CN107924806B - 通过针对离子能量分布的rf波形修改的反馈控制 - Google Patents

通过针对离子能量分布的rf波形修改的反馈控制 Download PDF

Info

Publication number
CN107924806B
CN107924806B CN201680049837.2A CN201680049837A CN107924806B CN 107924806 B CN107924806 B CN 107924806B CN 201680049837 A CN201680049837 A CN 201680049837A CN 107924806 B CN107924806 B CN 107924806B
Authority
CN
China
Prior art keywords
phase
power supply
output signal
power
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680049837.2A
Other languages
English (en)
Other versions
CN107924806A (zh
Inventor
戴维·J·库莫
R·莱因哈特
Y·埃尔纳
丹尼尔·M·吉尔
理查德·范
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MKS Instruments Inc
Original Assignee
MKS Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MKS Instruments Inc filed Critical MKS Instruments Inc
Priority to CN202110062133.1A priority Critical patent/CN112908824B/zh
Publication of CN107924806A publication Critical patent/CN107924806A/zh
Application granted granted Critical
Publication of CN107924806B publication Critical patent/CN107924806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种用于对将功率施加到诸如等离子体腔室等的负载的RF功率供应器进行控制的系统包括:主控功率供应器和从属功率供应器。主控功率供应器向从属功率供应器提供诸如频率及相位信号的控制信号。从属功率供应器接收该频率及相位信号,并且还接收从负载检测到的频谱发射的信号特征。从属RF功率供应器改变施加到负载的从属RF功率供应器的RF输出信号的相位和功率。改变功率将对离子分布函数的宽度进行控制,并且改变相位将对离子分布的波峰进行控制。根据RF发生器与负载之间的耦合,检测不同的频谱发射,包括一次谐波、二次谐波、以及在双频驱动系统的情况下的互调失真。

Description

通过针对离子能量分布的RF波形修改的反馈控制
技术领域
本公开涉及一种RF发生器系统,并且涉及一种RF发生器控制系统。
背景技术
在此提供的背景描述是以对本公开的内容进行一般性呈现为目的的。发明人当前提及的工作,即在本背景部分中所描述的工作程度、以及在说明书中可能尚未成为申请日之前的现有技术的各方面,无论是以明确或是隐含的方式均不被视为相对于本公开的现有技术。
等离子体蚀刻常被用于半导体制造。在等离子体蚀刻中,离子被电场加速以对基板上的暴露表面进行蚀刻。电场是基于由射频(RF)功率系统的RF发生器生成的RF功率信号而产生的。必须对由RF发生器生成的RF功率信号进行精确地控制以有效地执行等离子蚀刻。
