CN107964021B - 一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与应用 - Google Patents

一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与应用 Download PDF

Info

Publication number
CN107964021B
CN107964021B CN201711244667.6A CN201711244667A CN107964021B CN 107964021 B CN107964021 B CN 107964021B CN 201711244667 A CN201711244667 A CN 201711244667A CN 107964021 B CN107964021 B CN 107964021B
Authority
CN
China
Prior art keywords
compound
photoelectric
material containing
nitrogen bonds
containing boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711244667.6A
Other languages
English (en)
Other versions
CN107964021A (zh
Inventor
黄飞
王仕亮
刘熙
曹镛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201711244667.6A priority Critical patent/CN107964021B/zh
Publication of CN107964021A publication Critical patent/CN107964021A/zh
Application granted granted Critical
Publication of CN107964021B publication Critical patent/CN107964021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与应用。本发明的含硼氮键的苝酰亚胺类光电小分子材料的LUMO能级为‑3.75V,对太阳光谱有较宽的吸收,硼氮键的引入使材料具有双极型的特性,同时材料还具有较好的电子迁移率和空穴迁移率,使材料具有良好的光电性能,能够作为发光层或活性层,在有机发光二极管、有机场效应管和有机太阳能电池中具有广阔的应用前景。本发明制备含硼氮键的苝酰亚胺类光电小分子材料的合成方法简便,工艺流程短,有利于工业化生产。

Description

一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与 应用
技术领域
本发明属于光电材料与器件技术领域,具体涉及一种含硼氮键的苝酰亚胺 类光电小分子材料及其制备方法与应用。
背景技术
有机太阳能电池凭借质量轻、成本低、柔性可卷曲和能够应用于大面积加 工如卷对卷等优点,在近些年来吸引了广泛的关注,被认为是众多新型能源技 术中非常有潜力的技术之一。有机太阳能电池的活性层材料在决定电池的光电 能量转换效率中起到了非常关键的作用。活性层材料按照传输载流子的种类来 分可以分为电子传输材料和空穴传输材料,相应地也被称作电子受体和电子给 体。
近些年来关于活性层当中电子给体材料有广泛的研究,相对而言电子传输 材料方面的研究较少。苝酰亚胺类材料是一类较为理想的电子受体材料,具有 诸如良好的热稳定性、光稳定性、化学稳定性、高的电子亲合势与较强的得电 子能力等优点。硼氮键的引入可以使苝酰亚胺类材料具有双极型的特性,同时 具有较高的电子和空穴迁移率。为获得有机太阳能电池的高的能量转换效率, 需要电子传输材料和空穴传输材料对太阳光有高效的吸收和较高的载流子迁移 率,同时二者之间有较好的能级匹配。基于此,开发新的基于苝酰亚胺的应用 于有机光电器件如有机太阳能电池的小分子受体材料具有非常重要的意义。
发明内容
本发明的目的在于针对现有的应用于有机太阳能电池的小分子受体材料开 发的不足,提供了一种含硼氮键的苝酰亚胺类光电小分子材料,该材料具有典 型的光伏器件性能,能为电池器件提供较高的开路电压以及高的能量转换效率。
本发明的目的还在于提供所述的一种含硼氮键的苝酰亚胺类光电小分子材 料的制备方法。
本发明的另一目的还在于提供所述的一种含硼氮键的苝酰亚胺类光电小分 子材料的应用。
本发明的目的通过如下技术方案实现。
一种含硼氮键的苝酰亚胺类光电小分子材料,化学结构式如下所示:
Figure BDA0001490514550000021
式中,R1、R2、R3为氢原子,或者为碳原子数1~24的直链、支链或环状烷 基链,或者为其中一个以上碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、 羰基、羧基、酯基、氰基或硝基取代的碳原子数1~24的直链、支链或环状烷基 链,或者为其中一个以上氢原子被卤素原子、氧原子、烯基、炔基、芳基、羟 基、氨基、羰基、羧基、氨基正离子、酯基、氰基或硝基取代的碳原子数1~24 的直链、支链或环状烷基链;
Ar为以下结构中的一种以上:
Figure BDA0001490514550000031
其中,R为氢原子,或为碳原子数1~24的直链、支链或环状烷基链,或为 一个以上碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、硝 基、苯基或噻吩基取代的碳原子数1~24的直链、支链或环状烷基链,或为一个 以上氢原子被卤素原子取代的碳原子数1~24的直链、支链或环状烷基链。
进一步地,R1、R2、R3、R为碳原子数1~24的直链、支链或环状烷基链。
制备上述任一项所述的一种含硼氮键的苝酰亚胺类光电小分子材料的方 法,反应方程式如下所示:
Figure BDA0001490514550000032
Figure BDA0001490514550000041
具体包括如下步骤:
(1)将化合物1与含R2的胺溶于四氢呋喃中,常温下8~12小时,得到化 合物2;
(2)将化合物2与含R3的二氯硼烷溶于甲苯中,加入催化剂三乙基胺, 100~150℃下反应8~12小时,得到化合物3;
(3)将化合物3与以Ar桥接的双三甲基锡溶于甲苯中,加入催化剂四(三 苯基膦)钯,120~150℃反应8~12小时,得到目标产物,即所述含硼氮键的苝 酰亚胺类光电小分子材料。
进一步地,步骤(1)中,所述化合物1与含R2的胺的摩尔比为1:1~1: 1.5。
进一步地,步骤(2)中,所述化合物2与含R3的二氯硼烷的摩尔比为1:0.8~1: 1。
进一步地,步骤(2)中,所述三乙基胺的用量为化合物2的0.2%~2%。
进一步地,步骤(3)中,所述化合物3与以Ar桥接的双三甲基锡的摩尔 比为2:0.8~2:1。
进一步地,步骤(3)中,所述四(三苯基膦)钯的用量为化合物3的3%~8%。
上述任一项所述的一种含硼氮键的苝酰亚胺类光电小分子材料的应用,应 用于制备有机发光二极管器件的发光层、制备有机场效应晶体管中的半导体活 性层或制备有机太阳能电池的活性层。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明的含硼氮键的苝酰亚胺类光电小分子材料中,硼氮键的引入使 苝酰亚胺类材料具有双极型的特性,同时具有较高的电子和空穴迁移率;
(2)本发明的含硼氮键的苝酰亚胺类光电小分子材料的LUMO能级为 -3.75V,对太阳光谱有较宽的吸收,在有机发光二极管、有机场效应管和有机太 阳能电池中具有广阔的应用前景;
(3)本发明制备的含硼氮键的苝酰亚胺类光电小分子材料的合成方法简 便,工艺流程短,有利于工业化生产。
附图说明
图1为实施例1制备的含硼氮键的苝酰亚胺类光电小分子材料PDIBN-T的 1H-NMR谱图;
图2为实施例1制备的含硼氮键的苝酰亚胺类光电小分子材料在氯苯溶液 中和薄膜状态下的吸收谱图;
图3为实施例1制备的含硼氮键的苝酰亚胺类光电小分子材料的循环伏安 图谱;
图4为实施例3制备的电池器件的电流-电压曲线(J-V曲线)图;
图5为实施例4制备的电池器件的电流-电压曲线(J-V曲线)图。
具体实施方式
以下结合具体实施例及附图对本发明的技术方案作进一步详细的描述,但 本发明的保护范围和具体实施方式不限于此。
实施例1
含硼氮键的苝酰亚胺类光电小分子材料PDIBN-T的制备,反应方程式如下 所示:
Figure BDA0001490514550000061
(1)在500mL的三颈瓶中,氮气保护下,加入化合物M1(856mg,0.1mmol) 以及丙胺(59mg,0.1mmol),再加入15mL四氢呋喃作溶剂,室温下反应12 小时,通过点板确定反应进程;反应结束后,将反应混合物放入单口瓶直接进 行旋蒸,经柱色谱(二氯甲烷)提纯,得到黄橘墨绿色固体700mg,即化合物 M2,产率:80%;
(2)在500mL的三颈瓶中,氮气保护下,加入化合物M2(292mg,0.35mmol) 以及二氯(苯基)硼烷(0.4ml);再加入1mL的催化剂三乙基胺和30mL的溶 剂甲苯,滴加完成后开始升温,加热至100℃反应12小时;反应结束后,水洗 萃取,经柱色谱(二氯甲烷)提纯,最终得到红色色固体280mg,即化合物M3, 产率:86%;
(3)在500mL的三颈瓶中,氮气保护下,加入化合物M3(230mg,0.25mm ol)以及2,5-双三甲基锡噻吩(47.5mg,0.12mmol),再加入催化剂四(三苯基 膦)钯(7mg)和溶剂甲苯(10mL),加完后开始升温,加热至120℃反应12 小时;反应结束后,用二氯甲烷(DCM)萃取,同时拌入硅胶粉,将粗产物用 硅胶柱进行提纯(石油醚:二氯甲烷体积比为2:5);最后用甲醇和四氢呋喃进 行重结晶,最终得到暗红色固体210mg,即化合物PDIBN-T,产率:75%。
制备的含硼氮键的苝酰亚胺类光电小分子材料PDIBN-T的1H-NMR谱图如 图1所示,1H NMR:(500MHz,CDCl3)δ9.27–9.08(m,8H),8.65(s,2H),7.71– 7.54(m,10H),7.51(s,2H),5.22(s,4H),4.56(s,4H),2.25(d,J=8.6Hz,8H),2.07 –1.98(m,4H),1.87(d,J=14.0Hz,8H),1.54–1.03(m,44H),0.96(t,J=7.2Hz, 6H),0.90–0.41(m,25H)。
制备的小分子材料PDIBN-T的紫外-可见光吸收光谱图如图2所示,紫外- 可见光吸收光谱在Shimadzu UV-3600紫外分析仪上测量。由图2可以看出,小 分子材料PDTBN-T在可见光区域具有较宽的吸收。在氯苯(CB)中的最大吸 收峰在542nm,同时也可以看出,在溶液中的吸收与在薄膜状态下没有明显差 别。
制备的小分子材料PDIBN-T的电化学曲线如图3所示,由图3可以看出, 小分子材料PDIBN-T具有较深的HOMO能级(HOMO能级为最高占据分子轨 道),HOMO值和LUMO值都比较理想,表现出较宽的光学带隙,有利于提高 用于制作太阳能电池器件时的开路电压,其能级如下表1所示。
表1小分子材料PDIBN-T的分子轨道能级和光学带隙数据
Figure BDA0001490514550000081
实施例2
Figure BDA0001490514550000082
氮气保护下,在500mL的三颈瓶中,加入化合物M3(230mg,0.25mmol) 以及5,5'-双(三甲基锡)-2,2'-二噻吩(58mg,0.12mmol),再加入甲苯(10mL) 作溶剂和四(三苯基膦)钯(9mg)作催化剂,加完后开始升温,加热至130℃ 反应12小时。反应结束后,用二氯甲烷(DCM)萃取,同时拌入硅胶粉,将粗 产物用硅胶柱进行提纯(石油醚:二氯甲烷体积比为2:5)。最后用甲醇和四氢 呋喃进行重结晶,最终得到深红色固体216mg,即小分子材料PDIBN-DT,产 率:72%。1H NMR:(500MHz,CDCl3)δ9.27–9.08(m,8H),8.65(s,2H),7.71– 7.54(m,10H),7.51(s,2H),7.32(s,2H),5.22(s,4H),4.56(s,4H),2.25(d,J=8.6 Hz,8H),2.07–1.98(m,4H),1.87(d,J=14.0Hz,8H),1.54–1.03(m,44H),0.96(t, J=7.2Hz,6H),0.90–0.41(m,25H)。
实施例3
电池器件的制备
用PBDB-T(聚[[4,8-二[5-(2-乙基己基)-2-噻吩基]苯并[1,2-b:4,5-b']二 噻吩-2,6-二基]-2,5-噻吩二基[5,7-双(2-乙基己基)-4,8-二氧代-4H,8H-苯并 [1,2-c:4,5-b']二噻吩-1,3-二基]])与实施例1制备的小分子材料PDIBN-T 共混作为电池活性层材料制作有机太阳能电池,其中的活性层材料给体PBDB-T 与受体PDIBN-T的比例为1:1.5(w/w)。
正装器件:ITO玻璃(氧化铟锡导电玻璃)经过超声波清洗后,用氧-Plasma 处理,先在ITO上用PEDOT:PSS(聚乙烯二氧基噻吩)甩膜(厚度40nm)作 为空穴传输层,然后再用PBDB-T与实施例1中制备的PDIBN-T共混溶液甩膜, 即为活性层(厚度100nm),对活性层在100℃下进行5分钟的退火处理。再在 活性层上甩上一层5nm厚的PFN(聚[9,9二辛基芴-9,9-双(N,N二甲基胺基-己 基)芴])薄膜作为电子传输层。最后蒸镀上一层100nm的Ag作为电极。
制备的电池器件的结构为:ITO/PEDOT:PSS/PBDB-T:PDIBN-T/PFN/Ag,器 件的有效面积为0.04cm2
图4为制备的电池器件的电流-电压曲线(J-V曲线)图,制备的电池器件 具体的太阳电池器件效率参数如表2所示。
表2电池器件的太阳电池器件效率参数
Figure BDA0001490514550000091
由图4和表2可以看出,PBDB-T与PDIBN-T分别作为电子给体和电子受 体时,器件具有较高的开路电压(1.03V),这得益于两者的良好的能级匹配; 但短路电流和填充因子均较低,分别只有5.13mA·cm-2和36.96%,这是材料对 太阳光的较弱的吸收、活性层的较差的薄膜形貌引起的。
实施例4
电池器件的制备
用PffBT4T-2OD(聚[(5,6-二氟-2,1,3-(3,3”-二(2-辛基十二烷基)2,2';5', 2“;5”,2“'-二苯并噻二唑-4,7-二基)四噻吩-5,5”'-二基))与实施例1制备的小 分子材料PDIBN-T共混作为电池活性层材料分别制作了正装结构和倒装结构的 有机太阳能电池,其中的活性层材料给体PffBT4T-2OD与受体PDIBN-T的比例 均为1.3:1(w/w)。
正装器件:ITO玻璃(氧化铟锡导电玻璃)经过超声波清洗后,用氧-Plasma 处理,先在ITO上用PEDOT:PSS(聚乙烯二氧基噻吩)甩膜(厚度40nm)作 为空穴传输层,然后再用PffBT4T-2OD与实施例1中制备的PDIBN-T共混溶液 甩膜,即为活性层(厚度100nm)。剩余步骤与实施例3相同。
倒装器件:ITO玻璃(氧化铟锡导电玻璃)经过超声波清洗后,先在ITO 甩上一层电子传输层ZnO(Sol-gel方法制备,醋酸锌溶于乙二醇单甲醚与乙醇 胺的混合溶剂中,厚度35nm),然后再用PffBT4T-2OD与实施例1中制备的 PDIBN-T共混溶液甩膜,即为活性层(厚度100nm),对活性层在100℃下进 行5分钟的退火处理。再在活性层上蒸镀上一层厚度为10nm的氧化钼(MoOX) 作为空穴传输层。最后蒸镀上一层100nm的Ag作为电极。
制备的电池器件的结构分别为:ITO/PEDOT:PSS/PffBT4T-2OD:PDIBN-T /PFN/Ag(正装结构),ITO/ZnO/PffBT4T-2OD:PDIBN-T/MoOx/Ag(倒装结构), 器件的有效面积均为0.04cm2
图5为制备的电池器件的电流-电压曲线(J-V曲线)图,制备的电池器件 具体的太阳电池器件效率参数如表3所示。
表3制备的电池器件的太阳电池器件效率参数
Figure BDA0001490514550000111
由图5和表3可以看出,正装结构下PffBT4T-2OD与PDIBN-T分别作为电 子给体和电子受体,可以得到开路电压和短路电流分别为0.96V和4.61mA·cm-2的电池器件;而倒装结构下,开路电压则只有0.74V,短路电流也稍低,为4.06 mA·cm-2。正装与倒装器件的Voc的差异是活性层材料的垂直分布引起的,而较 低的短路电流和填充因子则与材料对太阳光的较弱的吸收、不理想的的薄膜形 貌以及空穴迁移率与电子迁移率之间的不匹配有关。
以上实施例为本发明较佳的实施方式,但本发明的实施方式并任何不受上 述实施例的限制,其他的未背离本发明的精神实质与原理下所做的改变、修饰、 替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种含硼氮键的苝酰亚胺类光电小分子材料的制备方法,其特征在于,反应方程式如下所示:
Figure FDA0002763553150000011
具体包括如下步骤:
(1)将化合物1与含R2的胺溶于四氢呋喃中,常温下反应8~12小时,得到化合物2;
(2)将化合物2与含R3的二氯硼烷溶于甲苯中,加入催化剂三乙基胺,100~150℃下反应8~12小时,得到化合物3;
(3)将化合物3与以Ar桥接的双三甲基锡溶于甲苯中,加入催化剂四(三苯基膦)钯,120~150℃反应8~12小时,得到目标产物,即所述含硼氮键的苝酰亚胺类光电小分子材料;
所述含硼氮键的苝酰亚胺类光电小分子材料的化学结构式如下所示:
Figure FDA0002763553150000021
式中,R1、R2选自CH(C5H11)2或正丙基;R3为苯基;
Ar为以下结构中的一种以上:
Figure FDA0002763553150000022
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述化合物1与含R2的胺的摩尔比为1:1~1:1.5。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述化合物2与含R3的二氯硼烷的摩尔比为1:0.8~1:1;所述三乙基胺的用量为化合物2质量的0.2%~2%。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述化合物3与以Ar桥接的双三甲基锡的摩尔比为2:0.8~2:1;所述四(三苯基膦)钯的用量为化合物3质量的3%~8%。
CN201711244667.6A 2017-11-30 2017-11-30 一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与应用 Active CN107964021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711244667.6A CN107964021B (zh) 2017-11-30 2017-11-30 一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711244667.6A CN107964021B (zh) 2017-11-30 2017-11-30 一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107964021A CN107964021A (zh) 2018-04-27
CN107964021B true CN107964021B (zh) 2021-03-30

Family

ID=61999214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711244667.6A Active CN107964021B (zh) 2017-11-30 2017-11-30 一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN107964021B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776524B (zh) * 2018-07-31 2021-09-21 华南理工大学 一类含硼氮基团的吡啶并二唑衍生物及其制备方法与应用
CN110407860B (zh) * 2019-07-24 2022-07-26 东莞伏安光电科技有限公司 一类含硼碳烷的稠环化合物及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570713A (zh) * 2012-07-20 2014-02-12 宁波大学 一种可聚合苝酰亚胺类光电受体材料及其合成方法
CN106632412B (zh) * 2016-12-27 2019-05-03 武汉工程大学 一种苝酰亚胺类化合物及其制备方法和应用
CN107325130B (zh) * 2016-12-30 2020-03-20 常州大学 新型苝酰亚胺类环金属铱配合物的合成及其利用溶液浓度调控荧光-磷光双重发射的应用

Also Published As

Publication number Publication date
CN107964021A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
Cai et al. High Performance Organic Solar Cells Based on a Twisted Bay-Substituted Tetraphenyl Functionalized Perylenediimide Electron Acceptor.
CN102725331B (zh) 环戊二烯二噻吩-喹喔啉共聚物、其制备方法和应用
CN108912140A (zh) 一种不对称a-d-a型共轭小分子及其中间体和应用
Fan et al. Efficient polymer solar cells based on a new quinoxaline derivative with fluorinated phenyl side chain
Chen et al. Tetraphenylbutadiene-based symmetric 3D hole-transporting materials for perovskite solar cells: a trial trade-off between charge mobility and film morphology
JP5425338B2 (ja) アントラセンとピアセレノール類とを含有する共重合体、その製造方法及びその応用
Bini et al. Alcohol-soluble conjugated polymers as cathode interlayers for all-polymer solar cells
EP2581399B1 (en) Conjugated polymer based on perylene tetracarboxylic acid diimide and benzodithiophene and its preparation method and application
KR101743241B1 (ko) 높은 전자 이동도를 갖는 ndi계 공중합체 및 이의 합성방법
Zhang et al. A new wide bandgap small molecular acceptor based on indenofluorene derivatives for fullerene-free organic solar cells
Duan et al. Improving photovoltaic performance of the linear A-Ar-A-type small molecules with diketopyrropyrrole arms by tuning the linkage position of the anthracene core
CN101665563A (zh) 一种给受体共轭聚合物及其在太阳能电池中的应用
Fan et al. Improved photovoltaic performance of a 2D-conjugated benzodithiophene-based polymer by the side chain engineering of quinoxaline
Wu et al. Star-Shaped Fused-Ring Electron Acceptors with a C 3 h-Symmetric and Electron-Rich Benzotri (cyclopentadithiophene) Core for Efficient Nonfullerene Organic Solar Cells
Wang et al. Toward high performance indacenodithiophene-based small-molecule organic solar cells: investigation of the effect of fused aromatic bridges on the device performance
Karakawa et al. Near‐Infrared Photovoltaic Performance of Conjugated Polymers Containing Thienoisoindigo Acceptor Units
Liu et al. PDI-based hexapod-shaped nonfullerene acceptors for the high-performance as-cast organic solar cells
Fan et al. Enhancing the photovoltaic properties of low bandgap terpolymers based on benzodithiophene and phenanthrophenazine by introducing different second acceptor units
Zhang et al. Thioether bond modification enables boosted photovoltaic performance of nonfullerene polymer solar cells
CN107964021B (zh) 一种含硼氮键的苝酰亚胺类光电小分子材料及其制备方法与应用
Zhang et al. Modulation of Building Block Size in Conjugated Polymers with D–A Structure for Polymer Solar Cells
CN116375732B (zh) 一种非富勒烯受体材料及其制备方法和应用
CN108503655B (zh) 一种杂环化合物及使用该杂环化合物的有机电子装置
Tu et al. Side-chain engineering of diindenocarbazole-based large bandgap copolymers toward high performance polymer solar cells
Chen et al. Benzodi (pyridothiophene): a novel acceptor unit for application in A 1–A–A 1 type photovoltaic small molecules

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant