱图,可计算出巯基的含量大约为20%。
实施例七十三:组分B-10的合成
组分B-10的合成:将葡聚糖Dextran(2g,70kDa)溶于20mL蒸馏水中至完全溶解,将高碘酸钠(NaIO4,1g)溶于10mL蒸馏水中,然后缓慢滴加上述溶液,于室温下搅拌反应8h。反应结束后,滴加1mL乙二醇继续搅拌30min,然后将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到Dex-Ald(1.8g),根据盐酸羟胺滴定法,可以计算出醛基的含量大约为30%。
实施例七十四:组分B-11的合成
组分B-11的合成:将透明质酸Hyaluronic acid(1g,48kDa)溶于50mL蒸馏水中至完全溶解,将高碘酸钠(NaIO4,0.5g)溶于5mL蒸馏水中,然后缓慢滴加上述溶液,于室温下搅拌反应8h。反应结束后,滴加1mL乙二醇继续搅拌30min,然后将反应液倒入透析袋(MWCO3500)中,用去离子水透析2-3d,冷冻干燥即可得到HA-Ald(0.9 g),根据盐酸羟胺滴定法,可以计算出醛基的含量大约为50%。
实施例七十五:组分B-12的合成
组分B-12的合成:将海藻酸Alginate(1g)溶于100mL蒸馏水中至完全溶解,将高碘酸钠(NaIO4,0.5g)溶于5mL蒸馏水中,然后缓慢滴加上述溶液,于室温下搅拌反应8h。反应结束后,滴加1mL乙二醇继续搅拌30min,然后将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到Alg-Ald(0.9g),根据盐酸羟胺滴定法,可以计算出醛基的含量大约为20%。
实施例七十六:组分B-13的合成
组分B-13的合成:将羧甲基纤维素Carboxymethyl cellulose(1g,90kDa)溶于50mL 蒸馏水中至完全溶解,将高碘酸钠(NaIO4,0.5g)溶于5mL蒸馏水中,然后缓慢滴加上述溶液,于室温下搅拌反应8h。反应结束后,滴加1mL乙二醇继续搅拌30min,然后将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到 CMC-Ald(0.9g),根据盐酸羟胺滴定法,可以计算出醛基的含量大约为10%。
实施例七十七:组分B-14的合成
组分B-14的合成:将硫酸软骨素(0.5g)溶于50mL蒸馏水中至完全溶解,将高碘酸钠(NaIO4,0.25g)溶于5mL蒸馏水中,然后缓慢滴加上述溶液,于室温下搅拌反应 8h。反应结束后,滴加1mL乙二醇继续搅拌30min,然后将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到CS-Ald(0.45g),根据盐酸羟胺滴定法,可以计算出醛基的含量大约为20%。
实施例七十八:组分B-15的合成
组分B-15的合成:将草酰氯(1.5mL,17.6mmol)溶于20mL无水二氯甲烷中,用丙酮/干冰浴冷却,将无水DMSO(1.3mL,18.5mmol)以1:5的无水二氯甲烷稀释,然后逐滴加入上述溶液中,反应10min后生成离子对中间体。将10kDa分子量的聚乙二醇 (2g,0.2mmol)溶于5mL无水二氯甲烷中,逐滴缓慢加入后反应2h,然后逐滴加入三乙胺(5.6mL,40mmol),反应20min。最后,反应液升到室温,产物在乙醚中重沉淀,即可得到PEG-Ald(1.8g),根据核磁氢谱图,可计算出醛基的含量大约为95%。
实施例七十九:组分B-17的合成
组分B-17的合成:将N-异丙基丙烯酰胺(4g,35mmol),醛基保护的单体(0.87g,5mmol),偶氮二异丁酸二甲酯(0.01g,0.04mmol)溶于乙醇中,加热至60℃反应过夜,反应后减压蒸馏除去乙醇。然后将粗产物重新溶于3M HCl溶液中,室温下搅拌反应24h。将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到 Coplymer-Ald(4.5g),根据核磁氢谱图,可计算出醛基的含量大约为10%。
实施例八十:组分B-18的合成
组分B-18的合成:将透明质酸Hyaluronic acid(1g,48kDa)溶于100mL去离子水,冷却至0-4℃,加入4mL甲基丙烯酸酐,再缓慢滴加2mL 5M NaOH,反应24h,然后将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到HAMA (0.9g),根据核磁氢谱图,可计算出双键的含量大约为20%。
实施例八十一:组分B-19的合成
组分B-19的合成:将羧甲基纤维素Carboxymethyl cellulose(1g,90kDa)溶于100mL去离子水,冷却至0-4℃,加入4mL甲基丙烯酸酐,再缓慢滴加2mL 5M NaOH,反应24h,然后将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到CMCMA(0.9g),根据核磁氢谱图,可计算出双键的含量大约为20%。
实施例八十二:组分B-20的合成
组分B-20的合成:将海藻酸Alginate(1g,48kDa)溶于100mL去离子水,冷却至 0-4℃,加入4mL甲基丙烯酸酐,再缓慢滴加2mL 5M NaOH,反应24h,然后将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到AlgMA(0.9 g),根据核磁氢谱图,可计算出双键的含量大约为20%。
实施例八十三:组分B-21的合成
组分B-21的合成:将硫酸软骨素Chondroitin sulfate(1g)溶于100mL去离子水,冷却至0-4℃,加入4mL甲基丙烯酸酐,再缓慢滴加2mL 5M NaOH,反应24h,然后将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到CSMA (0.9g),根据核磁氢谱图,可计算出双键的含量大约为20%。
实施例八十四:组分B-22的合成
组分B-22的合成:将葡聚糖Dextran(6g,70kDa)溶于60mL无水二甲基亚砜DMSO中,加入2mL三乙胺TEA,再加入0.56mL丙烯酰氯(溶于10mL二氯甲烷DCM中),反应10h,反应结束后,将反应液倒入乙醇中重沉淀,过滤得到的粗产物重新溶于去离子水中,透析2-3d,冷冻干燥即可得到DexAA(5.8g),根据核磁氢谱图,可计算出双键的含量大约为10%。
实施例八十五:组分B-23的合成
组分B-23的合成:将羧甲基壳聚糖Carboxymethylchitosan(1g)溶于100mL去离子水,加热至40℃搅拌溶解,加入4mL甲基丙烯酸缩水甘油酯,再加入2mL 5M NaOH,反应2-3h后,将反应液倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到CMCh-GMA(0.9g),根据核磁氢谱图,可计算出双键的含量大约为20%。
实施例八十六:组分B-24的合成
组分B-24的合成:将明胶Gelatin(1g)溶于10mL D-PBS中,加热至50℃搅拌至完全溶解,加入0.5mL甲基丙烯酸酐,反应2-3h,反应后用40mL D-PBS稀释反应液,然后倒入透析袋(MWCO 3500)中,用去离子水透析2-3d,冷冻干燥即可得到GelMA (0.9g),根据核磁氢谱图,可计算出双键的含量大约为20%。
实施例八十七:光致亚硝基交联方法制备水凝胶
按照本发明方法,于37℃下操作,制得不同的水凝胶前体溶液,如表1所示。
表1
将上述不同凝胶溶液分别在365或395nm(20mW/cm2)条件下照射一定时间,即可得到不同化学组成的水凝胶。不同的凝胶材料具有不同的生物效应,可以根据不同的应用针对性地选择凝胶材料的组成。
注:组分A…为组分A-5~A-67;组分B…为组分B-4~B-25。
表1中1-20wt%为水凝胶前体溶液优选的质量浓度范围。
实施例八十八:光致亚硝基交联水凝胶流变测试
