CN107983179A - 一种多功能纳米纤维素复合分离滤膜的制备方法及其应用 - Google Patents

一种多功能纳米纤维素复合分离滤膜的制备方法及其应用 Download PDF

Info

Publication number
CN107983179A
CN107983179A CN201711242082.0A CN201711242082A CN107983179A CN 107983179 A CN107983179 A CN 107983179A CN 201711242082 A CN201711242082 A CN 201711242082A CN 107983179 A CN107983179 A CN 107983179A
Authority
CN
China
Prior art keywords
cellulose
filter membrane
compound
nano
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711242082.0A
Other languages
English (en)
Inventor
常春雨
詹慧
陶荣军
张俐娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201711242082.0A priority Critical patent/CN107983179A/zh
Publication of CN107983179A publication Critical patent/CN107983179A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开一种多功能纳米纤维素复合分离滤膜的制备方法及其应用。该方法是将凹凸棒加入到纳米纤维素晶体悬浮液中进行混合,制备纳米纤维素晶体/凹凸棒悬浮液。以普通滤膜为基底,将悬浮液减压过滤形成滤膜。该滤膜可以通过调控单位面积上纤维素的用量来控制其孔径大小、厚度以及水通量。根据滤膜超亲水和水中超疏油的浸润性特点,实现它在油水乳液、重金属及染料分离等方面的应用。本发明简单易行、成本低、无毒性。

Description

一种多功能纳米纤维素复合分离滤膜的制备方法及其应用
技术领域
本发明涉及一种多功能纳米纤维素复合分离滤膜制备方法及其分离应用,属于化学化工、高分子功能材料领域。
背景技术
含油废水是常见的环境污染源之一,严重威胁着人类的健康和社会的发展。无论是水处理还是油类回收都需要对含油废水进行有效分离。油类根据在含油废水中存在状态的不同分为浮油、分散油、乳化油。传统的油水分离方法如重力分离、离心分离、浮选法、粗粒化法只能有效分离浮油和分散油,而乳化油处于稳定状态且油滴粒径较小(小于10μm)很难被有效分离。常用的化学凝聚、电解、电磁吸附等处理乳化油的方法存在耗能高、耗时长、工艺复杂等问题。因此当务之急是寻找一种高效优质的分离方法。常见的分离膜是合成的高分子(如聚偏二氟乙烯、聚碳酸酯)滤膜和陶瓷膜。合成高分子分离膜通常需要使用有害的试剂和凝聚剂来实现相转变,制备工艺复杂,而陶瓷膜质量大,难处理,需要修饰改性,制备成本高。
纤维素纳米纤维具有高结晶度、高强度及高比表面积等特性,加之具有轻质、生物相容性及可降解性,其在造纸、建筑、食品、电子产品、医学等众多领域具有极大的应用前景。常见纤维素纳米纤维制备方法有机械法,化学法及生物处理法等。本应用中纳米纤维素制备过程能耗低,得率高,所得纳米纤维长径比大,在水中能稳定分散而不聚集。近年来,研究者发现黏土具有比表面积大的多孔结构,如凹凸棒,表面富含羟基结构且具有棒状微观形貌,可吸附重金属离子和染料分子。将凹凸棒与纳米纤维素混合操作简单、成本低且污染小。综合二者的优势,制得的多功能滤膜在油水乳液、重金属离子及染料分离方面有潜在应用价值。
发明内容
本发明所要解决的技术问题在于提供一种多功能纳米纤维素复合分离滤膜的制备方法和应用。
本发明所采用的技术方案如下:
一种多功能纳米纤维素复合分离滤膜,由纳米纤维素及凹凸棒复合而成。
优选地,所述的多功能纳米纤维素复合分离滤膜分离油水乳液时分离效率可达99.9%。
优选地,所述的多功能纳米纤维素复合分离滤膜分离重金属离子时分离效率可达88.7%。
优选地,所述的多功能纳米纤维素复合分离滤膜分离染料分子时分离效率可达97.6%。
优选地,所述复合分离滤膜中纳米纤维素含量为20wt%~80wt%,更优选地为50%。
优选地,所述滤膜的厚度为0.4~35.7μm。
优选地,所述纳米纤维素由以下方法制备而成:
步骤一:将纤维素分散于硫酸溶液中,在机械搅拌下进行反应6h;
步骤二:离心3~4次后,在沉淀物中加入蒸馏水稀释,对水透析至溶液呈中性,即得到纳米纤维素溶液。
优选地,所述纤维素的来源包括棉纤维素、木浆纤维素、海藻纤维素、海鞘纤维素和细菌纤维素。
上述的多功能纳米纤维素复合分离滤膜的制备方法,包括以下步骤:
(1)将纳米纤维素分散于水中,再加入凹凸棒,使纳米纤维素与凹凸棒均匀分散于水中,得到复合纳米纤维素水分散液;
(2)将复合纳米纤维素水分散液进行减压抽滤,干燥成膜。
优选地,作为减压抽滤基底的滤膜孔径为0.22μm。
上述的多功能纳米纤维素复合分离滤膜可用于油水乳液、重金属离子及染料的分离。
本发明为克服现有技术的缺点和不足,提供一种多功能纳米纤维素复合分离滤膜制备方法,其孔径可通过调节单位面积上复合的纳米纤维素水分散液用量来控制。该滤膜制备方法简单、成本低、可生物降解,能有效快速地分离油水乳液等微纳米颗粒、重金属离子及染料分子。
与已有技术相比较,本发明具有创新如下:
本发明以天然高分子纤维素为原料,可循环再生,具有生物降解性。使用复合的纳米纤维素水分散液,直接减压过滤成膜,制备过程简单、快速、方便、低成本、无污染。此外,通过调节单位面积上复合的纳米纤维素用量可以灵活地控制膜的孔径大小、厚度以及水通量,从而实现选择性分离尺寸不同的微纳米颗粒。同时,还可以实现重金属离子和染料分子等的分离去除。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制。
图1是多功能纳米纤维素复合分离滤膜的(a)实物图和(b)扫描电镜图;
图2是多功能纳米纤维素复合分离滤膜的(a)空气中水接触角和(b)水中油接触角(其中油的种类为己烷);
图3是多功能纳米纤维素复合分离滤膜分离乳液的实物前后对比图,其中(a)为分离微米级大豆油乳液的前后对比图(微米乳液分离前浑浊,分离后澄清),(b)为分离纳米级己烷乳液的前后对比图(纳米乳液分离前有丁达尔效应,分离后无丁达尔效应);
图4是多功能纳米纤维素复合分离滤膜分离乳液的前后对比图,其中(a)为分离微米级大豆油乳液的前后显微对比图,(b)为分离纳米级己烷乳液的前后粒径对比图;
图5是多功能纳米纤维素复合分离滤膜分离亚甲基蓝水溶液与己烷混合物(经油红染色)的前后对比图,其中(a)为分离前,(b)为分离后。
具体实施方式
以下实施例进一步说明本发明的内容,但不应该理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或者条件所作的修改或替换,均属于本发明的范围。若未特别声明,实施例中所用的技术手段为本领域人员所熟知的常规手段。
实施例1
将纳米纤维素与凹凸棒质量之比为1:1的复合的纳米纤维素水分散液,用孔径为0.22μm普通滤膜,抽滤制成0.34g m-2的纳米纤维素膜,所得。用该膜进行油水乳液分离测试,分离微米级大豆油乳液,大豆油与水质量比为1:99,该膜有利于破乳,有效截留乳化油滴,达到油水分离目的。该滤膜的分离效率为99.9%,流通量为140.8±17.2L·m-2·h-1·MPa-1
实施例2
将纳米纤维素与凹凸棒质量之比为1:1的复合的纳米纤维素水分散液,用孔径为0.22μm普通滤膜,抽滤制成1.36g m-2的纳米纤维素膜。用该膜进行油水乳液分离测试,分离纳米级大豆油乳液,首先配成大豆油与水的质量比为1:99的微米级乳液,稀释100倍后处理成纳米级大豆油乳液,该膜有利于破乳,有效截留乳化油滴,达到油水分离目的。该滤膜的分离效率为99.9%,流通量为1765.9±61.5L·m-2·h-1·MPa-1
实施例3
将纳米纤维素与凹凸棒质量之比为1:1的复合的纳米纤维素水分散液,用孔径为0.22μm普通滤膜,抽滤制成1.36g m-2的纳米纤维素膜。用该膜进行油水乳液分离测试,分离纳米级己烷乳液,首先配成己烷与水的质量比为1:99的微米级乳液,稀释15倍后处理成纳米级己烷乳液,该膜有利于破乳,有效截留乳化油滴,达到油水分离目的。该滤膜的分离效率为99.9%,流通量为2264.4±61.5L·m-2·h-1·MPa-1
实施例4
将纳米纤维素与凹凸棒质量之比为1:1的复合的纳米纤维素水分散液,用孔径为0.22μm普通滤膜,抽滤制成1.36g m-2的纳米纤维素膜。用该膜进行油水乳液分离测试,分离纳米级大豆油乳液,首先配成大豆油与水的质量比为1:99的微米级乳液,稀释100倍后处理成纳米级大豆油乳液,该膜有利于破乳,有效截留乳化油滴,达到油水分离目的。将该膜循环使用10次,该滤膜的分离效率维持在99.6%,流通量维持在1518.8L·m-2·h-1·MPa-1
实施例5
将纳米纤维素与凹凸棒质量之比为1:1的复合的纳米纤维素水分散液,用孔径为0.22μm普通滤膜,抽滤制成1.36g m-2的纳米纤维素膜。用该膜进行染料分离测试,分离亚甲基蓝水溶液与己烷(经油红染色)的混合物,该膜有利于破乳,有效截留油层,达到油水分离目的。与此同时,该膜可去除水溶液的亚甲基蓝,去除效率达到97.6%。
实施例6
将纳米纤维素与凹凸棒质量之比为1:1的复合的纳米纤维素水分散液,用孔径为0.22μm普通滤膜,抽滤制成1.36g m-2的纳米纤维素膜。用该膜进行染料分离测试,分离二价铜离子水溶液与己烷(经油红染色)的混合物,该膜有利于破乳,有效截留油层,达到油水分离目的。与此同时,该膜可去除水溶液的二价铜离子,去除效率达到88.7%。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种多功能纳米纤维素复合分离滤膜,其特征在于,由纳米纤维素及凹凸棒复合而成。
2.根据权利要求1所述的多功能纳米纤维素复合分离滤膜,其特征在于,所述的多功能纳米纤维素复合分离滤膜分离油水乳液时分离效率可达99.9%。
3.根据权利要求1所述的多功能纳米纤维素复合分离滤膜,其特征在于,所述复合分离滤膜中纳米纤维素含量为20wt%~80wt%。
4.根据权利要求1所述的多功能纳米纤维素复合分离滤膜,其特征在于,所述复合分离滤膜中纳米纤维素含量为50wt%。
5.根据权利要求1所述的多功能纳米纤维素复合分离滤膜,其特征在于,所述滤膜的厚度为0.4~35.7μm。
6.根据权利要求1所述的多功能纳米纤维素复合分离滤膜,其特征在于,所述纳米纤维素由以下方法制备而成:
(1)将纤维素分散于硫酸溶液中,在机械搅拌下进行反应6h;
(2)离心3~4次后,在沉淀物中加入蒸馏水稀释,对水透析至溶液呈中性,即得到纳米纤维素溶液。
7.根据权利要求6所述的多功能纳米纤维素复合分离滤膜,其特征在于,所述纤维素的来源包括棉纤维素、木浆纤维素、海藻纤维素、海鞘纤维素和细菌纤维素。
8.根据权利要求1-7任一项所述的多功能纳米纤维素复合分离滤膜的制备方法,其特征在于,包括以下步骤:
(1)将纳米纤维素分散于水中,再加入凹凸棒,使纳米纤维素与凹凸棒均匀分散于水中,得到复合纳米纤维素水分散液;
(2)将复合纳米纤维素水分散液进行减压抽滤,干燥成膜。
9.根据权利要求8所述的多功能纳米纤维素复合分离滤膜的制备方法,其特征在于,作为减压抽滤基底的滤膜孔径为0.22μm。
10.根据权利要求1-7任一项所述的多功能纳米纤维素复合分离滤膜的应用,其特征在于,用于油水乳液、重金属离子及染料的分离。
CN201711242082.0A 2017-11-30 2017-11-30 一种多功能纳米纤维素复合分离滤膜的制备方法及其应用 Pending CN107983179A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711242082.0A CN107983179A (zh) 2017-11-30 2017-11-30 一种多功能纳米纤维素复合分离滤膜的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711242082.0A CN107983179A (zh) 2017-11-30 2017-11-30 一种多功能纳米纤维素复合分离滤膜的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN107983179A true CN107983179A (zh) 2018-05-04

Family

ID=62034862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711242082.0A Pending CN107983179A (zh) 2017-11-30 2017-11-30 一种多功能纳米纤维素复合分离滤膜的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107983179A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701396A (zh) * 2018-12-25 2019-05-03 天津科技大学 一种滤除染料分子的纳米纤维晶滤膜的制备方法
CN110302564A (zh) * 2019-06-28 2019-10-08 陕西科技大学 一种基于纳米纤维素/瓜尔胶复合水凝胶的油水分离材料及其制备方法和应用
CN110585934A (zh) * 2019-08-01 2019-12-20 华南农业大学 一种纳米孔表层/微米孔支撑层的复合滤膜及其制备方法和应用
CN112657338A (zh) * 2020-12-17 2021-04-16 江苏羟源环能科技有限公司 一种柔性防垢复合过滤膜及其制备方法
CN113101816A (zh) * 2021-03-16 2021-07-13 武汉大学 一种自抗菌银纳米粒子与纤维素纳米晶体复合滤膜的制备方法及其应用
CN113856244A (zh) * 2021-10-21 2021-12-31 国网浙江省电力有限公司检修分公司 一种具有梯度结构的多孔复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105126641A (zh) * 2015-08-04 2015-12-09 东华大学 一种柔性凹凸棒土膜及其制备方法
CN105536567A (zh) * 2015-12-25 2016-05-04 武汉大学 一种海鞘纳米纤维素超滤膜及其制备方法和应用
CN107321197A (zh) * 2017-08-18 2017-11-07 中国科学院宁波材料技术与工程研究所 一种复合纳滤膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105126641A (zh) * 2015-08-04 2015-12-09 东华大学 一种柔性凹凸棒土膜及其制备方法
CN105536567A (zh) * 2015-12-25 2016-05-04 武汉大学 一种海鞘纳米纤维素超滤膜及其制备方法和应用
CN107321197A (zh) * 2017-08-18 2017-11-07 中国科学院宁波材料技术与工程研究所 一种复合纳滤膜及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
段久芳: "《天然高分子材料》", 30 September 2016, 华中科技大学出版社 *
熊道陵等: "《电镀污泥中有价金属提取技术》", 31 October 2013, 冶金工业出版社 *
詹慧等: "纤维素纳米晶体/凹凸棒复合膜的可控制备及其油水乳液分离应用", 《中国化学会2017全国高分子学术论文报告会摘要集——主题K:高性能高分子》 *
赵韩等: "《合肥工业大学2006年优秀硕士学位论文摘要集》", 31 October 2007, 合肥工业大学出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701396A (zh) * 2018-12-25 2019-05-03 天津科技大学 一种滤除染料分子的纳米纤维晶滤膜的制备方法
CN110302564A (zh) * 2019-06-28 2019-10-08 陕西科技大学 一种基于纳米纤维素/瓜尔胶复合水凝胶的油水分离材料及其制备方法和应用
CN110585934A (zh) * 2019-08-01 2019-12-20 华南农业大学 一种纳米孔表层/微米孔支撑层的复合滤膜及其制备方法和应用
CN112657338A (zh) * 2020-12-17 2021-04-16 江苏羟源环能科技有限公司 一种柔性防垢复合过滤膜及其制备方法
CN113101816A (zh) * 2021-03-16 2021-07-13 武汉大学 一种自抗菌银纳米粒子与纤维素纳米晶体复合滤膜的制备方法及其应用
CN113101816B (zh) * 2021-03-16 2022-08-30 武汉大学 一种自抗菌银纳米粒子与纤维素纳米晶体复合滤膜的制备方法及其应用
CN113856244A (zh) * 2021-10-21 2021-12-31 国网浙江省电力有限公司检修分公司 一种具有梯度结构的多孔复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107983179A (zh) 一种多功能纳米纤维素复合分离滤膜的制备方法及其应用
Yan et al. Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation
Samal et al. Application of saponin biosurfactant and its recovery in the MEUF process for removal of methyl violet from wastewater
CN105220362B (zh) 一种β‑环糊精基纳米纤维膜及其制备方法以及在染料吸附、分离中的应用
CN106731012B (zh) 一种超浸润二氧化钛纳米棒多孔膜的制备及其在乳液分离中的应用
Cheng et al. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption
Hu et al. Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions
CN109289544B (zh) 一种制备二维蒙脱石/纤维素复合过滤膜的方法
Hu et al. Flotation-based dye removal system: Sweet potato protein fabricated from agro-industrial waste as a collector and frother
CN106823825A (zh) 基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用
CN110354696A (zh) 一种柔性高通量氧化石墨烯/二氧化硅复合膜及其制备方法
CN108516607A (zh) 一种油水乳液分离方法及用于油水乳液分离的滤膜
CN104831415A (zh) 一种具有油水乳液分离能力的多孔纤维膜及其制备方法
CN106861450B (zh) 一种生物质乳液分离膜的制备及在选择性乳液分离中的应用
CN111303643B (zh) 一种核壳结构的SiO2@石蜡纳米颗粒及其制备方法
CN105536567B (zh) 一种海鞘纳米纤维素超滤膜及其制备方法和应用
Francis et al. Fabrication and characterization of superhydrophilic graphene-based electrospun membranes for efficient oil-water separation
Cifuentes-Cabezas et al. Use of ultrafiltration ceramic membranes as a first step treatment for olive oil washing wastewater
CN110467301A (zh) 一种页岩气压裂返排液处理方法及系统装置
Li et al. Multifunctional sodium alginate/chitosan-modified graphene oxide reinforced membrane for simultaneous removal of nanoplastics, emulsified oil, and dyes in water
Sun et al. New insight in algal cell adhesion and cake layer evolution in algal-related membrane processes: Size-fractioned particles, initial foulant seeds and EDEM simulation
CN113457474A (zh) 一种纳米纤维膜材料、制备方法及其应用
CN103450494A (zh) 一种应用水溶液析出的纳米纤维素薄膜的制备方法
CN111233083B (zh) 一种磁性Janus乳液加速油溶性物质吸附及分离的方法
CN102731705B (zh) 高纯球形全孔聚苯乙烯基粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504