RF功率系统可以包括RF发生器、匹配网络、以及负载(例如,等离子体腔室)。RF发生器生成在匹配网络处接收到的RF功率信号。匹配网络将该匹配网络的输入阻抗与RF发生器和匹配网络之间的传输线路的特性阻抗相匹配。该阻抗匹配有助于使前进到匹配网络的功率(“前向功率”)的量最大化,并且使从匹配网络反射回RF发生器的功率(“反向功率”)的量最小化。当匹配网络的输入阻抗与传输线路的特征阻抗相匹配时,前向功率可以被最大化并且反向功率可以被最小化。
在RF功率源或供应场中,通常有两种将RF信号施加到负载的方法。第一种更为传统的方法是将连续波信号施加到负载。在连续波模式中,连续波信号通常是由功率源连续输出到负载的正弦波。在连续波方法中,RF信号呈现正弦输出,并且可以改变正弦波的振幅和/或频率,以便改变施加到负载的输出功率。
将RF信号施加到负载的第二种方法涉及对RF信号进行脉冲,而不是将连续波信号施加到负载。在脉冲模式的操作下,RF正弦信号通过调制信号被调制,以便针对调制后的正弦信号定义包络(Envelope)。在传统的脉冲调制方案中,RF正弦信号通常在恒定的频率和振幅下输出。传输至负载的功率通过改变调制信号被改变,而非通过改变正弦的RF信号被改变。
在通常的RF功率供应器配置中,施加到负载的输出功率通过使用传感器来确定,该传感器对前向及反射功率或施加到负载的RF信号的电压及电流进行测量。在通常的控制回路中对这些信号中的任意一组进行分析。该分析通常会确定被用于对RF功率供应器的输出进行调节的功率值,以便改变施加到负载的功率。在负载为等离子体腔室的RF功率传输系统中,因为所施加的功率是负载的阻抗的函数的一部分,所以改变负载的阻抗会导致相应改变施加到负载的功率。
在等离子体系统中,功率通常以两种配置中的一种来传输。在第一配置中,功率被容性耦合到等离子体腔室。这种系统被称为容性耦合等离子体(CCP)系统。在第二配置中,功率被感性耦合到等离子体腔室。这种系统通常被称为感性耦合等离子体(ICP)系统。等离子体传输系统通常包括施加于一个或多个电极的偏置功率及源功率。源功率通常产生等离子体,并且偏置功率将等离子体调谐为相对于偏置RF功率供应器的能量。根据各种设计考虑,偏置和源可以共享相同的电极或者可以使用单独的电极。
当RF功率传输系统以等离子体腔室的形式来驱动负载时,由传输到等离子体腔室的功率所产生的电场导致腔室内的离子能量。离子能量的一个特征量度是离子能量分布函数(IEDF)。离子能量分布函数(IEDF)可以以RF波形来控制。用于对其中将多个RF功率信号施加到负载的系统的IEDF进行控制的一种方法是通过改变与频率和相位相关的多个RF信号而发生的。多个RF功率信号之间的频率被锁定,并且多个RF信号之间的相对相位也被锁定。参考转让给本发明的受让人并且通过引用将其并入本申请中的美国专利第7,602,127号、美国专利第8,110,991号、以及美国专利第8,395,322号,可以找到这种系统的示例。
RF等离子体处理系统包括用于等离子体的产生及控制的组件。一个这样的组件是指等离子体腔室或反应器。RF等离子体处理系统(例如用于薄膜制造的RF等离子体处理系统)中所使用的典型的等离子体腔室或反应器利用双频系统。双频系统的一个频率(源)对等离子体的产生进行控制,并且双频系统的另一个频率(偏置)对离子能量进行控制。双频系统的示例包括在以上引用的美国专利第7,602,127号、美国专利第8,110,991号、以及美国专利第8,395,322号中所描述的系统。在以上引用的专利中所描述的双频系统需要闭环控制系统以适应RF功率供应器操作,以便对离子密度以及其对应的离子能量分布函数(IEDF)进行控制。
存在用于对用以产生等离子体的等离子体腔室进行控制的多种方法。例如,可以使用驱动RF信号的相位和频率来对等离子体的产生进行控制。对于RF驱动的等离子体源而言,对等离子体鞘动力(plasma sheath dynamics)和对应的离子能量产生影响的周期性波形通常是已知的,并且周期性波形的频率与相关联的相位相互作用。另一种方法涉及双频操作。也就是说,两个RF频率源被用来向等离子体室提供功率,以提供对离子和电子密度的实质上的独立控制。
