CN107961793A - 镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料 - Google Patents

镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料 Download PDF

Info

Publication number
CN107961793A
CN107961793A CN201711204918.8A CN201711204918A CN107961793A CN 107961793 A CN107961793 A CN 107961793A CN 201711204918 A CN201711204918 A CN 201711204918A CN 107961793 A CN107961793 A CN 107961793A
Authority
CN
China
Prior art keywords
graphene oxide
composite catalyst
transition metal
adulterates
oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711204918.8A
Other languages
English (en)
Inventor
李作鹏
武美霞
尚建鹏
苏彩娜
郭永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Datong University
Original Assignee
Shanxi Datong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Datong University filed Critical Shanxi Datong University
Priority to CN201711204918.8A priority Critical patent/CN107961793A/zh
Publication of CN107961793A publication Critical patent/CN107961793A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种镍钴羟基氧化物掺杂氧化石墨烯复合催化剂及其制备和应用,所述过渡金属羟基氧化物掺杂氧化石墨烯复合催化剂包括氧化石墨烯和NixCo1‑xOOH,其中x为0.5‑0.9。Ni‑Co过渡金属羟基氧化物掺杂氧化石墨烯因具有特殊结构、高比表面积和高活性,显示出卓越的氧化性、光电化学和电催化活性。

Description

镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料
技术领域
本发明属于功能催化剂及其制备和应用领域,特别涉及过渡金属镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料及其制备和应用。
背景技术
风能、太阳能、潮汐能等可再生能源,具有不同于传统能源的优势,如分布广、能量大、零排放、环境友好等特点,被称为“取之不尽,用之不竭”的能源,越来越受到科研工作者的青睐。但也存在致命的缺点,如能源的间歇性、不易储存和运输等。以上述可再生能源为驱动的电解水制氢技术,可将其转化为清洁高效的氢能,有效避免了这些可再生能源的间歇性、不易存储和运输等缺点,被认为是通向氢经济的最佳途径。整个电解水的过程可以分为两个半电池反应,即析氢反应和析氧反应。其中,氧气析出反应由于其低效率且复杂的四电子转移过程,严重影响了电化学分解水的应用。因此,寻求适合的高效OER催化剂成为电解水制氢研究的重点。
在所有OER催化材料中,Ru以及Ir基的氧化物具有最好的催化性能,然而它们的稀少储量以及高昂价格限制了它们的应用。由此,储量丰富、价格相对低廉的非贵金属OER电催化剂成为研究热点,主要包括:(1) 镍基合金,镍-钼、镍-铁、镍-钴、镍-铜等合金等都具有良好的OER催化活性,但实际电解过程电极的腐蚀却不可避免,因此实际应用受到限制。(2) ABO3钙钛矿型氧化物,主要包括 CoFe2O4、NiFe2O4、CoFe2-xNixO 等铁氧体和钴基尖晶石氧化物(如NiCo2O4、Co3O4)。其中 Co3O4在碱性体系中展现出良好的OER催化活性。(4) 碳材料:杂原子掺杂的碳材料如石墨烯、碳纳米管、C3N4也作为一种潜在的OER催化剂受到广泛关注。然而,上述材料的催化活性仍然亟需提高,以此来满足实际应用的性能需求,由此我们意识到,发展一种简便经济的方法来实现具有高催化活性的非贵金属电催化剂将会有效促进电催化分解水的实际应用。
在已有研究的阳极析氧催化材料中,过渡金属/碳材料组成的纳米复合材料由于其来源丰富,种类多样,组分、结构、形貌等可调控,拥有优异的物理、化学性能,作为高效水解制氢用析氧催化剂受到国内外科研人员的广泛关注和研究。目前制备过渡金属/碳纳米复合材料的方法主要有:(1)电弧放电法,Jiang等人采用电弧放电法制备了NiCo0.16Fe0.34-CNTs纳米复合材料,该方法对仪器要求比较苛刻,制备过程中使用H2,操作比较危险;(2)化学气相沉积法,马磊等采用流化床气相沉积法在TiO2/Fe-Ni原位沉积CNTs得到了CNTs/TiO2/Fe-Ni复合光催化剂,该方法对设备要求严格,生产成本较高,难以制备N掺杂的过渡金属/碳复合材料;(3)浸渍-还原法,Qiao等人采用浸渍-还原法两步制备了Ni-NG(N掺杂石墨烯)复合纳米材料,该方法制备过程比较繁琐,需要将石墨氧化制备氧化石墨,然后肼还原制备NG,再浸渍Ni2+,最后还原得到Ni-NG,并且该法制备的Ni-NG中Ni不能均匀的分散在NG上;(4)高温固相分解法,该方法操作简单易行,安全性能好,是目前制备过渡金属/碳纳米复合材料采用较多的方法。Liu等人将1,10-邻菲罗啉铁与ZIFs系列金属有机骨架材料混合,采用一步高温固相分解法制备了Fe-NC纳米复合材料,但是ZIFs系列金属有机骨架材料配体价格昂贵,合成工艺复杂。
而采用廉价易得的镍盐、钴盐及碳源通过水热法合成制备过渡金属羟基氧化物掺杂氧化石墨烯的析氧催化材料的发明方法还未见报道。
发明内容
本发明所要解决的技术问题是提供一种过渡金属镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料及其制备和应用,本发明该催化剂表现出良好的电化学性能,在阳极析氧过电位为323mV时达到120mA/cm2的电流密度。
本发明涉及一种过渡金属羟基氧化物掺杂氧化石墨烯复合催化剂,其特征在于:所述过渡金属羟基氧化物掺杂氧化石墨烯复合催化剂包括氧化石墨烯和NixCo1-xOOH,其中x为0.5-0.9。
在本发明的一个优选实施方式中,所述的x为0.6-0.8。
在本发明的另一个优选实施方式中,所述的氧化石墨烯和NixCo1-xOOH通过水热法得到过渡金属羟基氧化物掺杂氧化石墨烯复合催化剂。
本发明的一种过渡金属羟基氧化物掺杂氧化石墨烯复合催化剂的制备方法,包括:
(1)将一定浓度的Ni(NO3)2和Co(NO3)2前驱体溶于去离子水中,通入高纯氮气除去溶解O2和CO2,然后将一定量的KOH和Br2溶液分别逐滴加入并反应,然后转入水热反应釜中反应,然后自然冷却;
(2)配制氧化石墨烯溶液,与步骤(1)液体混合后放入带聚四氟乙烯内衬的不锈钢高压反应釜中,加热和加压反应釜,反应得到絮状物,保持静置状态掺杂;用大量的去离子水清洗数次然后干燥得复合材料。
有益效果
Ni-Co过渡金属羟基氧化物掺杂氧化石墨烯因具有特殊结构、高比表面积和高活性,显示出卓越的氧化性、光电化学和电催化活性。羟基氧化物之所以拥有良好的电催化性能,原因如下:(1)Ni-Co羟基氧化物具有展开的表面,为反应物提供了更多的反应活性点,尤其是暴露出了更多的层状边缘;(2) Ni-Co羟基氧化物高度羟基化,呈亲水性,能够与氧化石墨烯形成稳定的复合材料;(3) Ni-Co羟基氧化物属多核化合物,支持多电子多相位的复杂反应过程;(4) Ni-Co羟基氧化物不含易氧化的配位基,大大减小了氧化反应过程中副反应发生的可能性。(5)本发明的制备工艺不仅环境友好、原料易得、成本低,且反应条件温和、反应时间短,具有工艺简单、经济实用、可操控性强等优点,易于规模化生产。
附图说明
图1:是所述Ni0.8Co0.2OOH@氧化石墨烯材料在100mA/cm2电流密度下的计时电位曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)按Ni/Co摩尔比0.8/0.2将一定浓度的Ni(NO3)2和Co(NO3)2前驱体溶于去离子水中,通入高纯氮气15分钟除去溶解O2和CO2,然后将一定量的KOH和Br2溶液分别逐滴加入并反应三小时,然后转入水热反应釜中100℃下反应6小时,然后自然冷却。
(2)取100mg氧化石墨烯配制成20mL,浓度5mg/mL的氧化石墨烯溶液(超声50min),与步骤(1)液体混合后放入带聚四氟乙烯内衬的不锈钢高压反应釜中,以6℃/min的升温速率加热反应釜至100℃、压力达到0.5MPa后,恒温保持6小时得到絮状物;在实施过程中不用磁力搅拌,保持静置状态掺杂;用大量的去离子水清洗数次然后干燥得Ni0.8Co0.2OOH@氧化石墨烯复合材料。
所得材料通过能谱分析仪(EDS)和光电子能谱仪(XPS)分析复合材料的组分结构和化合价态,确定的到Ni0.8Co0.2OOH@氧化石墨烯复合材料。
采用物理吸附仪,依据氮气吸附-脱附等温线,测得复合材料比表面积为328.3m2/g。
Ni0.8Co0.2OOH@氧化石墨烯电催化活性的评价:①粉末样品:测试在三电极系统(CHI660E电化学工作站,Ag/AgCl电极作为参比电极,Pt电极作为对电极,负载有催化剂的玻碳电极作为工作电极)中进行。首先将4 mg的催化剂分散在1 mL的水,异丙醇为3:1的含有30 μLNafion的溶液中,超声40分钟。然后吸取5 μL该液体(含有20 μg的催化剂)涂于一个直径为3mm的玻碳电极上(负载量为0.285 mg cm-2)。然后将负载好的电极在室温下干燥。通过在1 M和0.1M的KOH溶液中以0-0.8 V为截止电压做循环伏安曲线(CV)来测试电极的极化曲线以及循环稳定性。实验结果如图1所示,从图1可以看出,制备的Ni0.8Co0.2OOH@氧化石墨烯复合材料在阳极析氧过电位为323mV时即可达到 100mA/cm2的电流密度,并且在100个小时测试过程中,电流密度没有下降,表明所制得的 Ni0.8Co0.2OOH@氧化石墨烯复合材料不但具有优异的析氧催化活性,而且析氧催化稳定性也较好。在阳极析氧过电位为323mV时达到120mA/cm2的电流密度。
实施例2
(1)按Ni/Co摩尔比0.6/0.4将一定浓度的Ni(NO3)2和Co(NO3)2前驱体溶于去离子水中,通入高纯氮气15分钟除去溶解O2和CO2,然后将一定量的KOH和Br2溶液分别逐滴加入并反应三小时,然后转入水热反应釜中100℃下反应6小时,然后自然冷却。
(2)取100mg氧化石墨烯配制成20mL,浓度5mg/mL的氧化石墨烯溶液(超声50min),与步骤(1)液体混合后放入带聚四氟乙烯内衬的不锈钢高压反应釜中,以6℃/min的升温速率加热反应釜至100℃、压力达到0.5MPa后,恒温保持6小时得到絮状物;在实施过程中不用磁力搅拌,保持静置状态掺杂;用大量的去离子水清洗数次然后干燥得Ni0.6Co0.4OOH@氧化石墨烯复合材料。
所得材料通过能谱分析仪(EDS)和光电子能谱仪(XPS)分析复合材料的组分结构和化合价态,确定的到Ni0.6Co0.4OOH@氧化石墨烯复合材料。
采用物理吸附仪,依据氮气吸附-脱附等温线,测得复合材料比表面积为326.5m2/g。在阳极析氧过电位为323mV时达到122mA/cm2的电流密度。
本申请人还进一步研究了采用Ni-Fe、Fe-Co羟基氧化物掺杂碳纳米管的情况,结果发现上述组合所得到的复合材料在稳定性上与本发明有一定的差异。
以上所述是本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。对一般领域的技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (6)

1.一种镍钴羟基氧化物掺杂氧化石墨烯复合催化剂,其特征在于:所述过渡金属羟基氧化物掺杂氧化石墨烯复合催化剂包括氧化石墨烯和NixCo1-xOOH,其中x为0.5-0.9。
2.根据权利要求1所述的复合催化剂,所述的x为0.6-0.8。
3.根据权利要求1所述的复合催化剂,所述的氧化石墨烯和NixCo1-xOOH通过水热法得到过渡金属羟基氧化物掺杂氧化石墨烯复合催化剂。
4.一种过渡金属羟基氧化物掺杂氧化石墨烯复合催化剂的制备方法,包括:
(1)将一定浓度的Ni(NO3)2和Co(NO3)2前驱体溶于去离子水中,通入高纯氮气除去溶解O2和CO2,然后将一定量的KOH和Br2溶液分别逐滴加入并反应,然后转入水热反应釜中反应,然后自然冷却;
(2)配制氧化石墨烯溶液,与步骤(1)液体混合后放入带聚四氟乙烯内衬的不锈钢高压反应釜中,加热和加压反应釜,反应得到絮状物,保持静置状态掺杂;用大量的去离子水清洗数次然后干燥得复合材料。
5.权利要求1-3所述的复合催化剂在制备析氧阳极中的应用。
6.权利要求5所述的析氧阳极用于电解水方面的应用。
CN201711204918.8A 2017-11-27 2017-11-27 镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料 Pending CN107961793A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711204918.8A CN107961793A (zh) 2017-11-27 2017-11-27 镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711204918.8A CN107961793A (zh) 2017-11-27 2017-11-27 镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料

Publications (1)

Publication Number Publication Date
CN107961793A true CN107961793A (zh) 2018-04-27

Family

ID=61997949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711204918.8A Pending CN107961793A (zh) 2017-11-27 2017-11-27 镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料

Country Status (1)

Country Link
CN (1) CN107961793A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594100A (zh) * 2018-12-07 2019-04-09 东华大学 一种C3N4负载Cu/Sn合金材料及其制备和应用
CN109806898A (zh) * 2019-01-18 2019-05-28 华南理工大学 一种硼氮共掺杂碳材料及其制备方法与应用
CN110404544A (zh) * 2019-07-26 2019-11-05 华东理工大学 一种双金属催化材料及其制备方法和应用方法
CN110813330A (zh) * 2019-11-14 2020-02-21 广西师范大学 一种Co-Fe@FeF催化剂及二维纳米阵列合成方法
CN110947374A (zh) * 2019-12-16 2020-04-03 佛山职业技术学院 一种羟基金属氧化物纳米催化剂及其制备方法
CN113355682A (zh) * 2021-07-09 2021-09-07 苏州阳光氢能材料科技有限公司 铁掺杂三氟合钴酸盐析氧电催化材料、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961442A (zh) * 2004-06-02 2007-05-09 丰田自动车株式会社 用于碱性电池的阳极活性材料及其制造方法以及碱性电池
CN106158408A (zh) * 2016-07-25 2016-11-23 合肥工业大学 一种NiOOH@CuO/Cu2O复合纳米片阵列薄膜及其制备方法和应用
CN106693978A (zh) * 2016-12-30 2017-05-24 王艳 金属羟基氧化物催化剂、电极及制法与电化学电解装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961442A (zh) * 2004-06-02 2007-05-09 丰田自动车株式会社 用于碱性电池的阳极活性材料及其制造方法以及碱性电池
CN106158408A (zh) * 2016-07-25 2016-11-23 合肥工业大学 一种NiOOH@CuO/Cu2O复合纳米片阵列薄膜及其制备方法和应用
CN106693978A (zh) * 2016-12-30 2017-05-24 王艳 金属羟基氧化物催化剂、电极及制法与电化学电解装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIN LI等: ""In situ growth of nickel-cobalt oxyhydroxide/oxide on carbon nanotubes for high performance supercapacitors"", 《ELECTROCHIMICA ACTA》 *
YUNSHI ZHANG等: ""Oxygen evolution reaction on Ni hydroxide film electrode containing various content of Co"", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
李作鹏等: ""电沉积制备花瓣状双金属羟基氧化物NixFe1-xOOH用于析氧反应"", 《中国化学会第30届学术年会摘要集-第四十二分会:能源纳米材料物理化学》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594100A (zh) * 2018-12-07 2019-04-09 东华大学 一种C3N4负载Cu/Sn合金材料及其制备和应用
CN109806898A (zh) * 2019-01-18 2019-05-28 华南理工大学 一种硼氮共掺杂碳材料及其制备方法与应用
CN109806898B (zh) * 2019-01-18 2021-05-14 华南理工大学 一种硼氮共掺杂碳材料及其制备方法与应用
CN110404544A (zh) * 2019-07-26 2019-11-05 华东理工大学 一种双金属催化材料及其制备方法和应用方法
CN110404544B (zh) * 2019-07-26 2022-04-26 华东理工大学 一种双金属催化材料及其制备方法和应用方法
CN110813330A (zh) * 2019-11-14 2020-02-21 广西师范大学 一种Co-Fe@FeF催化剂及二维纳米阵列合成方法
CN110947374A (zh) * 2019-12-16 2020-04-03 佛山职业技术学院 一种羟基金属氧化物纳米催化剂及其制备方法
CN113355682A (zh) * 2021-07-09 2021-09-07 苏州阳光氢能材料科技有限公司 铁掺杂三氟合钴酸盐析氧电催化材料、其制备方法及应用
CN113355682B (zh) * 2021-07-09 2023-06-20 苏州阳光氢能材料科技有限公司 铁掺杂三氟合钴酸盐析氧电催化材料、其制备方法及应用

Similar Documents

Publication Publication Date Title
Liu et al. Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting
Zhou et al. Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting
Shen et al. Holey MXene nanosheets intimately coupled with ultrathin Ni–Fe layered double hydroxides for boosted hydrogen and oxygen evolution reactions
Gao et al. An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution
Wang et al. Transition metal atoms M (M= Mn, Fe, Cu, Zn) doped nickel-cobalt sulfides on the Ni foam for efficient oxygen evolution reaction and urea oxidation reaction
Hu et al. Constructing a CeO 2− x@ CoFe-layered double hydroxide heterostructure as an improved electrocatalyst for highly efficient water oxidation
CN107961793A (zh) 镍钴羟基氧化物掺杂氧化石墨烯的析氧催化材料
Dai et al. Controlled synthesis of NiCo2O4@ Ni-MOF on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction
Wen et al. Electrocatalysts for the oxygen evolution reaction: mechanism, innovative strategies, and beyond
CN110838588B (zh) 一种可充式锌空电池双功能催化剂及其制备方法与应用
Li et al. High-performance alkaline water splitting by Ni nanoparticle-decorated Mo-Ni microrods: Enhanced ion adsorption by the local electric field
Sang et al. Facile synthesis of three-dimensional spherical Ni (OH) 2/NiCo2O4 heterojunctions as efficient bifunctional electrocatalysts for water splitting
Wan et al. Activating hematite nanoplates via partial reduction for electrocatalytic oxygen reduction reaction
Guan et al. Synthesis of 3D flower-like nickel-molybdenum-sulfur microspheres as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions
CN106757143A (zh) 一种水分解反应用催化电极及其制备方法
CN107930631A (zh) 镍铁羟基氧化物掺杂氧化石墨烯的析氧催化材料
Yang et al. Metal-organic framework-derived FeS2/CoNiSe2 heterostructure nanosheets for highly-efficient oxygen evolution reaction
Li et al. Magnetic enhancement of oxygen evolution in CoNi@ C nanosheets
Chen et al. Facile fabrication of flower-like CuS/MnCO3 microspheres clusters on nickel foam as an efficient bifunctional catalyst for overall water splitting
Bai et al. Bimetallic Iron–Cobalt Nanoparticles Coated with Amorphous Carbon for Oxygen Evolution
Qian et al. A novel monoclinic metal oxide catalyst for oxygen evolution reactions in alkaline media
Xue et al. Construction of hollow structure cobalt iron selenide polyhedrons for efficient hydrogen evolution reaction
Zhou et al. Heterogeneous interface engineering of cationic vacancy defects layered double hydroxides and molybdenum-nickel-based selenium compounds to facilitate overall water splitting
Yang et al. A Co3O4/CuO composite nanowire array as low-cost and efficient bifunctional electrocatalyst for water splitting
Bao et al. Solution plasma-assisted synthesis of oxyhydroxides for advanced electrocatalytic water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180427

RJ01 Rejection of invention patent application after publication