CN107986757A - 一种吸波型陶瓷基复合保温材料的制备方法及其产品 - Google Patents

一种吸波型陶瓷基复合保温材料的制备方法及其产品 Download PDF

Info

Publication number
CN107986757A
CN107986757A CN201711177668.3A CN201711177668A CN107986757A CN 107986757 A CN107986757 A CN 107986757A CN 201711177668 A CN201711177668 A CN 201711177668A CN 107986757 A CN107986757 A CN 107986757A
Authority
CN
China
Prior art keywords
parts
preparation
ceramic base
base compound
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711177668.3A
Other languages
English (en)
Inventor
黄世峰
姜葱葱
李国忠
程新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201711177668.3A priority Critical patent/CN107986757A/zh
Publication of CN107986757A publication Critical patent/CN107986757A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • C04B33/1322Red mud
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1328Waste materials; Refuse; Residues without additional clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明提供了一种吸波型陶瓷基复合保温材料的制备方法及其产品,包括以下步骤:将至少包含花岗岩废料100份,陶土尾矿2‑5份,废瓷粉4‑10份,赤泥3‑14份,高温发泡剂0.5‑3份,高性能吸波剂0.5‑3.0份的物料混合、粉碎后,在1050‑1250℃下煅烧30‑120min,随炉冷却后制得吸波型陶瓷基复合保温材料。本发明实现了对固体废弃物的综合利用,节能环保;简化了成型工艺,提高了工作效率,适于大规模生产;其产品孔隙率高、导热系数低、电磁波反射率低,具有轻质高强、保温隔热、防火阻燃、电磁防护性能优异等优点。

Description

一种吸波型陶瓷基复合保温材料的制备方法及其产品
技术领域
本发明属于新型保温材料技术领域,具体涉及一种吸波型陶瓷基复合保温材料制备方法及其产品。
背景技术
现有保温材料中,大规模应用的主要有聚苯乙烯泡沫、聚氨酯泡沫等有机类保温材料,但这些材料的防火性能差,易产生开裂、空鼓、渗水、脱落等质量通病,使用年限较短。随之出现的泡沫水泥、泡沫玻璃、无机保温砂浆、岩棉板等无机类保温材料,虽然具有良好的防火性能,但其他性能与现有的有机保温材料尚存在一定差距。
目前电磁射线被广泛应用在通讯、信息、交通、科研、医疗和军事等各个领域中,显著提高了人们的生活质量。但是随着电子、电器产品数量的增加,电磁射线的弊端开始日益显现,其产生的电磁辐射,不仅影响设备的正常工作,甚至直接威胁人类的健康。通信发射设备、超高压输电线等高电磁射线区域,大量的电磁辐射对人体健康危害严重。因此,采取有效防护措施对建筑物进行辐射防护,以保护人体免受辐射伤害,已经成为亟需解决的问题。在这种背景下,电磁波吸收材料(简称吸波材料)的作用和地位日益突出。
泡沫陶瓷是具有三维空间网架结构的高气孔率的多孔陶瓷体,具有热传导率低、不燃、防火、耐久性好、与吸水率低、耐候性好等优异性能,是一种理想的无机轻质保温材料。同时,陶瓷体本身主要由Al2O3,SiO2等透波性介质组成,能够改善材料表面与自由空间的阻抗匹配,使得入射电磁波不会在其表面产生严重的反射。泡沫陶瓷的生产原料可以用适量陶瓷废料、建筑垃圾替代,既能增强发泡效果又能实现废料的环保利用。有关研究学者已经利用粉煤灰、赤泥及玻璃废料等固体废弃物制备泡沫陶瓷。然而在石材加工过程产生的大量花岗岩废料严重污染了环境,根据其成分特点,配以Al2O3与Fe2O3含量较高的原料可以生产陶瓷制品。利用花岗岩废石粉代替天然资源,通过原位成孔烧结技术制备泡沫陶瓷保温板,并在其表面涂覆一层吸波涂料,不仅实现了花岗岩废料的资源化综合利用,而且赋予陶瓷体吸波功能,拓宽泡沫陶瓷制品的推广应用,具有显著的环境效益、经济效益和社会效益。然而,现有技术中,利用高温焙烧发泡法制备的陶瓷类保温材料,普遍存在体积密度大、导热系数高等问题。现有技术专利CN 106064956 A公开了采用赤泥为主要原料制备的赤泥轻质墙体保温材料,该专利中赤泥的利用率仅为20-40%,固废利用率低,烧制时间长,不利于节能环保。专利CN 103396153 A公开了利用花岗岩废料(50-65wt%)为原料的轻质保温材料及其制备方法,该专利中采用两步法的制备技术,且坯体需要压制成型,工艺复杂。
发明内容
针对目前高温焙烧发泡法制备的陶瓷类保温材料体积密度大、导热系数高,烧制时间长,工艺复杂等问题,本发明提供一种原位成孔烧制泡沫陶瓷保温材料的方法。
本发明的另一目的采用上述方法制备一种吸波性能优异的陶瓷基复合保温材料。
为实现上述目的,本发明采用如下技术方案。
一种吸波型陶瓷基复合保温材料的制备方法,包括以下步骤:
(1)将至少包含花岗岩废料、陶土尾矿、废瓷粉、赤泥、高温发泡剂和吸波剂的物料混合,然后置于球磨机中进行球磨、混匀,过筛,制得球磨料;
(2)将步骤(1)所得球磨料置于耐火材料模具中并送入高温炉中,在1050-1250 ℃下煅烧,随炉冷却后制得吸波型陶瓷基复合保温材料;
作为优选,所述物料包含以下重量份的成分:花岗岩废料100份,陶土尾矿2-5份,废瓷粉4-10份,赤泥3-14份,高温发泡剂0.5-3份,高性能吸波剂0.5-3.0份。
作为优选,所述高温发泡剂为碳化硅粉、铁矿粉、碳粉、碳酸钙、硫酸铝中的一种。
作为优选,所述高性能吸波剂为石墨、SiC纤维、ZnO中的至少一种。
作为优选,所述球磨料的细度为过300目标准筛。
作为优选,所述煅烧时间为30 min-120 min。
一种如上述方法制得的吸波型陶瓷基复合保温材料。
作为优选,所述吸波型陶瓷基复合保温材料的体积密度为160-250 kg/m3,导热系数为0.03-0.05W/(m·k)、反射率为-11.5~-10.2dB。
本发明具有以下优点:
本发明所用物料中,花岗岩废料、陶土尾矿、废瓷粉、赤泥均为固体废弃物,占比94%以上。解决了花岗岩废料堆积对环境的污染和资源浪费问题,同时消耗了一定量的陶土尾矿、废瓷粉和赤泥,实现了对固体废弃物的综合利用,且不需要粘结剂,节能环保。本发明直接将混合料置于模具中送入高温炉中煅烧,制得保温材料。简化了成型工艺,提高了工作效率,适于大规模生产。
同时,本发明制备的保温材料体积密度为160-250 kg/m3,导热系数为0.03-0.05W/(m·k),轻质保温效果显著,且防火性能优异,防火等级达到A级。另外,吸波介质的合理引入使得陶瓷基无机保温材料的反射率小于-10 dB,吸波性能优异,从而可以满足军事防护设施和民用工程电磁防护的功能要求。
本发明利用花岗岩废石粉代替天然资源,选用合适的吸波介质,通过原位成孔烧结技术制备吸波型陶瓷基保温材料,不仅实现了花岗岩废料的资源化综合利用,而且赋予陶瓷体吸波功能,拓宽泡沫陶瓷制品的推广应用。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明不受下述实施例的限制。
实施例1
按如下重量份的组分配制原料:花岗岩废料100份,陶土尾矿2份,废瓷粉6份,赤泥14份,碳化硅粉3份,石墨3份,置于球磨机中进行球磨制得球磨料,过300目标准筛;将混合均匀的球磨料置于耐火材料模具中并送入高温炉中,在1050 ℃下煅烧120 min,随炉冷却后制得吸波型陶瓷基复合保温材料。
本实施例制备的吸波型陶瓷基复合保温材料,体积密度为160 kg/m3、导热系数为0.03 W/ (m·k)、表面吸水率为2.9 %、抗拉强度为1.3 MPa、抗压强度为1.5 MPa、防火等级为A级、反射率为-10.9 dB。
实施例2
按如下重量份的组分配制原料:花岗岩废料100份,陶土尾矿3份,废瓷粉8份,赤泥6份,铁矿粉2份,SiC纤维1.5份,置于球磨机中进行球磨制得球磨料,过300目标准筛;将混合均匀的球磨料置于耐火材料模具中并送入高温炉中,在1150 ℃下煅烧100 min,随炉冷却后制得吸波型陶瓷基复合保温材料。
本实施例制备的吸波型陶瓷基复合保温材料,体积密度为185 kg/m3、导热系数为0.04 W/ (m·k)、表面吸水率为3.0 %、抗拉强度为1.8 MPa、抗压强度为1.9 MPa、防火等级为A级、反射率为-10.7 dB。
实施例3
按如下重量份的组分配制原料:花岗岩废料100份,陶土尾矿4份,废瓷粉10份,赤泥3份,碳酸钙0.5份,SiC纤维2份,置于球磨机中进行球磨制得球磨料,过300目标准筛;将混合均匀的球磨料置于耐火材料模具中并送入高温炉中,在1250 ℃下煅烧30 min,随炉冷却后制得吸波型陶瓷基复合保温材料。
本实施例制备的吸波型陶瓷基复合保温材料,体积密度为250 kg/m3、导热系数为0.05 W/ (m·k)、表面吸水率为2.7 %、抗拉强度为2.7 MPa、抗压强度为3.4 MPa、防火等级为A级、反射率为-10.4 dB。
实施例4
按如下重量份的组分配制原料:花岗岩废料100份,陶土尾矿5份,废瓷粉4份,赤泥10份,碳粉1.5份,ZnO 0.5份,置于球磨机中进行球磨制得球磨料,过300目标准筛;将混合均匀的球磨料置于耐火材料模具中并送入高温炉中,在1100 ℃下煅烧60 min,随炉冷却后制得吸波型陶瓷基复合保温材料。
本实施例制备的吸波型陶瓷基复合保温材料,体积密度为200 kg/m3、导热系数为0.045 W/ (m·k)、表面吸水率为2.8 %、抗拉强度为2.1 MPa、抗压强度为2.6 MPa、防火等级为A级、反射率为-10.2 dB。
实施例5
按如下重量份的组分配制原料:花岗岩废料100份,陶土尾矿5份,废瓷粉4份,赤泥9份,碳粉1.5份,ZnO 0.5份,石墨1.0份,置于球磨机中进行球磨制得球磨料,过300目标准筛;将混合均匀的球磨料置于耐火材料模具中并送入高温炉中,在1100 ℃下煅烧60 min,随炉冷却后制得吸波型陶瓷基复合保温材料。
本实施例制备的吸波型陶瓷基复合保温材料,体积密度为205 kg/m3、导热系数为0.045 W/ (m·k)、表面吸水率为2.6 %、抗拉强度为2.2MPa、抗压强度为2.9MPa、防火等级为A级、反射率为-11.2 dB。
实施例6
按如下重量份的组分配制原料:花岗岩废料100份,陶土尾矿5份,废瓷粉4份,赤泥9份,碳粉1.5份,ZnO 0.5份,SiC纤维1.0份,石墨0.5份,置于球磨机中进行球磨制得球磨料,过300目标准筛;将混合均匀的球磨料置于耐火材料模具中并送入高温炉中,在1100 ℃下煅烧60 min,随炉冷却后制得吸波型陶瓷基复合保温材料。
本实施例制备的吸波型陶瓷基复合保温材料,体积密度为196 kg/m3、导热系数为0.043 W/ (m·k)、表面吸水率为2.5 %、抗拉强度为2.3 MPa、抗压强度为2.9 MPa、防火等级为A级、反射率为-11.5 dB。

Claims (8)

1.一种吸波型陶瓷基复合保温材料的制备方法,其特征在于,包括以下步骤:
(1)将至少包含花岗岩废料、陶土尾矿、废瓷粉、赤泥、高温发泡剂和吸波剂的物料混合,然后置于球磨机中进行球磨、混匀,过筛,制得球磨料;
(2)将步骤(1)所得球磨料置于模具中,在1050-1250 ℃下煅烧,随炉冷却后制得吸波型陶瓷基复合保温材料。
2.根据权利要求1所述的制备方法,其特征在于,含以下重量份的成分:花岗岩废料100份,陶土尾矿2-5份,废瓷粉4-10份,赤泥3-14份,高温发泡剂0.5-3份,高性能吸波剂0.5-3.0份。
3.根据权利要求1所述的制备方法,其特征在于,所述高温发泡剂选自碳化硅粉、铁矿粉、碳粉、碳酸钙、硫酸铝中的一种。
4.根据权利要求1所述的制备方法,其特征在于,所述高性能吸波剂选自石墨、SiC纤维、ZnO中的至少一种。
5.根据权利要求1所述的制备方法,其特征在于,所述球磨料细度为过300目标准筛。
6.根据权利要求1所述的制备方法,其特征在于,所述煅烧时间为30min-120min。
7.一种如权利要求1所述制备方法制得的吸波型陶瓷基复合保温材料。
8. 权利要求7所述的吸波型陶瓷基复合保温材料,其特征在于,所述保温材料体积密度为160-250g/m3,导热系数为0.03-0.05W/ (m·k),反射率为-11.5~-10.2dB。
CN201711177668.3A 2017-11-23 2017-11-23 一种吸波型陶瓷基复合保温材料的制备方法及其产品 Pending CN107986757A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711177668.3A CN107986757A (zh) 2017-11-23 2017-11-23 一种吸波型陶瓷基复合保温材料的制备方法及其产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711177668.3A CN107986757A (zh) 2017-11-23 2017-11-23 一种吸波型陶瓷基复合保温材料的制备方法及其产品

Publications (1)

Publication Number Publication Date
CN107986757A true CN107986757A (zh) 2018-05-04

Family

ID=62031968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711177668.3A Pending CN107986757A (zh) 2017-11-23 2017-11-23 一种吸波型陶瓷基复合保温材料的制备方法及其产品

Country Status (1)

Country Link
CN (1) CN107986757A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947472A (zh) * 2018-08-06 2018-12-07 冯嘉豪 一种新型导电吸波陶瓷材料及其制备方法
CN113603406A (zh) * 2021-08-23 2021-11-05 中国地质大学(北京) 一种免烧免蒸泡沫保温复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173735A (zh) * 2011-01-14 2011-09-07 华南理工大学 一种高Fe2O3含量和高电导率陶瓷的制备方法
CN102674883A (zh) * 2012-06-11 2012-09-19 济南大学 泡沫陶瓷保温板及其制备方法
KR101585910B1 (ko) * 2014-09-18 2016-01-15 한국해양대학교 산학협력단 전파흡수체의 제조 방법 및 전파흡수체
CN105502951A (zh) * 2016-01-09 2016-04-20 北京工业大学 一种吸收电磁波的多孔玻璃陶瓷及其制备方法
CN106187134A (zh) * 2016-07-13 2016-12-07 深圳市超超科技发展有限公司 基于花岗岩发泡轻质墙体材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173735A (zh) * 2011-01-14 2011-09-07 华南理工大学 一种高Fe2O3含量和高电导率陶瓷的制备方法
CN102674883A (zh) * 2012-06-11 2012-09-19 济南大学 泡沫陶瓷保温板及其制备方法
KR101585910B1 (ko) * 2014-09-18 2016-01-15 한국해양대학교 산학협력단 전파흡수체의 제조 방법 및 전파흡수체
CN105502951A (zh) * 2016-01-09 2016-04-20 北京工业大学 一种吸收电磁波的多孔玻璃陶瓷及其制备方法
CN106187134A (zh) * 2016-07-13 2016-12-07 深圳市超超科技发展有限公司 基于花岗岩发泡轻质墙体材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佚名: "发泡陶瓷保温板外墙外保温应用技术", 《建筑技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947472A (zh) * 2018-08-06 2018-12-07 冯嘉豪 一种新型导电吸波陶瓷材料及其制备方法
CN113603406A (zh) * 2021-08-23 2021-11-05 中国地质大学(北京) 一种免烧免蒸泡沫保温复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN108840710B (zh) 利用锂尾矿及钢渣尾矿生产发泡陶瓷建筑保温材料的方法
CN104072193B (zh) 基于含硅铝固废的发泡陶瓷材料及制备防火保温板的方法
CN107721358B (zh) 矿渣微粉掺珍珠岩尾矿免烧陶粒及其制备方法
WO2012058922A1 (zh) 吸声陶瓷及其生产方法
CN111960782B (zh) 一种废弃烧结砖瓦环保型的轻质混凝土及其制备方法
CN111348895A (zh) 锂云母尾矿一次烧结陶瓷发泡带微晶装饰一体板
CN108658488A (zh) 一种防辐射保温板及其制备方法
CN103342578A (zh) 利用铁尾矿制备的多孔保温装饰材料及其制备方法
CN108821621B (zh) 一种轻质高强陶粒及制备方法
CN111470790B (zh) 一种吸音陶粒及其制备方法和应用
KR101982087B1 (ko) 바텀애쉬를 이용한 층간소음 방지보드 제조 방법 및 이에 의해 제조된 층간소음 방지보드
CN111499276A (zh) 一种高强水泥基复合纤维电磁屏蔽材料及其制备方法
CN107162533A (zh) 一种建筑用防渗抗压轻质生态砖及其制备方法
CN109678462A (zh) 一种超轻质淤泥陶粒及其制备方法
CN103664076A (zh) 抗裂水泥保温砂浆及其制备方法
CN104609817A (zh) 一种耐高温高韧性加气砖及其制备方法
CN107840643A (zh) 一种吸波型陶瓷基复合保温板及其制备方法
CN110526719B (zh) 一种低导热发泡陶瓷及其制备方法
CN107986757A (zh) 一种吸波型陶瓷基复合保温材料的制备方法及其产品
CN104193387B (zh) 一种吸波加气砖及其制备方法
CN105801149A (zh) 耐火瓷砖
CN104926288A (zh) 一种轻质陶瓷板的制备方法
CN107500726A (zh) 一种小孔径发泡陶瓷保温板及其制备方法
KR102129782B1 (ko) 발포 세라믹 볼을 이용한 패널의 제조방법 및 그 발포 세라믹 볼을 이용한 패널
CN104193240B (zh) 一种抗裂耐腐蚀加气砖及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504