流变分析采用HAAKE MARS流变仪,在37℃的测试平台上进行流变测试。本实施例研究了紫外光照时间、光照强度和高分子衍生物的质量浓度对水凝胶成胶时间和储存模量的影响。图1为用实施例一制备的组分A-1(即为HA-NB)和实施例六十九制备的组分B-4(即为HA-SH)以质量比2%wt:2%wt配制的水凝胶前体溶液在光照下的成胶曲线,以及2%HA-NB和2%CMCh配制水凝胶的成胶曲线(流变测试中,G’为储存模量,G”为损耗模量,当G’超过G”时即为凝胶点)。从图1中看出,该溶液 (HA-NB/HA-SH)在约4s时开始成胶,直至30s左右完全成胶,且完全成胶时的模量可以达到2500Pa左右,因此,无论在成胶速度,还是在凝胶强度上都明显优于原有非自由基光偶合交联技术构筑的水凝胶性能。此外,凝胶的强度与凝胶溶液的质量浓度成正比,凝胶的质量浓度越大,所成凝胶的强度越大。其它不同材料组成的水凝胶体系的凝胶点和凝胶强度也有所不同,具体数据如表2所示。
表2
水凝胶材料组成(A/B) 成胶点(s) 凝胶强度(Pa)
HA-NB0/CMCh(2%wt:2%wt) 30 200
组分A-1/组分B-4(2%wt:2%wt) 4 2500
组分A-1/组分B-4(4%wt:4%wt) 2 5600
组分A-1/组分B-1(2%wt:2%wt) 9 800
组分A-1/组分B-3(2%wt:2%wt) 6 1700
组分A-1/组分B-8(2%wt:2%wt) 8 1600
组分A-1/组分B-10(2%wt:2%wt) 14 780
组分A-1/组分B-11(2%wt:2%wt) 12 1100
组分A-1/组分B-12(2%wt:2%wt) 10 1240
组分A-1/组分B-18(2%wt:2%wt) 15 950
组分A-1/组分B-19(2%wt:2%wt) 9 1400
组分A-1/组分B-20(2%wt:2%wt) 8 1150
组分A-2/组分B-4(2%wt:2%wt) 5 2200
组分A-8/组分B-4(2%wt:2%wt) 4 2100
组分A-14/组分B-4(2%wt:2%wt) 3 1900
组分A-28/组分B-4(2%wt:2%wt) 5 2400
组分A-33/组分B-4(2%wt:2%wt) 2 2800
组分A-37/组分B-4(2%wt:2%wt) 4 2100
组分A-38/组分B-4(2%wt:2%wt) 5 2200
组分A-39/组分B-4(2%wt:2%wt) 7 1700
组分A-40/组分B-4(2%wt:2%wt) 8 1400
组分A-41/组分B-4(2%wt:2%wt) 9 1600
组分A-43/组分B-4(2%wt:2%wt) 6 1900
组分A-44/组分B-4(2%wt:2%wt) 9 1200
组分A-45/组分B-4(2%wt:2%wt) 15 780
组分A-46/组分B-4(2%wt:2%wt) 14 690
组分A-47/组分B-4(2%wt:2%wt) 13 760
组分A-50/组分B-4(2%wt:2%wt) 16 660
组分A-51/组分B-4(2%wt:2%wt) 6 1700
组分A-52/组分B-4(2%wt:2%wt) 8 1300
组分A-54/组分B-4(2%wt:2%wt) 7 1500
组分A-59/组分B-4(2%wt:2%wt) 8 1100
组分A-61/组分B-4(2%wt:2%wt) 7 1600
组分A-64/组分B-4(2%wt:2%wt) 5 2100
组分A-65/组分B-4(2%wt:2%wt) 8 1400
组分A-66/组分B-4(2%wt:2%wt) 10 1550
组分A-67/组分B-4(2%wt:2%wt) 13 1150
组分A-68/组分B-4(2%wt:2%wt) 15 800
注:NB0为文献报道的用于构筑水凝胶的邻硝基苄基类光扳机(Yunlong Yang;Jieyuan Zhang;Zhenzhen Liu;Qiuning Lin;Xiaolin Liu;Chunyan Bao;Yang Wang;Linyong Zhu.Adv. Mater.2016,28,2724.)。NB为本发明组分A-1中的邻硝基苄基类光扳机。其中,HA-NB0即为NB0标记的透明质酸高分子衍生物,HA-NB即为组分A-1。
实施例八十九:光致亚硝基交联水凝胶粘附力测试
取新鲜猪肠衣若干,将其裁剪成3.5cm×2.5cm大小的肠衣片。然后利用502胶水将其固定在6.5cm×2.5cm大小的钢化玻璃片上。取上述钢化玻璃片,在其中一片粘结肠衣面上涂抹150μL的一定组分的水凝胶前体溶液。然后,将另一片玻璃片置于此片玻璃片上方,使上下两片粘附肠衣的位置完全相对。此时,擦去多余的被挤出的水凝胶前体溶液。然后利用395nm LED光源(20mW/cm2)对肠衣部位进行光照5min,使水凝胶前体溶液在两片肠衣之间原位成胶。成胶完全后,将玻璃片的一端垂直固定,另一端通过细绳连接上能够盛水的容器。随后不断向容器中加入定量水,直到两片玻璃片断开为止。其后,记录下此时水和容器的质量,将其转化成重力也就是玻璃片断裂时的拉力F,利用以下公式计算水凝胶的组织黏附力:
水凝胶组织黏附力=F/A
其中A为肠衣的粘接面积,测试装置示意图如图2所示。其它不同材料组成的水凝胶体系的组织粘附力也有所不同,具体数据如表3所示。
表3
水凝胶材料组成(A/B) 组织粘附力(kPa)
HA-NB0/CMCh(2%wt:2%wt) 24
组分A-1/组分B-4(2%wt:2%wt) 63
组分A-1/组分B-4(4%wt:4%wt) 118
组分A-1/组分B-1(2%wt:2%wt) 53
组分A-1/组分B-3(2%wt:2%wt) 72
组分A-1/组分B-8(2%wt:2%wt) 49
组分A-1/组分B-10(2%wt:2%wt) 41
组分A-1/组分B-11(2%wt:2%wt) 57
组分A-1/组分B-12(2%wt:2%wt) 62
组分A-1/组分B-18(2%wt:2%wt) 39
组分A-1/组分B-19(2%wt:2%wt) 65
组分A-1/组分B-20(2%wt:2%wt) 46
组分A-2/组分B-4(2%wt:2%wt) 61
组分A-8/组分B-4(2%wt:2%wt) 58
组分A-14/组分B-4(2%wt:2%wt) 64
组分A-28/组分B-4(2%wt:2%wt) 66
组分A-33/组分B-4(2%wt:2%wt) 62
组分A-37/组分B-4(2%wt:2%wt) 66
组分A-38/组分B-4(2%wt:2%wt) 56
组分A-39/组分B-4(2%wt:2%wt) 51
组分A-40/组分B-4(2%wt:2%wt) 42
组分A-41/组分B-4(2%wt:2%wt) 38
组分A-43/组分B-4(2%wt:2%wt) 43
组分A-44/组分B-4(2%wt:2%wt) 39
组分A-45/组分B-4(2%wt:2%wt) 32
组分A-46/组分B-4(2%wt:2%wt) 29
组分A-47/组分B-4(2%wt:2%wt) 33
组分A-50/组分B-4(2%wt:2%wt) 31
组分A-51/组分B-4(2%wt:2%wt) 60
组分A-52/组分B-4(2%wt:2%wt) 57
组分A-54/组分B-4(2%wt:2%wt) 52
组分A-59/组分B-4(2%wt:2%wt) 50
组分A-61/组分B-4(2%wt:2%wt) 48
组分A-64/组分B-4(2%wt:2%wt) 67
组分A-65/组分B-4(2%wt:2%wt) 52
组分A-66/组分B-4(2%wt:2%wt) 58
组分A-67/组分B-4(2%wt:2%wt) 48
组分A-68/组分B-4(2%wt:2%wt) 42
实施例九十:光致亚硝基交联水凝胶力学性能测试
力学性能测试(包括拉伸测试和压缩测试)采用GT-TCS-2000拉力机,拉伸测试样品为长20mm,宽3mm,厚2mm的哑铃型试样,测试速度为5mm/min,压缩测试样品为直径10mm,高3mm的圆柱形试样,测试速度为1mm/min,以实施例一制备的组分 A-1(即为HA-NB)和实施例六十九制备的组分B-4(即为HA-SH)以质量比2%wt:2%wt 配制的水凝胶前体溶液在光照下制备水凝胶为例,测试该水凝胶的拉伸性能和压缩性能。从图3中看出,该水凝胶能够被压缩到85%左右,压缩强度为500kPa左右。其它不同材料组成的水凝胶体系的力学性能也有所不同,具体数据如表4所示。
表4
水凝胶材料组成(A/B) 压缩变形率(%) 压缩强度(kPa)
HA-NB0/CMCh(2%wt:2%wt) 45 200
组分A-1/组分B-4(2%wt:2%wt) 85 500
组分A-1/组分B-4(4%wt:4%wt) 92 1200
组分A-1/组分B-1(2%wt:2%wt) 78 420
组分A-1/组分B-3(2%wt:2%wt) 72 380
组分A-1/组分B-8(2%wt:2%wt) 74 410
组分A-1/组分B-10(2%wt:2%wt) 68 340
组分A-1/组分B-11(2%wt:2%wt) 63 360
组分A-1/组分B-12(2%wt:2%wt) 62 310
组分A-1/组分B-18(2%wt:2%wt) 67 380
组分A-1/组分B-19(2%wt:2%wt) 65 360
组分A-1/组分B-20(2%wt:2%wt) 60 310
组分A-2/组分B-4(2%wt:2%wt) 81 460
组分A-8/组分B-4(2%wt:2%wt) 82 470
组分A-14/组分B-4(2%wt:2%wt) 79 420
组分A-28/组分B-4(2%wt:2%wt) 84 490
组分A-33/组分B-4(2%wt:2%wt) 81 460
组分A-37/组分B-4(2%wt:2%wt) 79 430
组分A-38/组分B-4(2%wt:2%wt) 73 470
组分A-39/组分B-4(2%wt:2%wt) 81 450
组分A-40/组分B-4(2%wt:2%wt) 79 480
组分A-41/组分B-4(2%wt:2%wt) 83 430
组分A-43/组分B-4(2%wt:2%wt) 81 420
组分A-44/组分B-4(2%wt:2%wt) 78 390
组分A-45/组分B-4(2%wt:2%wt) 71 340
组分A-46/组分B-4(2%wt:2%wt) 64 310
组分A-47/组分B-4(2%wt:2%wt) 62 350
组分A-50/组分B-4(2%wt:2%wt) 60 320
组分A-51/组分B-4(2%wt:2%wt) 81 430
组分A-52/组分B-4(2%wt:2%wt) 80 390
组分A-54/组分B-4(2%wt:2%wt) 78 420
组分A-59/组分B-4(2%wt:2%wt) 79 480
组分A-61/组分B-4(2%wt:2%wt) 72 450
组分A-64/组分B-4(2%wt:2%wt) 83 490
组分A-65/组分B-4(2%wt:2%wt) 78 460
组分A-66/组分B-4(2%wt:2%wt) 71 430
组分A-67/组分B-4(2%wt:2%wt) 62 380
组分A-68/组分B-4(2%wt:2%wt) 60 300
实施例九十一:光致亚硝基交联水凝胶生物相容性测试
在本实验中,以实施例一制备的组分A-1(即为HA-NB)和实施例六十九制备的组分B-4(即为HA-SH)为例,通过CCK-8试剂盒进行评价。首先,在96孔板中种植成纤维细胞HDFs,细胞密度为5×103细胞/孔,然后加入培养基,在37℃/5%CO2条件下培养 24h。将各组测试样品溶解于细胞培养液中,加入到培养有细胞的孔板中,继续培养24h,然后将孔中的细胞液吸出,向每个孔中加入100μL的培养基和10μL的CCK-8溶液,继续孵育细胞2h。最后,用酶标仪检测每个孔中450nm的吸光度。细胞存活率计算如下:
Cell Viability(%)=(实验组吸光度的平均值/控制组吸光度的平均值)×100%
从图4中看出,该类光致亚硝基交联水凝胶具有较好的生物相容性。
体内免疫炎症反应测试中,以实施例一制备的组分A-1(即为HA-NB)和实施例六十九制备的组分B-4(即为HA-SH)为例,将水凝胶植入兔子皮下,选取不同时间点分别通过组织切片染色分析该类水凝胶对机体产生的炎症反应。
其它不同材料组成的水凝胶体系的生物相容性也有所不同,具体数据如表5所示。
表5
水凝胶材料组成(A/B) 存活率(%) 水凝胶材料组成(A/B) 存活率(%)
组分A-1/组分B-4 98 组分A-40/组分B-4 96
组分A-1/组分B-4 94 组分A-41/组分B-4 95
组分A-1/组分B-1 93 组分A-43/组分B-4 91
组分A-1/组分B-3 97 组分A-44/组分B-4 94
组分A-1/组分B-8 92 组分A-45/组分B-4 92
组分A-1/组分B-10 93 组分A-46/组分B-4 96
组分A-1/组分B-11 90 组分A-47/组分B-4 93
组分A-1/组分B-12 91 组分A-50/组分B-4 92
组分A-1/组分B-18 95 组分A-51/组分B-4 97
组分A-1/组分B-19 93 组分A-52/组分B-4 93
组分A-1/组分B-20 92 组分A-54/组分B-4 96
组分A-2/组分B-4 97 组分A-59/组分B-4 92
组分A-8/组分B-4 94 组分A-61/组分B-4 94
组分A-14/组分B-4 96 组分A-64/组分B-4 93
组分A-28/组分B-4 91 组分A-65/组分B-4 95
组分A-33/组分B-4 95 组分A-66/组分B-4 90
组分A-37/组分B-4 90 组分A-67/组分B-4 93
组分A-38/组分B-4 97 组分A-68/组分B-4 97
组分A-39/组分B-4 92
以上不同组分的水凝胶材料中组分A与组分B关系均为2%wt:2%wt。
实施例九十二:光致亚硝基交联水凝胶应用于创面封闭
本实施例中,在SD大鼠背部皮肤构造直径1.8cm的皮肤完全缺损伤口。然后将400μL水凝胶前体溶液(2%组分A-1/2%组分B-4)填充到伤口部位。由于该溶液具有良好的流动性,伤口可以被水凝胶前体溶液充分填充和渗透。然后,在395nm LED光源照射下,在皮肤缺损处原位制备了水凝胶,实现了对创面的封闭(如图5所示)。接下来,对比了原位成型的水凝胶,预先成型的水凝胶和仅用生理盐水清洗处理的SD大鼠背部皮肤伤口在7天内的修复效果。原位成型的水凝胶伤口修复速率要明显快于其他两组,7d 时伤口收缩的面积最大,起到了良好的修复效果。而预先成型的水凝胶材料难以充分的填充伤口部位;另外,同组织间不具有共价连接的无缝界面,缺乏良好的组织整合性。新生细胞和组织难以快速的进入到水凝胶材料中,使其充分发挥支架材料的作用。因此,预先成型的水凝胶修复速率和效果要差于原位成型的水凝胶。没有水凝胶填充的伤口修复速率最慢,说明了该光交联水凝胶作为细胞支架材料对伤口修复具有促进作用。
其他不同材料组成的水凝胶体系(组分A:组分A-1~组分A-68;组分B:组分B-1~组分B-26)属于光致亚硝基交联水凝胶,同样可以应用于创面封闭。
实施例九十三:光致亚硝基交联水凝胶应用于肠漏封堵
采用新西兰雄性大白兔,分为两组进行盲肠渗漏封堵实验:a:水凝胶处理(2%组分A-1/2%组分B-4)组;b:不做处理的对照组。实验中,在兔子盲肠处制造渗漏的模型,然后将水凝胶前体溶液涂抹到伤口处,待充分渗透后光照原位成胶,成胶后水凝胶能牢固的黏附在缺损处,不需要额外的固定。在手术4周后,通过静脉注射空气的方法处死实验中的兔子,并提取盲肠对实验修复效果进行评价。结果显示,使用水凝胶封堵的盲肠没有发生渗漏的情况,而没用水凝胶处理的盲肠发生了严重的渗漏。经过几周的修复,原来盲肠有缺损的部位经水凝胶处理过后得到了明显的修复,因此,该水凝胶不仅能够有效封堵渗漏,还有利于术后受损组织的修复。
其他不同材料组成的水凝胶体系(组分A:组分A-1~组分A-68;组分B:组分B-1~组分B-26)属于光致亚硝基交联水凝胶,同样可以应用于肠漏封堵。
实施例九十四:光致亚硝基交联水凝胶应用于止血材料
采用SD大鼠,对水凝胶的止血效果进行评价,分为三组进行肝脏止血实验:a:明胶海绵组;b:水凝胶(2%组分A-1/2%组分B-4)组;c阳性对照组。实验大鼠通过水合氯醛(4%水溶液)腹腔注射进行麻醉,注射计量为0.9ml/100g,深度麻醉后,用剃毛器将大鼠前胸部位毛剃光,碘酒消毒。然后沿着胸腔中线切开大约4cm长切口,打开胸腔,暴露肝脏部位。在肝脏左叶做一约2cm切口。a组用明胶海绵进行止血;b组在切口处加水凝胶前体溶液覆盖切面,395nm LED光照2min成胶止血;c组不做任何处理,让肝脏切口渗血自然凝固,用纱布吸去渗血,通过减重法记录出血量,和出血时间(如图 6所示)。实验结束后,a组将粘附在切面的明胶海绵一并留在大鼠体内进行缝合。b组水凝胶在切口原位交联并将切面伤口隔离,将肝脏放回胸腔,缝合。c组不做处理直接缝合。 14d后,观察SD大鼠肝脏恢复情况,通过腹腔注射过量麻醉剂水合氯醛(4%水溶液, 2.7ml/100g)处死大鼠,沿胸腔中线打开胸腔,观察三组大鼠肝脏恢复情况,并拍照记录。同时对肝脏损伤部位组织取样,标本用4%福尔马林溶液固定2d,脱水处理后,石蜡包埋,在用切片机进行组织切片操作,样片厚度5μm。最后对标本进行H&E染色,用光学显微镜拍照观察记录。实验结果显示,b组肝脏恢复良好,水凝胶降解完全,未发生粘连,肝脏切口长出新生肝脏组织。a组大鼠体内明胶海绵仍未降解,并且大鼠普遍器脏与网膜粘连严重。c组普遍存在肝脏与网膜粘连的情况。H&E染色显示实验组肝脏表面光滑圆润,有丰富的血管分布,肝脏界面清晰。而发生粘连的肝脏经H&E染色发现肝脏界面凹凸不平,肝脏与网膜组织粘连在一起,界面处有沉积的炎症细胞。
其他不同材料组成的水凝胶体系(组分A:组分A-1~组分A-68;组分B:组分B-1~组分B-26)属于光致亚硝基交联水凝胶,同样可以应用于止血材料。
实施例九十五:光致亚硝基交联水凝胶应用于软骨组织工程
采用新西兰雄性大白兔,分为三组进行关节软骨的修复实验:a:包裹有软骨细胞的水凝胶(2%组分A-1/2%组分B-4)组,即Gel+软骨细胞组;b:单纯的水凝胶组,即 Gel组;c:不做处理的对照组,即Control组。在实验中,该水凝胶前体溶液可以充分的渗透并且填充兔子关节软骨的缺损处,光照成胶后牢固的黏附在缺损处,不需要额外的固定。在手术12周后,通过静脉注射空气的方法处死实验中的兔子,并提取损伤关节对实验修复效果进行评价。兔子关节软骨损伤处大体观照片结果显示,12周后Gel+软骨细胞组在关节缺损处长出了光滑的新生软骨组织,同时和旧的软骨组织进行了良好的整合;在 Gel组中软骨也进行了一定的修复,但是还可以看出手术时软骨创伤的轮廓;而在Control 组中,软骨组织基本没有修复的情况,损伤处还是明显的空洞(如图7所示)。接下来,进一步利用H&E染色的方法评价了上述各组软骨的修复情况。H&E染色结果显示,Gel+ 软骨细胞组和Gel组都有新生的组织生成并且同旧的软骨组织整合良好;但是Gel+软骨细胞组的新生组织的厚度要好于Gel组,并且表面平整;而在Control组中难以找到明显新生组织的迹象。另外,采用番红-O和免疫组化染色的方法对新生软骨的成分进行了分析。在Gel+软骨细胞组和Gel组中,新生的软骨组织都表现出了番红-O染色活性,证明该新生的软骨组织内含有正常软骨的糖蛋白成分。同时,Gel+软骨细胞组和Gel组的新生软骨组织都表现出II型胶原的染色活性,证明该软骨组织中含有大量的II型胶原。上述番红-O和免疫组化染色结果证明利用新型光交联水凝胶材料进行软骨修复时,新生的软骨组织是透明软骨。
其他不同材料组成的水凝胶体系(组分A:组分A-1~组分A-68;组分B:组分B-1~组分B-26)属于光致亚硝基交联水凝胶,同样可以应用于软骨组织工程。
实施例九十六:光致亚硝基交联水凝胶应用于骨缺损修复
采用SD大鼠,进行颅骨修复实验,并将上述SD大鼠随机分成3组:a:水凝胶+羟基磷灰石的实验组;b:水凝胶(2%组分A-1/2%组分B-4)组;c:不用材料处理的对照组。实验中,用4%的水合氯醛溶液(0.9mL每克体重)对其进行腹腔麻醉,碘酒消毒。然后,利用外科手术刀片打开大鼠颅骨处头皮。利用牙环钻在老鼠颅骨左右处对称制造直径5mm的完全颅骨缺损模型。在实验组中,取200μL的水凝胶前体溶液填充到SD大鼠颅骨缺损处,使其充分向伤口边缘渗透;用395nm LED光源(20mW/cm2)光照30s使其完全成胶;最后用缝合线缝合老鼠的头皮。在对照组中,制造好SD大鼠颅骨缺损模型后,直接缝合头皮,不做其他任何处理。上述SD大鼠在无菌,37℃的环境中饲养8周的时间。然后,利用micro-CT扫描成像的方式对各组中SD大鼠颅骨的修复情况进行了评价。结果显示,在没有进行任何处理的对照组中,SD大鼠的颅骨缺损基本没有进行任何的修复,而用水凝胶填充的颅骨缺损处边缘有新生的成骨形成,但是新生骨组织的量较少,大部分缺损处并没有得到良好的修复,而用水凝胶+羟基磷灰石填充的颅骨缺损处基本得到了修复,大量的新生骨组织在缺损处形成。接着利用VanGieson染色法对颅骨的组织切片进行了组织学染色分析。结果显示,水凝胶+羟基磷灰石处理的SD大鼠的颅骨缺损处都长出了完整的新生骨组织,而只用水凝胶处理的颅骨缺损处只有少量新生骨组织生成,大部分缺损处的骨组织依旧是缺损状态,在对照组中,几乎没有新生的骨组织生成。该组织染色结果进一步证实了包裹有羟基磷灰石的水凝胶对骨缺损有良好的修复效果(如图8所示)。
其他不同材料组成的水凝胶体系(组分A:组分A-1~组分A-68;组分B:组分B-1~组分B-26)属于光致亚硝基交联水凝胶,同样可以应用于骨缺损修复。
实施例九十七:光致亚硝基交联水凝胶应用于3D打印的生物墨水
3D打印技术是近些年来迅速发展的一种三维成型技术,已被广泛应用,目前3D打印技术包括熔融沉积式(FDM)、光固化成型(SLA)、激光烧结式(SLS)、连续液面制造式(CLIP)等。但是适用于带细胞打印的方式目前主要是FDM的方式,带细胞打印的材料主要是水凝胶材料,因此,发展3D打印的生物墨水-可打印的水凝胶材料以及提高水凝胶材料打印的分辨率是该领域研究的基本问题。以实施例一制备的组分A-1和实施例六十九制备的组分B-4为例,将一定质量浓度的水凝胶前体溶液均匀混合细胞后,装入低温打印桶中,控制打印温度在25℃左右,通过温度来调整生物墨水的粘稠度,以获得最佳的打印状态,然后确定合适的打印压力和打印速度,进行不同结构的生物打印,打印完成后通过光照交联水凝胶(或是边打印边光照),从而获得带细胞且带结构的水凝胶,进行3D细胞培养(如图9所示)。
其他不同材料组成的水凝胶体系(组分A:组分A-1~组分A-68;组分B:组分B-1~组分B-26)属于光致亚硝基交联水凝胶,同样可以应用于3D打印的生物墨水。
实施例九十八:光致亚硝基交联水凝胶应用于药物的包裹与释放
水凝胶是一种能够在水中溶胀但不溶解的交联高分子网络,由于水凝胶大部分由水组成,因此具有非常好的生物相容性,特别适用于药物和生物活性大分子的载体。包裹于水凝胶材料中的药物或生物活性大分子通过分子的扩散作用和材料的降解作用实现药物持续释放的效果。以药物包裹与释放为例具体介绍如下:以实施例一制备的组分A-1和实施例六十九制备的组分B-4,将其溶于生理盐水中,配成一定质量浓度的水凝胶前体溶液,加入一定量的药物分子,取200μL上述溶液置于圆形模具中光照成水凝胶,接着放入24 孔细胞培养板中,加入一定量的生理盐水进行药物释放实验,通过紫外测试分析溶液中药物的释放量,以此来评价该材料对药物的释放效果。
其他不同材料组成的水凝胶体系(组分A:组分A-1~组分A-68;组分B:组分B-1~组分B-26)属于光致亚硝基交联水凝胶,同样可以应用于药物的包裹与释放。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (14)

1.邻硝基苄基类光扳机修饰的高分子衍生物,结构式如A-Ⅱ所示,
其中,R’选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、亚烷基、改性烷基或改性亚烷基,
R1选自氢、醚键类取代基、酯键类取代基、碳酸酯键类取代基、胺基甲酸酯键类取代基、巯基甲酸酯键类取代基或磷酸酯键类取代基,
R2,R3,R4,R5可自由的选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、亚烷基、改性烷基或改性亚烷基,
式A-Ⅱ中,P1为一种亲水或水溶性天然高聚物或合成聚合物,或P1独立的选自多种亲水或水溶性天然高聚物或合成聚合物;
n≥2;
优选地,R2,R3,R4,R5相互连接,与碳原子一起形成饱和或不饱和的脂环或脂杂环,或形成芳环或芳杂环。
2.如权利要求1所述邻硝基苄基类光扳机修饰的高分子衍生物,其特征在于,所述烷基为具有1~30个碳原子的饱和或不饱和脂肪族直链或支链的烷基;
所述亚烷基为具有1~30个碳原子的饱和或不饱和脂肪族直链或支链的亚烷基;
所述改性烷基为烷基的任意碳原子被选自卤原子、-OH、-SH、-NO2、-CN、-CHO、-COOH、酯基、酰胺基、芳基、亚芳基、-CO-、-O-、-S-、-SO-、-SO2-、伯胺基、仲胺基、叔胺基、季铵盐基、饱和或不饱和的单环或双环亚环烃基、桥联脂杂环中的至少一种基团置换所得的基团,所述改性烷基具有1~30个原子,其碳碳单键可任意地被碳碳双键或碳碳叁键替换;
所述改性亚烷基为亚烷基的任意碳原子被选自卤原子、-OH、-SH、-NO2、-CN、-CHO、-COOH、酯基、酰胺基、芳基、亚芳基、-CO-、-O-、-S-、-SO-、-SO2-、伯胺基、仲胺基、叔胺基、季铵盐基、饱和或不饱和的单环或双环亚环烃基、桥联脂杂环中的至少一种基团置换所得的基团,所述改性亚烷基具有1~30个原子,其碳碳单键可任意地被碳碳双键或碳碳叁键替换;
所述醚键类取代基选自以下结构:
-(CH2)xCH3、-(CH2CH2O)xCH3、-(CH2)x(CH2CH2O)yCH3、或其中x和y≥0且为整数;
所述酯键类取代基选自以下结构:
-CO(CH2)xCH3、-CO(CH2CH2O)xCH3、-CO(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述碳酸酯键类取代基选自以下结构:
-COO(CH2)xCH3、-COO(CH2CH2O)xCH3、-COO(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述胺基甲酸酯键类取代基选自以下结构:
-CONH(CH2)xCH3、-CONH(CH2CH2O)xCH3、-CONH(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述巯基甲酸酯键类取代基选自以下结构:
-COS(CH2)xCH3、-COS(CH2CH2O)xCH3、-COS(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述磷酸酯键类取代基选自以下结构:
-POOO(CH2)xCH3、-POOO(CH2CH2O)xCH3、-POOO(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述芳基为5~10元芳香单环或芳香稠合双环结构;
所述杂芳基为环上含有选自O、S、N或Si中的至少一种杂原子的5~10元芳香单环或芳香稠合双环结构;
所述卤原子各自独立地选自F、Cl、Br、I;
所述脂环为饱和或不饱和的3~10元单环或多环脂环;
所述脂杂环为环上含有选自O、S、N或Si中的至少一种杂原子的饱和或不饱和的3-10元单环或多环脂杂环,所述脂杂环上含有S原子时,其任选为-S-、-SO-或-SO2-;所述脂环或脂杂环上的H还可任意地被卤原子、硝基、芳基、烷基或改性烷基取代;
所述芳环为5~10元芳香单环或芳香稠合双环;
所述芳杂环为环上含有选自O、S、N或Si中的至少一种杂原子的5~10元芳香单环或芳香稠合双环;所述芳环或芳杂环上的H还可任意地被卤原子、硝基、芳基、烷基或改性烷基取代;
P1与R2,R3,R4,R5中任意的一个或多个基团相连接,或,
P1连接于R2,R3,R4,R5之间形成的饱和或不饱和脂环或脂杂环,或,
P1连接于R2,R3,R4,R5之间形成的芳环或芳杂环;
连接键选自羟基类所获得的连接键P1-O-;或选自巯基类所获得的连接键P1-S-;或选自胺基类所获得的连接键P1-NH-;或选自烷烃类所获得的连接键P1-;或选自酯键类所获得的连接键P1-COO-;或选自酰胺键类所获得的连接键P1-CONH-,该连接键的一端与P1相连,另一端连接在式A-Ⅱ所示分子的苯环上;
亲水或水溶性天然高聚物包括天然多糖类物质及其修饰物或降解物,蛋白及其修饰物、改性物和降解物;
所述天然多糖类物质包括透明质酸、羧甲基纤维素、甲基纤维素、羟乙基纤维素、羟丙基纤维素、海藻酸、葡聚糖、琼脂糖、肝素、硫酸软骨素、乙二醇壳聚糖、丙二醇壳聚糖、壳聚糖乳酸盐、羧甲基壳聚糖或壳聚糖季铵盐;
所述蛋白包括各种亲水性或水溶性动植物蛋白、胶原蛋白、血清蛋白、丝素蛋白、弹性蛋白,所述蛋白降解物包括明胶或多肽;
亲水或水溶性合成聚合物包括两臂或多臂聚乙二醇、聚乙烯亚胺、树枝体、合成多肽、聚赖氨酸、聚谷氨酸、聚丙烯酸、聚甲基丙烯酸、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮。
3.如权利要求1所述邻硝基苄基类光扳机修饰的高分子衍生物的制备方法,其特征在于,所述邻硝基苄基类光扳机修饰的高分子衍生物采用化学标记法或人工聚合的方法制备,
化学标记法是利用高分子与邻硝基苄基类光扳机中所含的化学基团间的化学反应而连接,包括以下标记方法:
含羧基的高分子与含羟基、巯基或胺基的邻硝基苄基类小分子标记,
含羟基的高分子与含羧基或含溴的邻硝基苄基类小分子标记,
含胺基的高分子与含羧基或含溴的邻硝基苄基类小分子标记;
人工聚合的方法是利用邻硝基苄基衍生物功能单体与其它共单体共聚,聚合方法包括无规自由基聚合方法,也包括控制自由基聚合方法;
优选选择以下方法中的任一种:
A、将含有羧基的水溶性聚合物或高分子于蒸馏水中溶解,加入含有活性官能团羟基或巯基或胺基的邻硝基苄基小分子后,加入缩合剂1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐和活化剂羟基苯并三唑,搅拌反应,反应结束后,将反应液加入透析袋中用稀盐酸溶液透析,然后冷冻干燥,即可得到邻硝基苄基修饰的高分子衍生物;
B、将含有羧基的水溶性聚合物或高分子于2-(N-吗啉)乙磺酸MES缓冲溶液中,搅拌至完全溶解,将邻硝基苄基小分子溶于二甲基亚砜后加入上述反应液,将4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐溶于MES缓冲溶液加入上述反应液中反应,然后将反应液倒入透析袋中,用去离子水透析,然后冷冻干燥,即可得到邻硝基苄基修饰的高分子衍生物;
C、将含有羟基或胺基的水溶性聚合物于蒸馏水中溶解,加入含有活性官能团羧基的邻硝基苄基小分子后,加入缩合剂1-乙基-(3-二甲基胺基丙基)碳二亚胺盐酸盐和催化剂对甲苯磺酸吡啶盐,然后在室温下搅拌反应,反应结束后,将反应液倒入难溶性溶剂中重沉淀,然后溶于水中用透析袋透析,冷冻干燥后,即可得到邻硝基苄基修饰的高分子衍生物;
D、将含有羟基或胺基的水溶性聚合物于蒸馏水中溶解,加入含有活性官能团溴的邻硝基苄基小分子后,加入碳酸钾作为碱,反应,反应结束后,将反应液倒入难溶性溶剂中重沉淀,然后溶于水中用透析袋透析,冷冻干燥后,即可得到邻硝基苄基修饰的高分子衍生物;
E、将邻硝基苄基可聚合单体衍生物与一种或几种可聚合共单体经过聚合即可得邻硝基苄基修饰的合成共聚物;
所述邻硝基苄基可聚合单体衍生物为丙烯酸酯类化合物、甲基丙烯酸酯类化合物、丙烯酰胺类化合物或甲基丙烯酰胺类化合物,
所述可聚合共单体中至少一种必须是水溶性共单体,所述可聚合共单体包括甲基丙烯酸聚乙二醇酯、丙烯酸聚乙二醇酯、甲基丙烯酸、丙烯酸、丙烯酸羟乙酯、丙烯酰胺。
4.一种光致亚硝基交联水凝胶材料的制备方法,其特征在于,将组分A-邻硝基苄基类光扳机修饰的高分子衍生物溶于生物相容性介质得到溶液A;将溶液A混合均匀得到水凝胶前体溶液;水凝胶前体溶液在光源照射下,组分A中的邻硝基苄基类光扳机在光激发下产生的亚硝基与自身发生二聚交联形成水凝胶;
组分A为式A所示邻硝基苄基类光扳机修饰的高分子衍生物:
具体结构式为结构式A-I或结构式A-Ⅱ,
其中,R’选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、亚烷基、改性烷基或改性亚烷基,
R1选自氢、醚键类取代基、酯键类取代基、碳酸酯键类取代基、胺基甲酸酯键类取代基、巯基甲酸酯键类取代基或磷酸酯键类取代基,
R2,R3,R4,R5可自由的选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、亚烷基、改性烷基或改性亚烷基,
式A、A-I、A-Ⅱ中,P1为一种亲水或水溶性天然高聚物或合成聚合物,或P1独立的选自多种亲水或水溶性天然高聚物或合成聚合物;
n≥2;
优选地,R2,R3,R4,R5中至少两个相互连接,与碳原子一起形成饱和或不饱和的脂环或脂杂环,或形成芳环或芳杂环。
5.根据权利要求4所述光致亚硝基交联水凝胶材料的制备方法,其特征在于,将组分A-邻硝基苄基类光扳机修饰的高分子衍生物溶于生物相容性介质得到溶液A;将组分B溶于生物相容性介质得到溶液B;将溶液A与溶液B混合均匀得到水凝胶前体溶液;水凝胶前体溶液在光源照射下,组分A中的邻硝基苄基类光扳机在光激发下产生的亚硝基除与自身发生二聚交联外,还与组分B中的亲核体或亲电体发生加成交联形成水凝胶;
所述组分B选自以下高分子中的一种或一种以上的混合物:含羟基类基团的高分子衍生物、含巯基类基团的高分子衍生物、含磺酸类基团的高分子衍生物、含羰基类基团的高分子衍生物、含双键类基团的高分子衍生物,或所述组分B为含羟基类基团、巯基类基团、磺酸类基团、羰基类基团、双键类基团中一种或一种以上基团的高分子。
6.根据权利要求4或5所述光致亚硝基交联水凝胶材料的制备方法,其特征在于,所述烷基为具有1~30个碳原子的饱和或不饱和脂肪族直链或支链的烷基;
所述亚烷基为具有1~30个碳原子的饱和或不饱和脂肪族直链或支链的亚烷基;
所述改性烷基为烷基的任意碳原子被选自卤原子、-OH、-SH、-NO2、-CN、-CHO、-COOH、酯基、酰胺基、芳基、亚芳基、-CO-、-O-、-S-、-SO-、-SO2-、伯胺基、仲胺基、叔胺基、季铵盐基、饱和或不饱和的单环或双环亚环烃基、桥联脂杂环中的至少一种基团置换所得的基团,所述改性烷基具有1~30个原子,其碳碳单键可任意地被碳碳双键或碳碳叁键替换;
所述改性亚烷基为亚烷基的任意碳原子被选自卤原子、-OH、-SH、-NO2、-CN、-CHO、-COOH、酯基、酰胺基、芳基、亚芳基、-CO-、-O-、-S-、-SO-、-SO2-、伯胺基、仲胺基、叔胺基、季铵盐基、饱和或不饱和的单环或双环亚环烃基、桥联脂杂环中的至少一种基团置换所得的基团,所述改性亚烷基具有1~30个原子,其碳碳单键可任意地被碳碳双键或碳碳叁键替换;
所述醚键类取代基选自以下结构:
-(CH2)xCH3、-(CH2CH2O)xCH3、-(CH2)x(CH2CH2O)yCH3、或其中x和y≥0且为整数;
所述酯键类取代基选自以下结构:
-CO(CH2)xCH3、-CO(CH2CH2O)xCH3、-CO(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述碳酸酯键类取代基选自以下结构:
-COO(CH2)xCH3、-COO(CH2CH2O)xCH3、-COO(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述胺基甲酸酯键类取代基选自以下结构:
-CONH(CH2)xCH3、-CONH(CH2CH2O)xCH3、-CONH(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述巯基甲酸酯键类取代基选自以下结构:
-COS(CH2)xCH3、-COS(CH2CH2O)xCH3、-COS(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述磷酸酯键类取代基选自以下结构:
-POOO(CH2)xCH3、-POOO(CH2CH2O)xCH3、-POOO(CH2)x(CH2CH2O)yCH3,其中x和y≥0且为整数;
所述芳基为5~10元芳香单环或芳香稠合双环结构;
所述杂芳基为环上含有选自O、S、N或Si中的至少一种杂原子的5~10元芳香单环或芳香稠合双环结构;
所述卤原子各自独立地选自F、Cl、Br、I;
所述脂环为饱和或不饱和的3~10元单环或多环脂环;
所述脂杂环为环上含有选自O、S、N或Si中的至少一种杂原子的饱和或不饱和的3-10元单环或多环脂杂环,所述脂杂环上含有S原子时,其任选为-S-、-SO-或-SO2-;所述脂环或脂杂环上的H还可任意地被卤原子、硝基、芳基、烷基或改性烷基取代;
所述芳环为5~10元芳香单环或芳香稠合双环;
所述芳杂环为环上含有选自O、S、N或Si中的至少一种杂原子的5~10元芳香单环或芳香稠合双环;所述芳环或芳杂环上的H还可任意地被卤原子、硝基、芳基、烷基或改性烷基取代。
7.根据权利要求4或5所述光致亚硝基交联水凝胶材料的制备方法,其特征在于,
P1与R2,R3,R4,R5中任意的一个或多个基团相连接,或,
P1连接于R2,R3,R4,R5之间形成的饱和或不饱和脂环或脂杂环,或,
P1连接于R2,R3,R4,R5之间形成的芳环或芳杂环,
连接键选自羟基类所获得的连接键P1-O-,或选自巯基类所获得的连接键P1-S-,或选自胺基类所获得的连接键P1-NH-,或选自烷烃类所获得的连接键P1-,或选自酯键类所获得的连接键P1-COO-,或选自酰胺键类所获得的连接键P1-CONH-,该连接键的一端与P1相连,另一端连接在式A、式A-Ⅰ、式A-Ⅱ所示分子的苯环上。
8.根据权利要求4或5所述光致亚硝基交联水凝胶材料的制备方法,其特征在于,亲水或水溶性天然高聚物包括天然多糖类物质及其修饰物或降解物,蛋白及其修饰物、改性物和降解物;
所述天然多糖类物质包括透明质酸、羧甲基纤维素、甲基纤维素、羟乙基纤维素、羟丙基纤维素、海藻酸、葡聚糖、琼脂糖、肝素、硫酸软骨素、乙二醇壳聚糖、丙二醇壳聚糖、壳聚糖乳酸盐、羧甲基壳聚糖或壳聚糖季铵盐;
所述蛋白包括各种亲水性或水溶性动植物蛋白、胶原蛋白、血清蛋白、丝素蛋白、弹性蛋白,所述蛋白降解物包括明胶或多肽;
亲水或水溶性合成聚合物包括两臂或多臂聚乙二醇、聚乙烯亚胺、树枝体、合成多肽、聚赖氨酸、聚谷氨酸、聚丙烯酸、聚甲基丙烯酸、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮。
9.根据权利要求4或5所述光致亚硝基交联水凝胶材料的制备方法,其特征在于,所述式A-I选自以下组分A-1~组分A-50中的结构:
所述式A-Ⅱ选自以下组分A-51~组分A-68中的结构:
组分A-1~组分A-68中,n≥2,HA为透明质酸;CMC为羧甲基纤维素;Alg为海藻酸;CS为硫酸软骨素;PGA为聚谷氨酸;PEG为聚乙二醇;Chitosan为壳聚糖;Gelatin为明胶;PLL为聚赖氨酸;Dex为葡聚糖;Hep为肝素。
10.根据权利要求5所述光致亚硝基交联水凝胶材料的制备方法,其特征在于,对于组分B,含羟基类基团的高分子衍生物,具有结构式B-Ⅰ;含巯基类基团的高分子衍生物,具有结构式B-Ⅱ;含磺酸类基团的高分子衍生物,具有结构式B-Ⅲ;含羰基类基团的高分子衍生物,具有结构式B-Ⅳ;含双键类基团的高分子衍生物,具有结构式B-Ⅴ:
B-Ⅰ、B-Ⅱ、B-Ⅲ、B-Ⅳ、B-Ⅴ中,X选自O、S或N杂原子,R’,R1,R2,R3选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、羧基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、改性烷基;
优选地,式B-Ⅴ中,R1,R2,R3相互连接,与碳原子一起形成饱和或不饱和的脂环或脂杂环;
n≥2,P2、P3、P4、P5、P6为亲水或水溶性天然高聚物或合成聚合物;
亲水或水溶性天然高聚物包括天然多糖类物质及其修饰物或降解物,蛋白及其修饰物、改性物和降解物;
所述天然多糖类物质包括透明质酸、羧甲基纤维素、甲基纤维素、羟乙基纤维素、羟丙基纤维素、海藻酸、葡聚糖、琼脂糖、肝素、硫酸软骨素、乙二醇壳聚糖、丙二醇壳聚糖、壳聚糖乳酸盐、羧甲基壳聚糖或壳聚糖季铵盐;
所述蛋白包括各种亲水性或水溶性动植物蛋白、胶原蛋白、血清蛋白、丝素蛋白、弹性蛋白,所述蛋白降解物包括明胶或多肽;
亲水或水溶性合成聚合物包括两臂或多臂聚乙二醇、聚乙烯亚胺、树枝体、合成多肽、聚赖氨酸、聚谷氨酸、聚丙烯酸、聚甲基丙烯酸、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮;
所述式B-Ⅰ优选选自以下组分B-1中的结构;所述式B-Ⅱ优选选自以下组分B-2~组分B-7中的结构;所述式B-Ⅲ优选选自以下组分B-8~组分B-9中的结构;所述式B-Ⅳ优选选自以下组分B-10~组分B-17中的结构;所述式B-Ⅴ优选选自以下组分B-18~组分B-26:
组分B-1~组分B-26中,n≥2。
11.权利要求4-10中任一项所述制备方法制得的光致亚硝基交联水凝胶材料。
12.一种制备水凝胶的试剂盒,其特征在于,包含:组分A,以及有关水凝胶制备及应用的说明书;
所述组分A为式A所示邻硝基苄基类光扳机修饰的高分子衍生物:
具体结构式为结构式A-I或结构式A-Ⅱ,
其中,R’选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、亚烷基、改性烷基或改性亚烷基,
R1选自氢、醚键类取代基、酯键类取代基、碳酸酯键类取代基、胺基甲酸酯键类取代基、巯基甲酸酯键类取代基或磷酸酯键类取代基,
R2,R3,R4,R5可自由的选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、亚烷基、改性烷基或改性亚烷基,
式A、A-I、A-Ⅱ中,P1为一种亲水或水溶性天然高聚物或合成聚合物,或P1独立的选自多种亲水或水溶性天然高聚物或合成聚合物;
n≥2。
13.根据权利要求12所述试剂盒,其特征在于,包含:组分A,组分B,以及有关水凝胶制备及应用的说明书;
所述组分B选自以下高分子中的一种或一种以上的混合物:含羟基类基团的高分子衍生物、含巯基类基团的高分子衍生物、含磺酸类基团的高分子衍生物、含羰基类基团的高分子衍生物、含双键类基团的高分子衍生物,或所述组分B为含羟基类基团、巯基类基团、磺酸类基团、羰基类基团或双键类基团中一种或一种以上基团的高分子;
含羟基类基团的高分子衍生物,具有结构式B-Ⅰ;含巯基类基团的高分子衍生物,具有结构式B-Ⅱ;含磺酸类基团的高分子衍生物,具有结构式B-Ⅲ;含羰基类基团的高分子衍生物,具有结构式B-Ⅳ;含双键类基团的高分子衍生物,具有结构式B-Ⅴ;
B-Ⅰ、B-Ⅱ、B-Ⅲ、B-Ⅳ、B-Ⅴ中,X选自O、S或N杂原子,R’,R1,R2,R3选自氢、卤原子、羟基、巯基、胺基、硝基、氰基、醛基、酮基、羧基、酯基、酰胺基、膦酸基、膦酸酯基、磺酸基、磺酸酯基、砜基、亚砜基、芳基、杂芳基、烷基、改性烷基;
优选地,式B-Ⅴ中,R1,R2,R3相互连接,与碳原子一起形成饱和或不饱和的脂环或脂杂环;
n≥2,P2、P3、P4、P5、P6为亲水或水溶性天然高聚物或合成聚合物;
所述天然多糖类物质包括透明质酸、羧甲基纤维素、甲基纤维素、羟乙基纤维素、羟丙基纤维素、海藻酸、葡聚糖、琼脂糖、肝素、硫酸软骨素、乙二醇壳聚糖、丙二醇壳聚糖、壳聚糖乳酸盐、羧甲基壳聚糖或壳聚糖季铵盐;
所述蛋白包括各种亲水性或水溶性动植物蛋白、胶原蛋白、血清蛋白、丝素蛋白、弹性蛋白,所述蛋白降解物包括明胶或多肽;
亲水或水溶性合成聚合物包括两臂或多臂聚乙二醇、聚乙烯亚胺、树枝体、合成多肽、聚赖氨酸、聚谷氨酸、聚丙烯酸、聚甲基丙烯酸、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮。
所述式B-Ⅰ优选选自以下组分B-1中的结构;所述式B-Ⅱ优选选自以下组分B-2~组分B-7中的结构;所述式B-Ⅲ优选选自以下组分B-8~组分B-9中的结构;所述式B-Ⅳ优选选自以下组分B-10~组分B-17中的结构;所述式B-Ⅴ优选选自以下组分B-18~组分B-26:
组分B-1~组分B-26中,n≥2。
14.如权利要求11所述光致亚硝基交联水凝胶材料的应用,其特征在于,
所述光致亚硝基交联水凝胶用于制备术后创面封闭用品的应用;
所述光致亚硝基交联水凝胶用于制备组织液渗漏封堵用品的应用;
所述光致亚硝基交联水凝胶用于制备止血材料的应用;
所述光致亚硝基交联水凝胶用于制备组织工程支架材料-软骨修复材料的应用;
所述光致亚硝基交联水凝胶用于制备组织工程支架材料-骨修复材料的应用;
所述光致亚硝基交联水凝胶作为3D打印材料-生物墨水的应用;
所述光致亚硝基交联水凝胶在制备细胞、蛋白、药物载体上的应用。
CN201711132465.2A 2017-11-15 2017-11-15 光致亚硝基交联水凝胶材料及其制备方法与应用 Active CN107987287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711132465.2A CN107987287B (zh) 2017-11-15 2017-11-15 光致亚硝基交联水凝胶材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711132465.2A CN107987287B (zh) 2017-11-15 2017-11-15 光致亚硝基交联水凝胶材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107987287A true CN107987287A (zh) 2018-05-04
CN107987287B CN107987287B (zh) 2020-09-25

Family

ID=62031031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711132465.2A Active CN107987287B (zh) 2017-11-15 2017-11-15 光致亚硝基交联水凝胶材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN107987287B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108794737A (zh) * 2018-06-26 2018-11-13 中国科学院长春应用化学研究所 具有紫外光响应功能的封端改性聚乙二醇交联剂及制法和含该交联剂的水凝胶敷料及制法
CN110180017A (zh) * 2019-05-15 2019-08-30 西安交通大学 一种多功能双组份水凝胶组织粘合剂的制备方法
CN111388758A (zh) * 2020-04-03 2020-07-10 苏州大学 基于甲基丙烯酸化水凝胶/羟乙基纤维素/脱细胞基质的复合生物墨水及其制备方法
CN111748088A (zh) * 2020-05-31 2020-10-09 中山光禾医疗科技有限公司 高强度和韧性的光交联水凝胶材料及其制备方法与应用
CN112461908A (zh) * 2021-02-01 2021-03-09 南京财经大学 一种仿生小肠绒毛电化学细胞传感器及其应用
CN112915252A (zh) * 2021-01-29 2021-06-08 河南亚都实业有限公司 一种壳聚糖季铵盐衍生物创面敷料及其制备方法
CN113698629A (zh) * 2020-05-20 2021-11-26 海宁侏罗纪生物科技有限公司 生物粘附性水凝胶及其应用
CN113717402A (zh) * 2020-05-20 2021-11-30 海宁侏罗纪生物科技有限公司 生物粘附性水凝胶及其应用
CN114058038A (zh) * 2021-11-02 2022-02-18 武汉大学中南医院 一种用于快速止血的水凝胶材料的制备方法
CN114133595A (zh) * 2021-12-06 2022-03-04 广东华美众源生物科技有限公司 一种pH温度双重敏感纳米水凝胶的制备方法
CN114672047A (zh) * 2022-04-26 2022-06-28 佛山科学技术学院 一种羧甲基壳聚糖水凝胶的制备方法及应用
CN114813874A (zh) * 2022-04-20 2022-07-29 南京财经大学 一种仿生肝小叶微组织电化学传感器的制备方法及应用
CN114806275A (zh) * 2022-05-09 2022-07-29 深圳市华星光电半导体显示技术有限公司 打印墨水、显示面板及其制备方法
CN114907558A (zh) * 2021-02-09 2022-08-16 上海瓴就医疗科技有限公司 一种低溶胀的可注射水凝胶及其制备方法与应用
CN115006344A (zh) * 2022-06-29 2022-09-06 四川大学 一种抗菌和粘附的修复水凝胶及其制备
CN115028903A (zh) * 2022-07-07 2022-09-09 广州创赛生物医用材料有限公司 一种水凝胶及其制备方法和应用
WO2022183750A1 (zh) * 2021-03-04 2022-09-09 海宁侏罗纪生物科技有限公司 一种医用组织粘合胶及其制备方法
CN115260056A (zh) * 2022-08-09 2022-11-01 中国科学院兰州化学物理研究所 一种交联剂及其制备方法、聚酰亚胺3d打印墨水、可回收热固性聚酰亚胺制品的制备方法
WO2023022148A1 (ja) * 2021-08-20 2023-02-23 ナミックス株式会社 エポキシ樹脂組成物
CN115895280A (zh) * 2022-11-28 2023-04-04 南通大学 一种光敏丝素蛋白水凝胶及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903224A2 (en) * 1997-09-12 1999-03-24 Fuji Photo Film Co., Ltd. Radiation-sensitive planographic plate
CN105131315A (zh) * 2014-11-27 2015-12-09 华东理工大学 非自由基光化学交联水凝胶材料制备方法、其产品及应用
CN106822183A (zh) * 2016-12-26 2017-06-13 上海斯能得医疗科技有限公司 一种光敏富血小板血浆凝胶及其制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903224A2 (en) * 1997-09-12 1999-03-24 Fuji Photo Film Co., Ltd. Radiation-sensitive planographic plate
CN105131315A (zh) * 2014-11-27 2015-12-09 华东理工大学 非自由基光化学交联水凝胶材料制备方法、其产品及应用
CN106822183A (zh) * 2016-12-26 2017-06-13 上海斯能得医疗科技有限公司 一种光敏富血小板血浆凝胶及其制备方法和用途

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108794737A (zh) * 2018-06-26 2018-11-13 中国科学院长春应用化学研究所 具有紫外光响应功能的封端改性聚乙二醇交联剂及制法和含该交联剂的水凝胶敷料及制法
CN108794737B (zh) * 2018-06-26 2019-07-02 中国科学院长春应用化学研究所 具有紫外光响应功能的封端改性聚乙二醇交联剂及制法和含该交联剂的水凝胶敷料及制法
CN110180017A (zh) * 2019-05-15 2019-08-30 西安交通大学 一种多功能双组份水凝胶组织粘合剂的制备方法
CN111388758A (zh) * 2020-04-03 2020-07-10 苏州大学 基于甲基丙烯酸化水凝胶/羟乙基纤维素/脱细胞基质的复合生物墨水及其制备方法
CN113717402A (zh) * 2020-05-20 2021-11-30 海宁侏罗纪生物科技有限公司 生物粘附性水凝胶及其应用
CN113698629A (zh) * 2020-05-20 2021-11-26 海宁侏罗纪生物科技有限公司 生物粘附性水凝胶及其应用
CN111748088B (zh) * 2020-05-31 2021-07-27 中山光禾医疗科技有限公司 高强度和韧性的光交联水凝胶材料及其制备方法与应用
WO2021243835A1 (zh) * 2020-05-31 2021-12-09 中山光禾医疗科技有限公司 高强度和韧性的光交联水凝胶材料及其制备方法与应用
US11787903B2 (en) 2020-05-31 2023-10-17 Zhongshan Guanghe Medical Technology Co., Ltd Highly strong and tough photo-crosslinked hydrogel material and its preparation and application
CN111748088A (zh) * 2020-05-31 2020-10-09 中山光禾医疗科技有限公司 高强度和韧性的光交联水凝胶材料及其制备方法与应用
CN112915252A (zh) * 2021-01-29 2021-06-08 河南亚都实业有限公司 一种壳聚糖季铵盐衍生物创面敷料及其制备方法
CN112461908A (zh) * 2021-02-01 2021-03-09 南京财经大学 一种仿生小肠绒毛电化学细胞传感器及其应用
CN114907558A (zh) * 2021-02-09 2022-08-16 上海瓴就医疗科技有限公司 一种低溶胀的可注射水凝胶及其制备方法与应用
CN114907558B (zh) * 2021-02-09 2024-05-07 上海瓴就医疗科技有限公司 一种低溶胀的可注射水凝胶及其制备方法与应用
WO2022183750A1 (zh) * 2021-03-04 2022-09-09 海宁侏罗纪生物科技有限公司 一种医用组织粘合胶及其制备方法
WO2023022148A1 (ja) * 2021-08-20 2023-02-23 ナミックス株式会社 エポキシ樹脂組成物
CN114058038A (zh) * 2021-11-02 2022-02-18 武汉大学中南医院 一种用于快速止血的水凝胶材料的制备方法
CN114133595B (zh) * 2021-12-06 2023-06-02 广东华美众源生物科技有限公司 一种pH温度双重敏感纳米水凝胶的制备方法
CN114133595A (zh) * 2021-12-06 2022-03-04 广东华美众源生物科技有限公司 一种pH温度双重敏感纳米水凝胶的制备方法
CN114813874A (zh) * 2022-04-20 2022-07-29 南京财经大学 一种仿生肝小叶微组织电化学传感器的制备方法及应用
CN114813874B (zh) * 2022-04-20 2023-12-15 南京财经大学 一种仿生肝小叶微组织电化学传感器的制备方法及应用
CN114672047A (zh) * 2022-04-26 2022-06-28 佛山科学技术学院 一种羧甲基壳聚糖水凝胶的制备方法及应用
CN114672047B (zh) * 2022-04-26 2023-09-29 佛山科学技术学院 一种羧甲基壳聚糖水凝胶的制备方法及应用
CN114806275A (zh) * 2022-05-09 2022-07-29 深圳市华星光电半导体显示技术有限公司 打印墨水、显示面板及其制备方法
CN115006344A (zh) * 2022-06-29 2022-09-06 四川大学 一种抗菌和粘附的修复水凝胶及其制备
CN115028903A (zh) * 2022-07-07 2022-09-09 广州创赛生物医用材料有限公司 一种水凝胶及其制备方法和应用
CN115260056A (zh) * 2022-08-09 2022-11-01 中国科学院兰州化学物理研究所 一种交联剂及其制备方法、聚酰亚胺3d打印墨水、可回收热固性聚酰亚胺制品的制备方法
CN115895280A (zh) * 2022-11-28 2023-04-04 南通大学 一种光敏丝素蛋白水凝胶及其制备方法与应用
CN115895280B (zh) * 2022-11-28 2024-01-26 南通大学 一种光敏丝素蛋白水凝胶及其制备方法与应用

Also Published As

Publication number Publication date
CN107987287B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN107987287A (zh) 光致亚硝基交联水凝胶材料及其制备方法与应用
CN107964056A (zh) 光偶合交联水凝胶材料的制备方法、原料、产品及应用
CN112142870B (zh) 光偶合协同交联水凝胶材料的制备、原料、产品及应用
CN109776451B (zh) 光交联水凝胶材料的制备、原料、产品及应用
CN105131315B (zh) 非自由基光化学交联水凝胶材料制备方法、其产品及应用
Nicol Photopolymerized porous hydrogels
CA2478655C (en) Ester derivatives of hyaluronic acid for the preparation of hydrogel materials by photocuring
ES2596707T3 (es) Composiciones y métodos para la formación de armazones
CN110128682A (zh) 巯基-醛基交联水凝胶材料及其制备方法与应用
JP2855307B2 (ja) 光反応性グリコサミノグリカン、架橋グリコサミノグリカン及びそれらの製造方法
CN101052684B (zh) 羟基苯交联大分子网络及其应用
CN109153734A (zh) 结冷胶水凝胶、制备、方法及其用途
CN106822183A (zh) 一种光敏富血小板血浆凝胶及其制备方法和用途
CN105228665A (zh) 抗血栓形成移植物
Sang et al. Photo-crosslinked hydrogels for tissue engineering of corneal epithelium
Zhou et al. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models
US11000625B2 (en) Amplified photodegradation of hydrogels and methods of producing the same
TWI798084B (zh) 複合水凝膠組合物、其製備方法及其用途
CN111748088B (zh) 高强度和韧性的光交联水凝胶材料及其制备方法与应用
Schoenmakers Functional Crosslinks in Synthetic Biomimetic Networks
JP2023081477A (ja) 多糖誘導体、多糖誘導体を含む架橋構造体、架橋構造体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180810

Address after: 100085, 4 floor 22, 1 Street, ten Street, Haidian District, Beijing.

Applicant after: Zhong Rong Yun Da (Beijing) Technology Co., Ltd.

Address before: 200237 No. 130, Meilong Road, Shanghai, Xuhui District

Applicant before: East China University of Science and Technology

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190212

Address after: 528403 Linhai Industrial Park, Chuicheng Road, Chuicheng New District, Zhongshan City, Guangdong Province

Applicant after: Zhongshan Guanghe Medical Technology Co., Ltd.

Address before: 100085, 4 floor 22, 1 Street, ten Street, Haidian District, Beijing.

Applicant before: Zhong Rong Yun Da (Beijing) Technology Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant