CN107945240B - 一种目标成像方法 - Google Patents

一种目标成像方法 Download PDF

Info

Publication number
CN107945240B
CN107945240B CN201710952661.8A CN201710952661A CN107945240B CN 107945240 B CN107945240 B CN 107945240B CN 201710952661 A CN201710952661 A CN 201710952661A CN 107945240 B CN107945240 B CN 107945240B
Authority
CN
China
Prior art keywords
angle information
boundary
axis
direction angle
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710952661.8A
Other languages
English (en)
Other versions
CN107945240A (zh
Inventor
陈晓江
李欣怡
冯超
王举
常俪琼
房鼎益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern University
Original Assignee
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern University filed Critical Northwestern University
Priority to CN201710952661.8A priority Critical patent/CN107945240B/zh
Publication of CN107945240A publication Critical patent/CN107945240A/zh
Application granted granted Critical
Publication of CN107945240B publication Critical patent/CN107945240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/514Depth or shape recovery from specularities

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种目标成像方法,通过目标对射频链路的相位和幅值影响来对目标成像,该成像方法避免了特殊精密设备的要求,从而减少了人力代价和设备成本,同时保留高精度的目标成像精准度,提高了识别系统的可行性。

Description

一种目标成像方法
技术领域
本发明涉及被动式感知领域,特别涉及一种目标成像方法。
背景技术
基于被动式的定位和成像在近年来已经受到广泛的关注。例如从位置感知服务到搜索救援以及机器人网络等。目标形状成像在许多现实生活中都起着重要的作用。许多应用将从知道目标的形状、尺寸中获益。例如:1、如果机器人知道目标对象的相对尺寸,它便可以自动调整其手臂大小。2、通过检测目标的形状,可以在安全检查点检测目标隐藏的武器。
现有的定位和成像主要分为以下三类:
第一类为基于红外热或可见光的摄像系统被广泛应用于目标定位和成像。该系统存在于智能电话的相机组件中、可穿戴设备或者膝上型计算机的音频组件中,其已经用于跟踪手边的手势。但由于该系统要求物体本身发散热量或者需在光照充足的情况下工作,这使得该系统在定位和成像上的发展有了一定的局限性。
第二类为现有目标成像和材料识别系统,如雷达、X射线、电子计算机X射线断层扫描技术(CT)、核磁共振成像(MRI)和B扫描超声检查等已被广泛应用于军事医学领域。但由于雷达、X射线、CT,MRI和超声波具有以下缺点,使得该系统的普适性较差。缺点1:该系统成像其本身需要具有大频率带宽和天线阵列的特殊硬件,且这些硬件价格非常昂贵,通常尺寸体积较大。缺点2:X射线和CT均采用极高频信号,在对人体成像过程中对人体本身有害。
第三类便是基于射频(RF)信号的定位和成像系统,该系统由于普适性好(普遍应用于公交卡,汽车钥匙等)、价格低廉(每个标签成本为5-10美分)、人工代价低(可应用于行李分类,姿势识别等)、可用于在昏暗环境下进行检测、信号具有穿透墙壁的能力而成为了如今定位和成像识别的主要应用方法。该系统已经用于定位行李分类,手势识别等。
综上所述,现有的被动式目标识别技术在成本和普适性等方面存在不足。因此需要拥有更高可行性的被动式非接触式目标形状识别。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于,提供一种目标成像方法,该方法既能提供高精度的目标成像,又能大大减少系统所需的成本。
为了实现上述目的,本发明采用如下技术方案:
一种目标成像方法,包括以下步骤:
步骤一,在监测区域内建立二维坐标系,根据射频链路上的基准信号的基准相位值和对比信号的对比相位值,求相位变换;根据相位变换利用透射模型公式求厚度信息,获取厚度信息所在位置处的方向角信息;
其中,所述的对比信号为射频链路上放置了目标,测得的射频链路上的信号;
所述的相位变换包括二维坐标系的x轴对应的相位变换和y轴对应的相位变换;
所述的厚度信息包括二维坐标系的x轴对应的厚度信息和y轴对应的厚度信息;
所述的方向角信息包括二维坐标系的x轴对应的方向角信息和y轴对应的方向角信息;
步骤二,根据x轴对应的相位变换和方向角信息,以及y轴对应的相位变换和方向角信息,利用边界顶点确定方法确定目标区域;目标区域由x轴方向的上边界uX和下边界lX,以及y轴方向的上边界uY和下边界lY围成;
步骤三,在目标区域的每个边界线上分别选取一个初始点,所有初始点连接形成初始区域;
步骤四,选取初始区域的边界线中与x轴相对的边界线,根据目标物体在x轴方向的上边界uX和下边界lX之间的方向角信息,获得每一个方向角信息对应的起点坐标,根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标;将所有的起点坐标和终点坐标连接,形成x轴方向的疑似目标图像;
选取初始区域的边界线中与y轴相对的边界线,根据目标物体在y轴方向的上边界uY和下边界lY之间的方向角信息,获得每一个方向角信息对应的起点坐标,根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标;将所有的起点的坐标和终点坐标连接,形成y轴方向的疑似目标图像;
求组成x轴方向的疑似目标图像的像素点与组成y轴方向的疑似目标图像的像素点的并集,若得到的并集结果中的像素点的个数大于设定阈值,则返回步骤三,在目标区域的每个边界线上重新分别选取一个初始点,直到得到并集结果中的像素点的个数小于设定阈值,则并集结果中的像素点形成的图像即为目标图像。
具体地,所述步骤二中的根据x轴对应的相位变换和方向角信息,以及y轴对应的相位变换和方向角信息,利用边界顶点确定方法确定目标区域;具体过程如下:
根据x轴对应的相位变换和方向角信息,标签阵列x中第一个标签,其在位置j处的相位变换用ΔθXj表示,求目标物体在x轴方向的下边界lX;采用的公式如下:
uX={d|J(d)>TuX}
Figure BDA0001433207510000031
Figure BDA0001433207510000041
TlX为设定阈值,W是用于减少虚警的鲁棒窗口,ΔθXj表示标签阵列x中第一个标签,其在位置j处的相位变换;
下边界lX为最终得到的位置d处的方向角信息;
求目标物体在x轴方向的上边界uX,采用的公式如下:
uX={d|J(d)<TuX}
Figure BDA0001433207510000042
Figure BDA0001433207510000043
其中,TuX为设定阈值;上边界uX为最终得到的位置d处的方向角信息;
求目标物体在y轴方向的下边界lY,采用的公式如下:
lY={d|J(d)>TlY}
Figure BDA0001433207510000044
Figure BDA0001433207510000045
其中,TlY为设定阈值;ΔθYj表示标签阵列y中第一个标签在位置j处的相位变换;下边界lY为最终得到的位置d处的方向角信息;
求目标物体在y轴方向的上边界uY,采用的公式如下:
uY={d|J(d)<TuY}
Figure BDA0001433207510000046
Figure BDA0001433207510000051
其中,TuY为设定阈值;上边界uY为最终得到的位置d处的方向角信息;
求目标区域的四个顶点,采用的方法如下:
上边界uX的方程为:
Figure BDA0001433207510000052
下边界lX的方程为:
Figure BDA0001433207510000053
上边界uY的方程为:
Figure BDA0001433207510000054
下边界lY的方程为:
Figure BDA0001433207510000055
其中,xAx为标签阵列x中第一个标签的横坐标;yAy为标签阵列y中第一个标签的纵坐标;
Figure BDA00014332075100000510
为x轴方向的上边界uX对应的方向角信息,
Figure BDA0001433207510000056
为下边界lX对应的方向角信息,
Figure BDA0001433207510000057
为y轴方向的上边界uY对应的方向角信息,
Figure BDA0001433207510000058
为下边界lY对应的方向角信息;
求解所述四个方程,得到目标区域的四个顶点。
具体地,所述步骤四中的根据目标物体在x轴方向的上边界uX和下边界lX之间的方向角信息,获得方向角信息对应的起点坐标,采用的方法如下:
记形成初始区域的四个初始点分别为IP1、IP2、IP3和IP4,边界VP1VP2和边界VP1VP4与x轴相对,目标物体在x轴方向的上边界uX和下边界lX之间的任意一个方向角信息θx与VP1VP2有交点,则起点
Figure BDA0001433207510000059
采用如下公式计算:
Figure BDA0001433207510000061
Figure BDA0001433207510000062
其中,(xVP1,yVP1)为VP1的坐标,(xVP2,yVP2)为VP2的坐标;
若方向角信息与VP1VP4有交点,则起始点
Figure BDA0001433207510000063
采用如下公式计算:
Figure BDA0001433207510000064
Figure BDA0001433207510000065
其中,(xVP1,yVP1)为VP1的坐标,(xVP4,yVP4)为VP4的坐标;
边界VP1VP2和边界VP2VP3与y轴相对,目标物体在y轴方向的上边界uY和下边界lY之间的任意一个方向角信息为θy与VP1VP2有交点,则起始点
Figure BDA0001433207510000066
采用如下公式计算:
Figure BDA0001433207510000067
Figure BDA0001433207510000068
其中,(xVP1,yVP1)为VP1的坐标,(xVP2,yVP2)VP2的坐标;
目标物体在y轴方向的上边界uY和下边界lY之间的任意一个方向角信息为θy与VP2VP3有交点,则起始点
Figure BDA0001433207510000069
采用如下公式计算:
Figure BDA00014332075100000610
Figure BDA00014332075100000611
其中,(xVP2,yVP2)为VP2的坐标,(xVP3,yVP3)为VP3的坐标;
所述的步骤六中的根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标,对于x轴方向,终点坐标
Figure BDA0001433207510000071
采用如下公式计算:
Figure BDA0001433207510000072
Figure BDA0001433207510000073
其中,DAx为方向角信息θx对应的厚度信息;
对于y轴方向,终点坐标
Figure BDA0001433207510000074
采用如下公式计算:
Figure BDA0001433207510000075
Figure BDA0001433207510000076
其中,DAy为方向角信息θy对应的厚度信息。
与现有技术相比,本发明具有以下技术效果:本发明通过目标对射频链路的相位和幅值影响来对目标成像,该成像方法避免了特殊精密设备的要求,从而减少了人力代价和设备成本,同时保留高精度的目标成像精准度,提高了识别系统的可行性。
附图说明
图1是本发明的方法流程图;
图2是目标区域和初始区域确定示意图;
图3是没有隔挡物时直接对材料为塑料和水的三角形物体及水泥材料的矩形物体成像结果示意图;其中,(a)为正三角形盒子成像的结果图,(b)为对柱子成像的结果图;
图4是标签阵列数目不同时成像的结果图;其中,(a)为两个天线阵列的情况下的正六边形的成像结果图,(b)为两个天线阵列的情况下的圆形的成像结果图,(c)为四个天线阵列的情况下在同等实验条件下的成像结果图;
图5是在有墙壁阻碍时系统对单目标、人体和多目标成像的结果图。其中,(a)为对单目标的成像结果图,(b)为对人体的成像结果图,(c)为对多目标的成像结果图。
下面结合附图和具体实施方式对本发明的方案作进一步详细地解释和说明。
具体实施方式
选取监测区域,在监测区域内布置阅读器、定向天线和2个标签阵列,阅读器连接定向天线,多个标签排成一列形成标签阵列。在监测区域内建立二维坐标系,在二维坐标系的两个坐标轴上分别放置一个标签阵列,x轴上放置标签阵列x,y轴上放置标签阵列y,定向天线的中心与标签阵列的中心处于同一个平面上。将阅读器和定向天线均放置在一个移动机器人上,移动机器人能够沿着设定路线运动,使得阅读器和定向天线能够一起沿着设定路线运动。本发明的目标成像方法,包括以下步骤:
步骤一,在监测区域内建立二维坐标系,根据射频链路上的基准信号的基准相位值和对比信号的对比相位值,求相位变换;根据相位变换利用透射模型公式求厚度信息,获取厚度信息所在位置处的方向角信息;
在监测区域内建立二维坐标系,针对监测区域内的不同位置处多个射频链路上的基准信号和对比信号,均采用多径抑制方法进行处理,得到处理后的基准信号和对比信号;其中,射频链路包括二维坐标系的x轴对应的射频链路和y轴对应的射频链路;具体过程如下:
在监测区域内建立二维坐标系,监测区域内未放置目标物体,针对二维坐标系的x轴和y轴,分别获取监测区域内不同位置处多个射频链路上的基准信号;其中,射频链路指的是标签与阅读器形成的链路,基准信号为监测区域内未放置目标物体时,阅读器在跳频模式下测得的信号。阅读器的频率变动范围为920.625-924.375KHz。
x轴对应的射频链路形成的基准信号用SXl,i,d表示,i=1,2...,I,其中,I表示标签阵列x对应的射频链路的个数,也就是标签阵列x中的标签的个数,i表示标签阵列x中标签的标号,d表示监测区域内的位置,l=1,2...L,l表示阅读器的信道的标号,L表示信道的个数。
y轴对应的射频链路形成的基准信号用SYl,j,d表示,j=1,2...,J,其中,J表示标签阵列y对应的射频链路的个数,也就是标签阵列y中的标签的个数,j表示标签阵列y中标签的标号,d表示监测区域内的位置,l=1,2...L,l表示阅读器的信道的标号,L表示信道的个数。
监测区域内放置目标物体,针对二维坐标系的x轴和y轴,分别获取监测区域内不同位置处多个射频链路上的对比信号;其中,对比信号为监测区域内放置目标物体时,阅读器在跳频模式下测得的信号。
x轴对应的射频链路形成的对比信号用
Figure BDA0001433207510000091
表示;y轴对应的射频链路形成的对比信号用
Figure BDA0001433207510000092
表示。
其中,多径抑制方法的处理过程包括:
(1)在所有的基准信号和对比信号中,挑选出干净的射频链路对应的基准信号和对比信号;
其中,确定干净的射频链路,就是确定干净的标签,具体方法为:针对阅读器的每个信道,求在不同位置处获取的待确定标签的所有相位值的均值,以信道标号为横坐标,以相位值的均值为纵坐标,若所有信道的相位值的均值能够拟合成一条直线,则该标签为干净标签,否则不是干净标签。
(2)针对(1)中处理后的基准信号和对比信号,挑选出阅读器的干净信道对应的基准信号和对比信号,作为多径抑制方法处理后的基准信号和对比信号。
其中,确定干净信道的过程为:连续信道之间的相位值应呈线性关系,当多径影响较大时,所述线性关系遭到破坏;干净信道的确定方法在离线阶段完成,具体来说,在监测区域未放置目标物体时,阅读器不同的信道获取某个标签的相位值,针对阅读器不同的信道获取某个标签的所有相位值,采用最小二乘法拟合成一条直线;计算每个相位值到所述直线的距离,求所有距离的平均值,得到平均距离;若某个距离大于平均距离,则该距离对应的相位值所在信道即为污点信道;在所有信道中去除所有的污点信道,即得到干净信道。
x轴对应的射频链路形成的基准信号SXl,i,d经过多径抑制方法处理后,得到处理后的基准信号SXh,m,d;y轴对应的射频链路形成的基准信号SYl,j,d经过多径抑制方法处理后,得到处理后的基准信号SYh,n,d;其中,m=1,2...M,其中,m表示标签阵列x中干净标签的标号,M表示标签阵列x中干净标签的个数,h=1,2...H,h表示干净信道的标号,H表示干净信道的个数;n=1,2...N,其中,n表示标签阵列y中干净标签的标号,N表示标签阵列y中干净标签的个数,
x轴对应的射频链路形成的对比信号
Figure BDA0001433207510000101
经过多径抑制方法处理后,得到处理后的对比信号
Figure BDA0001433207510000102
y轴对应的射频链路形成的对比信号
Figure BDA0001433207510000103
经过多径抑制方法处理后,得到处理后的对比信号
Figure BDA0001433207510000104
根据步骤一得到的处理后的基准信号,获取基准信号的基准相位值;根据步骤一得到处理后的对比信号,获取对比信号的对比相位值。
基准信号SXh,m,d的基准相位值用
Figure BDA0001433207510000108
表示,基准信号SYh,n,d的基准相位值用
Figure BDA0001433207510000105
表示;对比信号
Figure BDA0001433207510000106
的对比相位值用
Figure BDA0001433207510000107
表示,对比信号
Figure BDA0001433207510000111
的对比相位值用
Figure BDA0001433207510000112
表示。
根据步骤二中得到的x轴对应的基准相位值和对比相位值,求相位变换,根据相位变换利用透射模型公式求x轴对应的厚度信息,并求厚度信息所在位置处的方向角信息;根据y轴对应的基准相位值和对比相位值,求相位变换,根据相位变换利用透射模型公式求y轴对应的厚度信息,并求厚度信息所在位置处的方向角信息。
由于射频信号遇到目标障碍影响视距路径传输时,信号的能量会减弱,所以当距离一定的射频链路有目标和没目标时,信号的相位改变是不一样的。因此可以根据相位的改变信息知道沿着该方向的物体的厚度大小。则射频链路上有目标物体和没有目标物体的相位变换为Δθ=θtarair,其中θair为射频链路上没有目标物体时的相位,θtar为射频链路上有目标物体时的相位。
根据利用透射模型公式得到厚度信息D:
Figure BDA0001433207510000113
其中,mod表示求模,λair,λtar分别代表信号在空气中的波长和在目标内部中的波长;L表示标签和天线的距离,L′表示阅读器和目标物体的距离。
具体地,求每个标签对应的所有信道下的基准相位值的均值,作为该标签对应的射频链路上没有放置目标物体时的相位,求每个标签对应的所有信道下的对比相位值的均值,作为该标签对应的射频链路上放置了目标物体时的相位;
对于x轴上的标签阵列x中的每个标签,该标签所有信道下的所有基准相位值的均值用
Figure BDA0001433207510000121
表示,所有对比相位值的均值用
Figure BDA0001433207510000122
表示;相位变换
Figure BDA0001433207510000123
厚度信息用DXm,d表示,位置d处的方向角信息用AXm,d表示;对于y轴上的标签阵列y,所有基准相位值的均值用
Figure BDA0001433207510000128
表示,所有对比相位值的均值用
Figure BDA0001433207510000124
表示,相位变换
Figure BDA0001433207510000125
厚度信息用DYn,d表示,位置d处的方向角信息用AYn,d表示。
步骤二,根据求得的x轴对应的相位变换和方向角信息,求目标物体在x轴方向的上边界uX和下边界lX;根据y轴的相位变换和方向角信息,求目标物体在y轴方向的上边界uY和下边界lY;根据x轴方向的上边界uX和下边界lX,y轴方向的上边界uY和下边界lY,求目标区域的顶点坐标,根据目标区域的顶点坐标、x轴方向的上边界uX和下边界lX,y轴方向的上边界uY和下边界lY确定一个目标区域IP1IP2IP3IP4。
以目标物体在x轴方向的下边界lX,标签阵列x中第一个标签,其在位置j处的相位变换用ΔθXj表示,采用的公式如下:
lX={d|J(d)>TlX}
Figure BDA0001433207510000126
Figure BDA0001433207510000127
其中,TlX为设定阈值,本实施例中为0.1,W是用于减少虚警的鲁棒窗口,本实施例中,W=6,下边界lX即为最终得到的位置d处的方向角信息。
目标物体在x轴方向的上边界uX,采用的公式如下:
uX={d|J(d)<TuX}
Figure BDA0001433207510000131
Figure BDA0001433207510000132
TuX为设定阈值,本实施例中为0.1;上边界uX为最终得到的位置d处的方向角信息;
目标物体在y轴方向的下边界lY,标签阵列y中第一个标签在位置j处的相位变换用ΔθYj表示,采用的公式如下:
lY={d|J(d)>TlY}
Figure BDA0001433207510000133
Figure BDA0001433207510000134
其中,TlY为设定阈值,本实施例中为0.1;下边界lY为最终得到的位置d处的方向角信息;
求目标物体在y轴方向的上边界uY,采用的公式如下:
uY={d|J(d)<TuY}
Figure BDA0001433207510000135
Figure BDA0001433207510000136
其中,TuY为设定阈值,本实施例中为0.1;上边界uY为最终得到的位置d处的方向角信息;
根据上下边界求目标区域的4个顶点,具体求解方法如下:
x轴方向的上边界uX对应的方向角信息为,下边界lX对应的方向角信息
Figure BDA0001433207510000141
y轴方向的上边界uY对应的方向角信息为
Figure BDA0001433207510000142
下边界lY对应的方向角信息为
Figure BDA0001433207510000143
则上边界uX的方程为:
Figure BDA0001433207510000144
下边界lX的方程为:
Figure BDA0001433207510000145
上边界uY的方程为:
Figure BDA0001433207510000146
下边界lY的方程为:
Figure BDA0001433207510000147
其中,xAx为标签阵列x中第一个标签的横坐标;yAy为标签阵列y中第一个标签的纵坐标。
求解上述四个方程,得到目标区域的四个顶点,参见图2,分别为IP1、IP2、IP3和IP4,四个顶点坐标、x轴方向的上边界uX和下边界lX,y轴方向的上边界uY和下边界lY确定一个目标区域IP1IP2IP3IP4。
步骤三,在确定的目标区域的每个边界线IP1IP2、IP2IP3、P3IP4和IP1IP4上随机选择一初始点,分别为VP1、VP2、VP3和VP4,将VP1、VP2、VP3和VP4连接形成初始区域。
步骤四,边界VP1VP2和边界VP1VP4与x轴相对,根据目标物体在x轴方向的上边界uX和下边界lX之间的方向角信息,获得方向角信息对应的起点坐标,根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标;将所有的起点的坐标和终点坐标连接,形成x轴方向的疑似目标图像;同理,边界VP1VP2和边界VP2VP3与y轴相对,根据目标物体在y轴方向的上边界uY和下边界lY之间的方向角信息,获得方向角信息对应的起点坐标,根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标;将所有的起点的坐标和终点坐标连接,形成y轴方向的疑似目标图像;
求组成x轴方向的疑似目标图像的像素点与组成y轴方向的疑似目标图像的像素点的并集,若得到的并集结果中的像素点的个数大于组成两个疑似目标图像的像素点的个数之和的10%,则返回步骤五,在目标区域的每个边界线上重新分别选取一个初始点,直到得到并集结果中的像素点的个数小于组成两个疑似目标图像的像素点的个数之和的10%,则并集结果中的像素点形成的图像即为目标图像。
其中,根据目标物体在x轴方向的上边界uX和下边界lX之间的方向角信息,获得方向角信息对应的起点坐标,采用的公式如下:
目标物体在x轴方向的上边界uX和下边界lX之间的任意一个方向角信息为θx,若方向角信息与VP1VP2有交点,则起点
Figure BDA0001433207510000151
采用如下公式计算:
Figure BDA0001433207510000152
Figure BDA0001433207510000153
其中,(xVP1,yVP1)为VP1的坐标,(xVP2,yVP2)为VP2的坐标;
若方向角信息与VP1VP4有交点,则起始点
Figure BDA0001433207510000161
采用如下公式计算:
Figure BDA0001433207510000162
Figure BDA0001433207510000163
其中,(xVP1,yVP1)为VP1的坐标,(xVP4,yVP4)为VP4的坐标;
目标物体在y轴方向的上边界uY和下边界lY之间的任意一个方向角信息为θy,若方向角信息与VP1VP2有交点,则起始点
Figure BDA0001433207510000164
采用如下公式计算:
Figure BDA0001433207510000165
Figure BDA0001433207510000166
其中,(xVP1,yVP1)为VP1的坐标,(xVP2,yVP2)VP2的坐标;
目标物体在y轴方向的上边界uY和下边界lY之间的任意一个方向角信息为θy,若方向角信息与VP2VP3有交点,则起始点
Figure BDA0001433207510000167
采用如下公式计算:
Figure BDA0001433207510000168
Figure BDA0001433207510000169
其中,(xVP2,yVP2)为VP2的坐标,(xVP3,yVP3)为VP3的坐标。
对于x轴方向,根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标
Figure BDA00014332075100001610
则采用的公式如下:
Figure BDA0001433207510000171
Figure BDA0001433207510000172
其中,DAx为方向角信息θx对应的厚度信息。
若y轴方向,根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标
Figure BDA0001433207510000173
则采用的公式如下:
Figure BDA0001433207510000174
Figure BDA0001433207510000175
其中,DAy为方向角信息θy对应的厚度信息。
本发明的方法可应用于安检或者仓库中,用于在安检过程中物体的成像,用于准确识别物体类别,在仓库中对货品的类别进行准确检测,同时节省成本。
本发明的基于RFID设备的高精度被动式非接触目标成像方法,相对于现有的需要专有设备的成像方法,通过目标对监测链路上的相位的影响不同来对目标成像,能够大大降低了专有设备所带来的成本,同时保留高精度的材料识别准确率。
发明人从以下三个方面去评估本发明的方法:无隔档物时对目标的成像性能、标签阵列的个数以及有隔档物时对目标的成像性能。
(1)无隔档物时对目标的成像性能
图3是没有隔挡物时直接对材料为塑料和水的三角形物体成及水泥材料的矩形物体成像结果示意图。该部署情况均为两个天线阵列。图(a)为正三角形盒子成像的结果,(b)为对柱子成像的结果。从图中可以看出,该系统可以仅使用两个阵列来精确地估计三角形和矩形的切割图像。(b)图表示当目标材料是水泥时,该系统仍然能够获得高精度。
(2)标签阵列的个数
图4为标签阵列个数不同时成像的结果示意图。分别利用正六边形和圆筒作为成像目标。(a)和(b)是在设置两个天线阵列的情况下的成像结果,(c)则是设置四个天线阵列在同等实验条件下的成像结果。比较(a)和(b),当目标的切割形状为六边形或圆形时,成像性能下降,因为来自两个阵列的约束(即,传播距离)不足以实现细粒度图像。为了获得更好的精度,本发明将阵列数量从2增加到4,成像性能随着阵列的增加而显着提高,如图4的(c)。
(3)有隔档物时对目标的成像性能
图5是在有墙壁阻碍时系统对单目标,人体,多目标成像的结果图。该部署情况均为两个天线阵列。(a)为在有墙壁遮挡时对长方体盒子成像的结果,(b)为有墙壁遮挡时对人体成像的结果,(c)为有墙壁遮挡时对三角形和圆形目标同时成像的结果。从图中可以看出,在单目标情况下,无论是棱角明显的长方体物体还是不规则的人体,成像结果依然保持着高准确率。为多个目标时,在目标相距一定距离时,该系统仍然可以保持高精确度。

Claims (3)

1.一种目标成像方法,其特征在于,包括以下步骤:
步骤一,在监测区域内建立二维坐标系,根据射频链路上的基准信号的基准相位值和对比信号的对比相位值,求相位变换;根据相位变换利用透射模型公式求厚度信息,获取厚度信息所在位置处的方向角信息;
其中,所述的对比信号为射频链路上放置了目标,测得的射频链路上的信号;
所述的相位变换包括二维坐标系的x轴对应的相位变换和y轴对应的相位变换;
所述的厚度信息包括二维坐标系的x轴对应的厚度信息和y轴对应的厚度信息;
所述的方向角信息包括二维坐标系的x轴对应的方向角信息和y轴对应的方向角信息;
步骤二,根据x轴对应的相位变换和方向角信息,以及y轴对应的相位变换和方向角信息,利用边界顶点确定方法确定目标区域;目标区域由x轴方向的上边界uX和下边界lX,以及y轴方向的上边界uY和下边界lY围成;
步骤三,在目标区域的每个边界线上分别选取一个初始点,所有初始点连接形成初始区域;
步骤四,选取初始区域的边界线中与x轴相对的边界线,根据目标物体在x轴方向的上边界uX和下边界lX之间的方向角信息,获得每一个方向角信息对应的起点坐标,根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标;将所有的起点坐标和终点坐标连接,形成x轴方向的疑似目标图像;
选取初始区域的边界线中与y轴相对的边界线,根据目标物体在y轴方向的上边界uY和下边界lY之间的方向角信息,获得每一个方向角信息对应的起点坐标,根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标;将所有的起点的坐标和终点坐标连接,形成y轴方向的疑似目标图像;
求组成x轴方向的疑似目标图像的像素点与组成y轴方向的疑似目标图像的像素点的并集,若得到的并集结果中的像素点的个数大于设定阈值,则返回步骤三,在目标区域的每个边界线上重新分别选取一个初始点,直到得到并集结果中的像素点的个数小于设定阈值,则并集结果中的像素点形成的图像即为目标图像。
2.如权利要求1所述的目标成像方法,其特征在于,所述步骤二中的根据x轴对应的相位变换和方向角信息,以及y轴对应的相位变换和方向角信息,利用边界顶点确定方法确定目标区域;具体过程如下:
根据x轴对应的相位变换和方向角信息,标签阵列x中第一个标签,其在位置j处的相位变换用ΔθXj表示,求目标物体在x轴方向的下边界lX;采用的公式如下:
lX={d|J(d)>TlX}
Figure FDA0002934194940000021
Figure FDA0002934194940000031
TlX为设定阈值,W是用于减少虚警的鲁棒窗口,ΔθXj表示标签阵列x中第一个标签,其在位置j处的相位变换;
下边界lX为最终得到的位置d处的方向角信息;
求目标物体在x轴方向的上边界uX,采用的公式如下:
uX={d|J(d)<TuX}
Figure FDA0002934194940000032
Figure FDA0002934194940000033
其中,TuX为设定阈值;上边界uX为最终得到的位置d处的方向角信息;
求目标物体在y轴方向的下边界lY,采用的公式如下:
lY={d|J(d)>TlY}
Figure FDA0002934194940000034
Figure FDA0002934194940000035
其中,TlY为设定阈值;ΔθYj表示标签阵列y中第一个标签在位置j处的相位变换;下边界lY为最终得到的位置d处的方向角信息;
求目标物体在y轴方向的上边界uY,采用的公式如下:
uY={d|J(d)<TuY}
Figure FDA0002934194940000036
Figure FDA0002934194940000037
其中,TuY为设定阈值;上边界uY为最终得到的位置d处的方向角信息;
求目标区域的四个顶点,采用的方法如下:
上边界uX的方程为:
Figure FDA0002934194940000041
下边界lX的方程为:
Figure FDA0002934194940000042
上边界uY的方程为:
Figure FDA0002934194940000043
下边界lY的方程为:
Figure FDA0002934194940000044
其中,xAx为标签阵列x中第一个标签的横坐标;yAy为标签阵列y中第一个标签的纵坐标;
Figure FDA0002934194940000045
为x轴方向的上边界uX对应的方向角信息,
Figure FDA0002934194940000046
为下边界lX对应的方向角信息,
Figure FDA0002934194940000047
为y轴方向的上边界uY对应的方向角信息,
Figure FDA0002934194940000048
为下边界lY对应的方向角信息;
求解所述四个方程,得到目标区域的四个顶点。
3.如权利要求1所述的目标成像方法,其特征在于,所述步骤四中的根据目标物体在x轴方向的上边界uX和下边界lX之间的方向角信息,获得方向角信息对应的起点坐标,采用的方法如下:
记形成初始区域的四个初始点分别为IP1、IP2、IP3和IP4,边界VP1VP2和边界VP1VP4与x轴相对,目标物体在x轴方向的上边界uX和下边界lX之间的任意一个方向角信息θx与VP1VP2有交点,则起点
Figure FDA0002934194940000049
采用如下公式计算:
Figure FDA00029341949400000410
Figure FDA00029341949400000411
其中,(xVP1,yVP1)为VP1的坐标,(xVP2,yVP2)为VP2的坐标,xAx为标签阵列x中第一个标签的横坐标;
若方向角信息与VP1VP4有交点,则起始点
Figure FDA0002934194940000051
采用如下公式计算:
Figure FDA0002934194940000052
Figure FDA0002934194940000053
其中,(xVP1,yVP1)为VP1的坐标,(xVP4,yVP4)为VP4的坐标;
边界VP1VP2和边界VP2VP3与y轴相对,目标物体在y轴方向的上边界uY和下边界lY之间的任意一个方向角信息为θy与VP1VP2有交点,则起始点
Figure FDA0002934194940000054
采用如下公式计算:
Figure FDA0002934194940000055
Figure FDA0002934194940000056
其中,(xVP1,yVP1)为VP1的坐标,(xVP2,yVP2)VP2的坐标;
目标物体在y轴方向的上边界uY和下边界lY之间的任意一个方向角信息为θy与VP2VP3有交点,则起始点
Figure FDA0002934194940000057
采用如下公式计算:
Figure FDA0002934194940000058
Figure FDA0002934194940000059
其中,(xVP2,yVP2)为VP2的坐标,(xVP3,yVP3)为VP3的坐标;
所述的步骤四中的根据方向角信息对应的厚度信息,得到该起点坐标对应的终点坐标,对于x轴方向,终点坐标
Figure FDA00029341949400000510
采用如下公式计算:
Figure FDA00029341949400000511
Figure FDA00029341949400000512
其中,DAx为方向角信息θx对应的厚度信息;
对于y轴方向,终点坐标
Figure FDA0002934194940000061
采用如下公式计算:
Figure FDA0002934194940000062
Figure FDA0002934194940000063
其中,DAy为方向角信息θy对应的厚度信息。
CN201710952661.8A 2017-10-13 2017-10-13 一种目标成像方法 Active CN107945240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710952661.8A CN107945240B (zh) 2017-10-13 2017-10-13 一种目标成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710952661.8A CN107945240B (zh) 2017-10-13 2017-10-13 一种目标成像方法

Publications (2)

Publication Number Publication Date
CN107945240A CN107945240A (zh) 2018-04-20
CN107945240B true CN107945240B (zh) 2021-04-13

Family

ID=61935276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710952661.8A Active CN107945240B (zh) 2017-10-13 2017-10-13 一种目标成像方法

Country Status (1)

Country Link
CN (1) CN107945240B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110264534B (zh) * 2019-05-31 2023-03-24 西北大学 一种基于rfid的目标成像方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363653A (zh) * 2014-10-13 2015-02-18 西北大学 一种消除环境噪声的被动式定位方法
CN105182322A (zh) * 2015-08-31 2015-12-23 西北大学 基于反射信号相位差的被动式定位方法
CN106559749A (zh) * 2016-11-22 2017-04-05 天津大学 一种基于射频层析成像的多目标被动式定位方法
CN106646362A (zh) * 2016-12-14 2017-05-10 西北大学 一种基于多径信号空间谱的被动式目标定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818288B2 (en) * 2010-07-09 2014-08-26 University Of Utah Research Foundation Statistical inversion method and system for device-free localization in RF sensor networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363653A (zh) * 2014-10-13 2015-02-18 西北大学 一种消除环境噪声的被动式定位方法
CN105182322A (zh) * 2015-08-31 2015-12-23 西北大学 基于反射信号相位差的被动式定位方法
CN106559749A (zh) * 2016-11-22 2017-04-05 天津大学 一种基于射频层析成像的多目标被动式定位方法
CN106646362A (zh) * 2016-12-14 2017-05-10 西北大学 一种基于多径信号空间谱的被动式目标定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Device-free indoor localization using ambient radio signals;Andrei Popleteev;《Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication》;20130930;正文第549-552页 *
基于射频信号及信道状态信息的被动式目标定位方法研究;王举;《中国博士学位论文全文数据库 信息科技辑》;20170415;I136-13 *
基于无线传感器网络的无源被动式目标定位研究;王小雪;《中国优秀硕士学位论文全文数据库 信息科技辑》;20140315;I136-366 *

Also Published As

Publication number Publication date
CN107945240A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
Peršić et al. Extrinsic 6dof calibration of a radar–lidar–camera system enhanced by radar cross section estimates evaluation
CN108012325A (zh) 一种基于uwb和双目视觉的导航定位方法
Zhou et al. Homography-based ground detection for a mobile robot platform using a single camera
JP2019526781A (ja) 車両環境検知システム用に向上された物体検出及び運動状態推定
CN101334475A (zh) 利用雷达数据融合估计目标仰角的方法
CN105807260B (zh) 一种基于超声传感器的动态定位系统及方法
Xia et al. Global calibration of non-overlapping cameras: State of the art
Zhou et al. Robust ground plane detection with normalized homography in monocular sequences from a robot platform
CN109828250B (zh) 一种雷达标定方法、标定装置及终端设备
CN105866777B (zh) 多角度多时段导航卫星双基地PS-InSAR三维形变反演方法
CN111046877A (zh) 一种毫米波图像可疑物品检测方法和系统
CN108051007A (zh) 基于超声波组网和立体视觉的agv导航定位方法
CN112013858A (zh) 定位方法、装置、自移动设备和存储介质
Shim et al. A mobile robot localization using external surveillance cameras at indoor
CN107945240B (zh) 一种目标成像方法
JP2006090957A (ja) 移動体の周囲物体検出装置及び移動体の周囲物体検出方法
KR101720097B1 (ko) 사용자 기기의 측위방법
Alexiev et al. A Hough transform track initiation algorithm for multiple passive sensors
CN115930791B (zh) 一种多模态数据的集装箱货物位置与尺寸检测方法
Nguyen et al. Optical flow-based moving-static separation in driving assistance systems
Shortis et al. Automatic recognition of coded targets based on a Hough transform and segment matching
Chatzistefanou et al. Tag localization by handheld UHF RFID reader and optical markers
Akbarally et al. 3D robot sensing from sonar and vision
EP4363877A1 (en) Methods and systems for detecting vessels
KR101751170B1 (ko) 2개의 레이더를 이용한 이동 물체의 위치 추적 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant