CN107970964A - 碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用 - Google Patents

碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用 Download PDF

Info

Publication number
CN107970964A
CN107970964A CN201610920410.7A CN201610920410A CN107970964A CN 107970964 A CN107970964 A CN 107970964A CN 201610920410 A CN201610920410 A CN 201610920410A CN 107970964 A CN107970964 A CN 107970964A
Authority
CN
China
Prior art keywords
silver
composite nano
nano materials
preparation
carbon nitrence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610920410.7A
Other languages
English (en)
Inventor
唐国钢
唐华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang College
Original Assignee
Zhenjiang College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang College filed Critical Zhenjiang College
Priority to CN201610920410.7A priority Critical patent/CN107970964A/zh
Publication of CN107970964A publication Critical patent/CN107970964A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用,复合纳米材料含有5wt%~30wt%的g‑C3N4,65%~90%的AgBr以及余量的Ag,Ag/AgBr附着在g‑C3N4片层表面。制备方法是:将尿素与三聚氰胺高温固相烧结制得g‑C3N4片状结构;将g‑C3N4纳米片分散到有机溶剂中,加入银源、溴源及表面活性剂,通过溶液沉淀反应,在避光条件下的合成,所制得石墨状碳氮烯/银/溴化银复合光催化剂产率高,并在光催化、气敏、污水处理等领域中具有重要的应用,有望用于大规模的工业生产。

Description

碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用
技术领域
本发明涉及纳米材料领域,具体地,是涉及一种碳氮烯/银/溴化银复合光催化剂、其制备方法及其应用。
背景技术
可见光条件下,高光催化活性的AgBr能被还原成单质银,同时表面形成的等离子体使得其光催化稳定性得以提高。但大量单质Ag的消耗,使得光催化材料的成本不断增加,限制了其作为光催化剂的发展。因此如何在降低成本的同时继续提高光催化活性和稳定性成为AgBr光催化剂的研究重点。
新型石墨相氮化碳(g-C3N4)是一种由非金属碳氮组成的半导体聚合物,其结构与石墨烯类似,具有二维平面结构。自1922年提出C3N4这一概念以来,C3N4被认为可能具有α相、β相、立方相、准立方相和类石墨相(g-C3N4)五种结构。进一步理论研究表明g-C3N4是室温下最稳定存在的同素异形体。g-C3N4具有典型的半导体特性,其禁带宽度约为2.7eV,能吸收小于470nm的紫外-可见光。因其独特的半导体能带结构、优异的化学稳定性、易于调控以及特殊的二维结构等特性,将g-C3N4与其他功能半导体组合,结合两者的优势,可能会制备出一些具有协同效应的材料。
发明内容
针对现有技术的不足,本发明的目的之一在于提供碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用,原料的成本低廉、工艺简单、产物的产率高及具有较高的光催化效率。
上述目的是通过如下技术方案实现的:
一种碳氮烯/银/溴化银(g-C3N4/Ag/AgBr)复合纳米材料,其主要成份g-C3N4的质量百分含量为5%~30%,AgBr的质量百分含量为65%~90%,单质Ag含量为0.5%~5%。Ag/AgBr呈现100-200nm大小的黑色球形颗粒,附着在g-C3N4片层表面。
较佳地,g-C3N4的质量百分含量为5%~10%,单质Ag含量为0.5%~5%,余量为AgBr。
一种碳氮烯/银/溴化银复合纳米材料的制备方法,包括如下步骤:
步骤(1)、片层结构的g-C3N4的合成:将尿素与三聚氰胺的混合物置于石英坩埚内,在管式炉内400℃~650℃固相烧结0.5~4h制得g-C3N4片状结构,升温速率为5/min;
尿素与三聚氰胺的混合物,其摩尔比为1:0.5-1:6,优选1:1;
固相烧结,较佳在580℃,保温1h。
步骤(2)碳氮烯/银/溴化银复合光催化剂的合成:在搅拌及超声波的条件下,将步骤(1)制备所得g-C3N4纳米片分散到去有机溶剂中,再将银源、溴源及表面活性剂加入反应液中,然后在室温条件下,直接通过溶液沉淀反应的合成。
步骤(2)的反应在避光条件下完成。
较佳地,溴源溶解到有机溶剂中后,以滴加的方式,加入到碳氮烯/银源的有机溶剂溶液中;
所述的银源为AgNO3
溴源为无机盐,如KBr、NaBr、(NH4)Br,或有机溴化物,如十六烷基三甲基溴化铵(CTAB);或者溴源为无机盐与有机溴化物的混合物;
有机溶剂为二甲亚砜(DMSO)、乙醇或者乙二醇,溶质与溶剂的比例是25-150/100mL;
表面活性剂为聚乙烯吡咯烷酮(PVP)、十六烷基三甲基溴化铵(CTAB)或者泊洛沙姆(F-127)。
单质银由AgBr在光照条件下发生光化学反应转化为单质银而获得,因此单质银的含量可以通过调整光照时间来控制。
碳氮烯/银/溴化银复合纳米材料作为光催化剂,用于有机废水处理、空气中有机污染物的降解。
本发明制备获得碳氮烯/银/溴化银复合光催化剂,工艺简易,产物具有高光催化性能。相较于纯溴化银,光催化能力提升10-20%,降解时间为10-15min,稳定性也有所提高,5次循环后,RhB的降解率仍能达到85%,因此在光催化、气敏、污水处理等领域中具有重要的应用,有望用于大规模的工业生产。
本发明所采用原料成本价廉,生产工艺简单易控,产物得率高,适合大规模的工业生产。
附图说明
图1为本发明制得的碳氮烯/银/溴化银复合光催化剂的透射电镜图。从图1a中可以看到,高比表面积g-C3N4为典型的薄片带孔状结构,呈现平铺、折叠和卷曲等形态。Ag/AgBr呈现100-200nm大小的黑色球形颗粒,较好的附着在g-C3N4片层表面(图1b)。
图2为本发明制得的碳氮烯/银/溴化银复合光催化剂的XRD图谱和XPS全谱图。图2a描述了Ag/AgBr以及碳氮烯/银/溴化银复合光催化材料的晶体结构和晶相组成。图中所示的(111),(200),(220),(311),(222),(400),(420)晶面所代表的衍射峰与AgBr标准卡片(JCPDS Card No.06-0438)的特征峰位置基本重合,证明了复合光催化材料中AgBr颗粒的存在,g-C3N4的引入并没有改变AgBr的晶体结构。然而在XRD图谱中未能找到g-C3N4和单质银相对应的衍射峰出现,这是由于催化剂中过低的占有比而超出X射线衍射分析的测试范围所导致的。为证明这两种物质的存在,我们对样品进行XPS测试,其测试结果如图2b所示。XPS全谱图证明了复合样品中Ag、Br、C、N四种元素的存在,少量的O峰可能是由于实验测试过程中CO2吸收。
图3为本发明制得的碳氮烯/银/溴化银复合光催化剂对不同染料的光催化降解曲线。g-C3N4的添加量分别为0、5%、10%、15%、20%、30%,其合成产物分别定义为C-0,C-1,C-2,C-3,C-4,C-5。由图可知,在可见光照射下,10min内纯Ag/AgBr的光催化降解效率在65%左右(C-0),当g-C3N4添加量从25mg逐步增加到150mg时(C-1~C-5),其光催化降解效率分别是:75%,80%,79%,75%,60%,呈现先增后降的趋势。这是因为少量的g-C3N4将促进光生电子对的有效分离,加快电子转移,缩小Ag/AgBr颗粒大小,增加反应接触面,从而提高光催化性能。但当g-C3N4过量时,Ag/AgBr颗粒被包裹团聚,因而其光催化性能受到限制。
具体实施方式
以下通过具体实施方式进一步描述本发明,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。
本发明所采用的试剂均为商业产品,可经市售获得。
实施例1:
(1)将10g尿素与三聚氰胺混合物(摩尔比1:1)加入坩埚中,接着再马弗炉中以580℃焙烧1h,升温速率为5/min。将合成的黄色粉末用去离子水和无水乙醇反复洗涤数次,最后在真空条件下60℃干燥12h得到g-C3N4片层结构;
(2)将50mg步骤(1)所制备的g-C3N4纳米片溶解在100mL二甲亚砜(DMSO)中,同时加入0.1g PVP、1.69g AgNO3,超声分散至少2h;
(3)将1.03g NaBr溶于20mL DMSO所形成溶液逐滴滴加到步骤(2)的溶液中并充分搅拌1h后用去离子水和乙醇多次洗涤离心,60℃烘干,再经50W高压汞灯照射1min得碳氮烯/银/溴化银(定义为C1),产率为98%。
实施例2:
(1)将称取的10g尿素与三聚氰胺混合物(摩尔比1:0.5)加入坩埚中,接着再马弗炉中以400℃焙烧1h,升温速率为5/min。将合成的黄色粉末用去离子水和无水乙醇反复洗涤数次,最后在真空条件下60℃干燥12h得到g-C3N4片层结构;
(2)将75mg步骤(1)所制备的g-C3N4溶解在100mL乙醇中,同时加入0.2g F-127、1.69g AgNO3,超声分散至少2h;
(3)将1.31g KBr溶于20mL乙醇所形成溶液逐滴滴加到步骤(2)的溶液中并充分搅拌1h后用去离子水和乙醇多次洗涤离心,60℃烘干,再经50W高压汞灯照射2min得碳氮烯/银/溴化银(定义为C2),产率为95%。
实施例3:
(1)将称取的10g尿素与三聚氰胺混合物(摩尔比1:6)加入坩埚中,接着再马弗炉中以650℃焙烧1h,升温速率为5/min。将合成的黄色粉末用去离子水和无水乙醇反复洗涤数次,最后在真空条件下60℃干燥12h得到g-C3N4片层结构;
(2)将150mg步骤(1)所制备的g-C3N4溶解在100mL乙二醇中,同时加入0.1g CTAB、1.69g AgNO3,超声分散至少2h;将0.8g NH4Br溶于20mL乙二醇中,形成溶液逐滴滴加到步骤(2)的溶液中并充分搅拌1h后用去离子水和乙醇多次洗涤离心,60℃烘干,再经50W高压汞灯照射5min,得碳氮烯/银/溴化银,在(定义为C5),产率为97%。

Claims (9)

1.一种碳氮烯/银/溴化银复合纳米材料,其特征在于,g-C3N4的质量百分含量为5%~30%,AgBr的质量百分含量为65%~90%,单质Ag含量为0.5%~5%;Ag/AgBr呈现100-200nm大小的黑色球形颗粒,附着在g-C3N4片层表面。
2.根据权利要求1所述的碳氮烯/银/溴化银复合纳米材料,其特征在于g-C3N4的质量百分含量为5%~10%,单质Ag含量为0.5%~5%,余量为AgBr。
3.权利要求1或2所述的碳氮烯/银/溴化银复合纳米材料的制备方法,其特征在于,包括如下步骤:
步骤(1)、片层结构的g-C3N4的合成:将尿素与三聚氰胺的混合物置于石英坩埚内,在管式炉内400℃~650℃固相烧结0.5~4h制得g-C3N4片状结构,升温速率为5/min;尿素与三聚氰胺的摩尔比为1:0.5-1:6;
步骤(2)、碳氮烯/银/溴化银复合材料的合成:在搅拌及超声波的条件下,将步骤(1)制备所得的g-C3N4纳米片分散到有机溶剂中,再将银源、溴源及表面活性剂加入反应液中,然后在室温条件下,直接通过溶液沉淀反应的合成,步骤(2)的反应在避光条件下完成。
4.权利要求3所述的碳氮烯/银/溴化银复合纳米材料的制备方法,其特征在于,步骤(1)中,尿素与三聚氰胺的摩尔比为1:1;固相烧结是在580℃保温1h。
5.权利要求3所述的碳氮烯/银/溴化银复合纳米材料的制备方法,其特征在于,步骤(2)中所述的银源为AgNO3
溴源为无机盐、有机溴化物,或者两者的混合物;
有机溶剂为二甲亚砜、乙醇或者乙二醇,溶质与溶剂的比例是25-150/100mL;
表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵或者泊洛沙姆。
6.权利要求5所述的碳氮烯/银/溴化银复合纳米材料的制备方法,其特征在于,步骤(2)中所述的无机盐为KBr、NaBr或(NH4)Br;所述的有机溴化物为十六烷基三甲基溴化铵。
7.权利要求3所述的碳氮烯/银/溴化银复合纳米材料的制备方法,其特征在于,步骤(2)中溴源溶解到有机溶剂中后,以滴加的方式,加入到碳氮烯/银源的有机溶剂溶液中。
8.权利要求3所述的碳氮烯/银/溴化银复合纳米材料的制备方法,其特征在于单质银的含量通过调整光照时间来控制。
9.权利要求1所述的碳氮烯/银/溴化银复合纳米材料作为光催化剂,用于有机废水处理、空气中有机污染物的降解。
CN201610920410.7A 2016-10-21 2016-10-21 碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用 Pending CN107970964A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610920410.7A CN107970964A (zh) 2016-10-21 2016-10-21 碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610920410.7A CN107970964A (zh) 2016-10-21 2016-10-21 碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用

Publications (1)

Publication Number Publication Date
CN107970964A true CN107970964A (zh) 2018-05-01

Family

ID=62004648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610920410.7A Pending CN107970964A (zh) 2016-10-21 2016-10-21 碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107970964A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745415A (zh) * 2018-05-04 2018-11-06 江苏大学 一种聚邻苯二胺修饰AgCl/g-C3N4复合光催化剂及其制备与应用
CN109651634A (zh) * 2018-12-24 2019-04-19 中原工学院 一种层状锚定的仿生薄膜的制备方法
CN111420695A (zh) * 2020-04-22 2020-07-17 昆明理工大学 一种可见光降解有机污染物的复合光催化剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102836734A (zh) * 2012-09-20 2012-12-26 华东理工大学 一种制备AgXg-C3N4复合光催化材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102836734A (zh) * 2012-09-20 2012-12-26 华东理工大学 一种制备AgXg-C3N4复合光催化材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵一杰: "卤化银的负载及其增强的可见光催化活性机理研究", 《中国优秀硕士学位论文全文数据库-工程科技I辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745415A (zh) * 2018-05-04 2018-11-06 江苏大学 一种聚邻苯二胺修饰AgCl/g-C3N4复合光催化剂及其制备与应用
CN108745415B (zh) * 2018-05-04 2021-05-25 江苏大学 一种聚邻苯二胺修饰AgCl/g-C3N4复合光催化剂及其制备与应用
CN109651634A (zh) * 2018-12-24 2019-04-19 中原工学院 一种层状锚定的仿生薄膜的制备方法
CN109651634B (zh) * 2018-12-24 2021-04-02 中原工学院 一种层状锚定的仿生薄膜的制备方法
CN111420695A (zh) * 2020-04-22 2020-07-17 昆明理工大学 一种可见光降解有机污染物的复合光催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Samsudin et al. Photocatalytic degradation of phenol wastewater over Z-scheme g-C3N4/CNT/BiVO4 heterostructure photocatalyst under solar light irradiation
Guo et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline
Cui et al. Fabrication of dual Z-scheme MIL-53 (Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance
Ye et al. Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
Natarajan et al. Photocatalytic efficiency of bismuth oxyhalide (Br, Cl and I) nanoplates for RhB dye degradation under LED irradiation
Zhang et al. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position
Xie et al. Carbon nitride nanowires/nanofibers: A novel template-free synthesis from a cyanuric chloride–melamine precursor towards enhanced adsorption and visible-light photocatalytic performance
Yang et al. Heterostructured TiO2/WO3 porous microspheres: preparation, characterization and photocatalytic properties
Wang et al. Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation
Liu et al. Photocatalytic perfermance of sandwich-like BiVO4 sheets by microwave assisted synthesis
CN106391089B (zh) 一种高效降解对硝基苯酚的氮化碳负载氧化铁光催化剂
Wang et al. Polydopamine mediated modification of manganese oxide on melamine sponge for photothermocatalysis of gaseous formaldehyde
CN105597803B (zh) 一种介孔氮化碳光催化剂及其制备方法
Zhao et al. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: excellent visible light driven photocatalytic activity and mechanism study
Zhou et al. Ultrahigh-performance visible-light photodegradation enabled by direct Z-scheme AgI/(Na, F)–C3N4 composites
Cui et al. Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation
Wang et al. Enhanced photodegradation of acetaminophen over Sr@ TiO2/UiO-66-NH2 heterostructures under solar light irradiation
Huang et al. Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property
Lin et al. Preparation of BiVO4/Bi2WO6/multi-walled carbon nanotube nanocomposites for enchaning photocatalytic performance
CN107970964A (zh) 碳氮烯/银/溴化银复合纳米材料、其制备方法及其应用
Grodziuk et al. Photocatalytic activity of nanostructured composites based on layered niobates and C3N4 in the hydrogen evolution reaction from electron donor solutions under visible light
Khasevani et al. Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst
Ren et al. The α-Fe 2 O 3/g-C 3 N 4 composite as an efficient heterogeneous catalyst with combined Fenton and photocatalytic effects
Min et al. In-situ fabrication of Ag/g-C3N4 composite materials with improved photocatalytic activity by coordination-driven assembly of precursors
Mohamed et al. Synergistic impact of two-dimensional Ag2O/Co3O4 nanocomposites for improved photocatalytic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180501

RJ01 Rejection of invention patent application after publication