另一种方法利用宽带RF功率源来对等离子体腔室进行驱动,但是存在一定的困难。一个困难是将功率耦合到电极。第二个困难涉及所产生的波形到所需IEDF的实际鞘电压(sheath voltage)的转换函数必须针对宽工艺空间(wide-process space)来进行公式化,以支持材料表面的相互作用。在感性耦合等离子体方法中的另一种方法中,控制施加到源电极的功率会对等离子体密度进行控制,同时控制施加到偏压电极(bias electrode)的功率会对IEDF进行控制,以提供蚀刻速率控制。通过利用源电极以及偏压电极控制,蚀刻速率经由离子密度和能量而得到控制。
尽管上述系统使得能够对等离子体工艺进行一定程度的控制,但是对于较小的元件以及提高的产量的不断增长的需求将需要对上述方法进行持续的改进。
发明内容
本部分提供本公开的总体概述,而不是其全部范围或其全部特征的全面公开。
一种射频(RF)发生器系统包括:生成施加到负载的RF输出信号的功率源。传感器检测来自负载的频谱发射,其中频谱发射包括谐波和互调失真(IMD)中的至少一个。控制模块根据在频谱发射中检测到的谐波或IMD中的一个来改变输出信号。
一种射频(RF)功率传输系统包括:生成第一RF输出信号的第一功率供应器,以及生成第二RF输出信号的第二功率供应器。传感器对来自负载的频谱发射进行检测,其中频谱发射包括第一或第二功率供应器的谐波和第一RF信号与第二RF信号之间的互调失真(IMD)这两者中的至少一个。控制器根据谐波或IMD中的至少一个、以及来自第一功率供应器的控制信号中的至少一个,来改变第二RF输出信号。
一种射频(RF)系统包括具有第一功率源的第一RF发生器,其中第一RF发生器生成控制信号。第二RF发生器包括第二功率源,其中第二RF发生器接收来自第一RF发生器的控制信号。控制信号包括相位及频率信息。第二RF发生器具有信号处理单元,其中信号处理单元生成施加到第二功率源的相位或功率指令中的至少一个。
一种用于RF功率供应器系统的控制器包括谐波/互调失真(IMD)处理器。IMD处理器接收频率输入信号和从负载中感测到的频谱发射,并且谐波/IMD处理器生成相位设定。相位确定处理器接收频率输入信号、相位设定或施加到负载的功率的传感器信号特性这三者中的至少一个。相位确定处理器根据所接收的信号来生成相位控制信号。
一种用于对射频(RF)发生器进行控制的方法包括:对来自负载的频谱发射进行检测,其中频谱发射具有谐波和互调失真(IMD)中的至少一个。RF功率源的输出信号根据在频谱发射中检测到的谐波或IMD中一个而改变。
本公开的另外的应用领域将根据详细描述、权利要求书以及附图而变得显而易见。详细描述和具体示例仅旨在用于说明性的目的,而并不旨在限制本公开的范围。
附图说明
根据详细描述以及附图,将更全面地理解本公开。这里描述的附图仅用于选定实施例的说明目的,而不是所有可能的实现方式,并且并不旨在限制本公开的范围。
图1描绘了一种感性耦合等离子体系统的表示;
图2描绘了一种容性耦合等离子体系统的表示;
图3描绘了根据本公开的各种实施例布置的等离子体系统的概括表示;
图4描绘了针对图3的等离子体系统的特定实施方式的与时间有关的等离子体鞘电压和离子视在电压(ion apparent voltage)的波形;
图5描绘了针对图3的等离子体系统的特定实施方式的离子电压对标准化相位的二维曲线图;
图6描绘了针对图3的等离子体系统的特定实施方式的离子电压对标准化相位对离子能量分布的三维曲线图;
图7描绘了针对图3的等离子体系统的特定实施方式的在基准频率和基准频率的第二谐波下的标准化相位对鞘电压发射的曲线图;
图8描绘了针对图3的等离子体系统的特定实施方式的在等离子体驱动系统中的两个不同位置处测量到的标准化相位对谐波电压的曲线图;
图9描绘针了对图4的等离子体系统的特定实施方式的离子电压对标准化相位对离子能量分布的三维曲线图;
图10描绘了针对图4的等离子体系统的特定实施方式的用于基本驱动信号的谐波和互调失真频率的标准化相位对鞘电压发射的曲线图;
图11描绘根据本公开的原理布置的RF控制系统的框图;
图12是在ICP系统上实现的本公开的RF控制系统的框图;
图13是在CCP系统上实现的本公开的RF控制系统的框图;以及
图14是用于修改针对离子能量分布的RF波形的方法的流程图。
在附图中,附图标记可被重复使用以识别相似和/或相同的元件。
具体实施方式
现在将参考附图来更全面地描述示例实施例。
图1描绘了感性耦合等离子体(ICP)系统10的示例性表示。ICP系统10包括用于产生等离子体14的等离子体腔室12。电压或电流形式的功率经由包括内部线圈16和外部线圈18在内的一对线圈被施加到等离子体腔室12。功率经由RF功率源20被施加到内部线圈16,并且功率经由RF发生器或功率源22被施加到外部线圈18。线圈16和18放安装在介电窗24中,该介电窗24协助将功率耦合到等离子体腔室12。基板26被放置在等离子体腔室12中,并且通常形成作为等离子体操作的主体的工件。RF发生器或功率源28经由基板26将功率施加到等离子体腔室12。在不同配置中,RF功率源20、22提供偏置电压或电流以激发或产生等离子体14。此外在不同配置中,RF功率供应器28提供偏置电压或电流,该偏置电压或电流改变等离子体14的离子能量和/或离子密度。在不同配置中,RF源20、22和28被锁定,以在相同的频率、电压和电流下以固定或变化的相对相位来进行操作。在其他不同配置中,RF源20、22和28可以在不同的频率、电压和电流以及相对相位下进行操作。
图2描绘容性耦合等离子体(CCP)系统30的示例性表示。CCP系统30包括用于产生等离子体34的等离子体腔室32。放置在等离子体腔室32内的一对电极36、38连接到相应的RF发生器或功率源40、42。在不同配置中,RF功率源40提供源电压或电流以激发或产生等离子体34。此外在不同配置中,RF功率源42提供偏置电压或电流,该偏置电压或电流改变等离子体34的离子能量和/或离子密度。在不同配置中,功率源40、42在相同的频率、电压和电流以及相对相位下进行操作。在其他不同配置中,功率供应器40、42在不同的频率、电压和电流工作下以固定或变化的相对相位来进行操作。此外在不同配置中,功率供应器40、42可以连接到同一电极,而另一电极被接地或连接至其他的第三RF发生器。
图3描绘双频等离子体系统50的概括性表示,并且将被用于描述本公开的RF功率系统的一般性操作。等离子体系统50包括连接到地54的第一电极52以及与第一电极52间隔开的第二电极56。低频第一功率源58在第一频率f下产生施加到第二电极56的第一RF功率。高频第二功率源60在第二频率nω下产生施加到第二电极56的第二RF功率,该第二频率nω是第一功率源58的频率的第n个谐波频率。
将相应的第一和第二功率施加到第二电极56产生具有电子密度ne的等离子体62。在等离子体62内的是具有更大的正离子密度的鞘层,并且因此总体上过量的正电荷将在与其接触的等离子体(未示出)内的材料表面上与相反负电荷相平衡。确定鞘的位置是与等离子体处理操作相关的。可以根据公式(1)中所示的鞘调制函数来定义鞘相对于第一电极52和第二电极56的位置:
[公式1]
Figure BDA0001583392180000061
其中:
ω=2πf为双频系统的较低频率f;并且
θη为频率(在这种情况下为谐波音调(harmonic tones)的频率)之间的相对
相位(n>1)。
术语sn是鞘振荡的振幅,并且在公式(2)中被定义为:
[公式2]
Figure BDA0001583392180000062
其中:
In为与相关联的驱动电流;
ne为电子密度;
A为电子放电区域(electro discharge area);并且
e为电子电荷。
上述公式(1)和(2)表明,鞘的位置根据在公式(1)的情况下的θ之间的相对相位以及在公式(2)的情况下的所施加的功率In而变化。就IEDF而言,所施加的功率In有时亦指相对振幅的变化或宽度,并且相对相位θ有时亦指相对相位的变化或偏斜(skew)。
用于表征鞘的有用特性可由下面关于公式(3)所描述的鞘电压发现:
[公式3]
其中:
e0为自由空间的电子电荷介电常数;
e,ne,|s(t)为如上所述的。
从鞘振荡sn的振幅中,可以根据公式(4)来确定等离子体的离子电压:
[公式4]
Figure BDA0001583392180000063
其中:
sn,e,ne,e0,n,f,|e为如上所述;并且
[公式5]
Figure BDA0001583392180000071
其中:
sn,n,|ω为如上所述;并且
[公式6]
Figure BDA0001583392180000072
其中:
mi为离子的质量;以及
VDC为对等离子体进行表征的直流(DC)电压。
图4呈现用于表明在波形68处所示的等离子体鞘电压和在波形70处所示的离子视在电压Vion(t)的波形。针对等离子体鞘电压68的刻度被提供在左侧的y轴上,并且针对离子视在电压70的刻度被提供在右侧的y轴上。x轴提供以纳秒为单位的时间尺度。从图4可以看出,在波形70处所示的离子视在电压提供针对等离子体鞘电压68的近似包络。
在多个谐波下对该对电极中的一个电极进行驱动使得能够通过调节驱动频率之间的相位来电性地控制DC自偏置。对一个电极进行驱动还使得能够通过控制IEDF的高阶矩并自定义在基板处的鞘电压波形来修改IEDF的形状。为了调节至特定的IEDF,可以将以上用于鞘动力的公式特殊化。例如,假设图3的等离子体系统10是双频、CCP系统,则鞘厚度为如在公式(7)中的时间函数所描述的:
[公式7]
其中:
ω=2πf为上述对于公式(1)所描述的;并且
Figure BDA0001583392180000074
为谐波音调(n>1)之间的相对相位。
因此公式(7)是具有η=2的公式(1)的特定表现。鞘振荡的振幅由上面的公式(2)来定义。此外,时间依赖的鞘电压由公式(8)来描述:
[公式8]
Figure BDA0001583392180000073
其中公式中的术语为以上关于公式(3)所描述的。应注意的是,公式(3)和(8)是相似的,且其不同之处在于一个是另一个的负。
从以上公式中,相对相位和电流大小是RF功率传输系统的可控元素。功率设定点对公式(2)的对应In进行调节,并且双RF功率传输系统的频率被谐波地导出,从而使得相位锁定。公式(8)的鞘电压Vbias(t)由RF信号的频率、相位和振幅来管控,以从具有RF功率传输方案的任意波形生成中产生特定的lEDF。总之,(1)鞘电压是驱动频率和所吸收功率的函数;(2)离子电压直接受到鞘电压的影响;和(3)鞘电压可以控制RF功率供应器,以对离子电压和离子能量的分布产生影响。
在以上针对鞘动力的一般性描述的具体示例中,对于ICP源极而言,双感应线圈之间以及这些线圈与偏置阴极之间的等离子体鞘关系受益于数字锁相环。对于具有双感应线圈的ICP系统而言,公式(1)(具有n=2)中所描述的鞘厚度被概括并参数化为如公式(9)所示的时间函数。
[公式9]
s(t)=αt sin(ωt+φt)+αosim(ωt+φo)+sbsin(ωtb)
其中:
为来自针对相应的内部和外部线圈的源中的鞘振荡的振幅;
sb为针对偏置的鞘振荡的振幅;以及
φ为施加到相应的源和偏置的RF信号之间的相对相位。对于两个鞘调制函数,偏置电压通过时变鞘公式(9)的平方来获得。通过将正弦函数平方,可以导出谐波分量。如果正弦函数包含不同的频率,则也会产生互调失真产物。
总之,连接到等离子体腔室的RF功率供应器可以被改变以对离子能量进行控制,其中离子电压是通过鞘调制的平方而产生的。结果,产生了来自离子电压的谐波发射。谐波的数量提供了离子能量的反馈机制的形成。
如将更详细描述的,系统对从鞘中发射的RF频谱进行检查。根据RF频谱,诸如幅度和相位等的信号特征根据谐波和互调失真产物来确定,以表征将被控制的鞘电压和离子能量。根据信号特征,确定离子能量分布函数(IED)的条件,并且控制RF功率传输系统以达到所期望的IEDF结果。因此,对RF功率传输系统的控制将根据RF频谱发射而改变。
在本文所述的各种实施例中,一个实施例涉及具有以在源极和偏压电极处驱动的相同频率耦合的RF功率的感性耦合等离子体(ICP)源的示例。在各种实施例中,容性耦合等离子体(CCP)具有与偏置功率供应器耦合以混合一组频率的RF功率源。在各种实施例中,离子能量分布函数可以通过功率控制以及偏置到通过源自频谱谐波发射的反馈所引导的源相位控制,而受到正面影响。在各种实施例中,耦合到偏压电极的谐波相关RF功率传输系统根据谐波和互调失真产物的鞘电压发射来提供离子能量分布函数的可控性。
图5至图8描绘了作为源RF功率供应器与偏置RF功率供应器之间(例如,在诸如图1所示的ICP系统的RF功率供应器20、22(被认为是源供应器)与RF功率供应器28(被认为是偏置供应器)之间)的相互作用的函数的鞘调制和离子电压的曲线图。在该特定示例中,RF功率供应器20、22的频率和相位被锁定。在该特定示例中,功率供应器20、22、28的频率是13.56MHz。而且,在该示例中,由源RF功率供应器20、22和偏置功率供应器28输出的RF信号之间的相位是变化的。由源RF功率供应器20、22输出的电流保持恒定。
图5和图6描绘了作为离子电压和相位的函数的IEDF波形80,如图中被标准化示出。图5是IEDF曲线图的二维表示,图6是IEDF曲线图的三维表示。因此,图5也显示出IEDF的大小。图5和图6的x轴代表以电子伏特(eV)表示的离子电压,y轴代表偏置相位,该偏置相位针对施加到偏置的电压进行标准化,并且z轴代表IEDF。如在图5和图6中可以看出,源RF功率供应器20、22与偏置RF功率供应器28之间的相位(偏置相位)接近1,存在被标记为较低波峰82和较高波峰84的两个不同波峰。如在图6中最为清晰地看出,波峰位于IEDF的外围。随着偏置相位的降低,波峰变宽而在接近0.2的偏置相位处具有最大的宽度,然后开始收敛。在接近-0.8的偏置相位处,较低波峰和较高波峰交汇而形成单能量波峰86。随着偏置相位持续降低,单个波峰开始分叉而回到两个独立的波峰。
图7描绘了在直流(DC)90、13.56MHz的频率92、以及在27.12MHz的频率94下的鞘电压发射的波形。27.12MHz的频率是13.56MHz频率的二次谐波。在图7中,x轴代表标准化的相位,并且y轴代表来自等离子体腔室(诸如图1的等离子体腔室12)的发射。因此可以看出,13.56MHz和27.12MHz电压信号对应于IEDF的宽度,并且这些信号的最小值与在图6的-0.8的相位处的单能量IEDF波峰86一致。
图8描绘了沿x轴的标准化相位相对在匹配网络处测量到的且沿着左侧y轴绘制的谐波电压以及在RF发生器处测量到的且沿着右侧y轴绘制的谐波电压的曲线图。由圆圈表示的波形100对应于匹配网络处的谐波电压,并且由方块表示的波形102对应于RF发生器处的谐波电压。谐波电压可以使用电压/电流探针来测量。更具体而言,匹配网络处的谐波电压可以通过在匹配网络的输出与偏压电极之间放置VI探针来测量。类似地,RF发生器的谐波电压可以通过在RF发生器的输出与和偏压电极相关联的匹配网络之间放置VI探针来测量。
在源RF功率供应器20、22和偏置RF功率供应器28的频率和相位锁定的情况下,偏置相位的增量变化表明,如图5和图6所示,随着IEDF的较低波峰和较高波峰收敛以形成单一的单能量波峰,图8中的二次谐波电压两者都达到最小值。图7的27.12MHz的电压信号94的最小值在接近-0.8的相位夹角处对应于IEDF的最小宽度。在RF发生器和匹配网络这两处测量到的谐波信号与单能量IEDF波峰所需的相位测量值一致。
在上面关于图1和图5至图8所描述的RF功率传输系统中,RF频谱的检查使得能够改变对RF功率传输系统的控制以达到所期望的IEDF。在如上关于图1和图5至图8所描述的系统(有时称为三重RF功率供应器)中,离子能量分布(IED)中的两个波峰82、84通过改变偏置到源功率供应器之间的相对相位而被控制。此外,单能量离子能量分布函数发生在特定的偏置-源相位关系下。如图7的波形94所示,单能量条件通过二次谐波发射中的最小值被检测到。
上面关于图1和图5至图8的讨论描述了三重系统。在三重系统中,两个RF功率供应器和RF偏置功率供应器在相同的频率下进行操作,并且两个RF源功率供应器和RF偏置功率供应器在变化的相对相位下进行操作。对源RF功率供应器和偏置RF功率供应器进行驱动的另一种方法采用在第一频率下对源或偏置RF功率供应器中的一个进行操作,并且在作为第一频率的谐波的第二频率下对源或偏置RF功率供应器中的另一个进行操作。这种配置可被称为谐波驱动等离子体系统,并且可以看出与操作CCP等离子体系统30有关,例如在图2中所示。根据鞘调制函数以及相应受到鞘电压影响的离子电压,相位调整可以在谐波驱动等离子体系统中对离子能量分布函数的波峰进行控制。
通过示例并参考图2的方式,RF功率供应器42可以被指定为偏压电极并且在13.56MHz的频率下被驱动。图2的功率源40可以被指定为源电极并且在27.12MHz的频率下被驱动。图9描绘了三维图中的IEDF波形110,该IEDF波形110具有沿着一个轴绘制的标准化相位、沿着第二轴绘制的以电子伏特表示的离子电压、以及在第三轴上绘制的离子能量分布(IED)。从图9可以看出,IEDF波峰的偏斜相对于RF功率供应器40、42之间的相对相位而言是线性的。此外,IEDF波峰112关于标准化相位是周期性的。
图10描绘了来自图2的等离子体室34的电压发射相对于标准化相位的曲线图。图10描绘了在IMD频率(波形120)和二次谐波频率(波形122)处的标准化相位相对标准化鞘电压发射的波形。也就是说,IMD为40.68MHz(13.56MHz(偏置功率供应器频率)+27.12MHz(源功率供应器42频率))。二次谐波为54.24MHz(2×27.12MHz)。在为0的标准化相位处,图10的波形随着相位变化而跨越至最大值和最小值。各个电压波形120、122的最大波峰124、126位于为-0.3的标准化相位处,并且各个电压波形120、122的最小波峰128、130近似地并列在为0.3的标准化相位处。当涉及图9中的IEDF曲线图时,电压波峰与单一的IEDF波峰的线性离子电压范围相对应。通过获知图10的电压发射的波峰,来确定图9的IEDF波峰的线性范围。在已知IEDF波峰的情况下,可以通过改变谐波驱动的RF功率传输系统的相对相位,来对离子能量的偏斜进行控制。
不论驱动系统是三重驱动系统还是谐波驱动系统,上述都提供了对来自RF频谱发射的IEDF和IED波峰进行控制的灵活性。在三重耦合的RF功率传输系统中,例如在图1和图5至图8中概括描述的,确定来自谐波发射的最小电压使得能够收敛至单一的IEDF。对于谐波导出的RF功率传输系统,例如在图2、图9和图10中概括描述的,从频谱发射中检测到的波峰提供了RF信号至IEDF波峰的相对相位之间的线性关系。因此,本文描述的实施例提供了以下的能力:(1)确定离子能量分布的波峰;和(2)随后对分布波峰的离子能量进行控制。
图11描绘了用于对负载(未示出)进行驱动的包括一对射频(RF)发生器或功率供应器152a、152在内的RF发生器或功率供应器系统150。RF发生器152a、152b可以使用控制信号来实现主-从配置,如将更详细描述的那样。RF发生器152a被指定为主控,并且RF发生器152b被指定为从属。在各种实施例中,RF发生器152b的功率(电压或电流)、频率和相位可以利用从RF发生器152a发送到RF发生器152b的控制信号而从属于RF发生器152a的频率。在各种实施例中,由RF发生器152a输出的频率信号可以根据来自诸如等离子体腔室等的负载的频谱发射样本来确定。当控制信号不存在于RF发生器152a时,RF发生器152a和152b可以自主操作。在此引用并且并入本文的美国专利第7,602,127、8,110,991以及8,395,322号描述了在主/从关系下的双功率供应器系统的操作。
RF发生器152a、152b包括各自的RF功率源或放大器154a、154b;RF传感器156a、156b;以及处理器、控制器或控制模块158a、158b。RF功率源154a、154b产生输出到各个传感器156a、156b的RF功率信号163a、163b。传感器156a、156b接收源154a、154b的输出并生成相应的RF功率信号f1和f2,并且还输出根据从诸如等离子体腔室等的负载中接收到的频谱发射而发生变化的信号。虽然传感器156a、156b与各自的RF发生器152a、152b一起被示出,但应当注意,RF传感器的频谱采样可以发生在RF功率发生器152a、152b的外部。这种外部感测可以发生在RF发生器的输出、在位于RF发生器与等离子体腔室之间的阻抗匹配设备的输入、或在阻抗匹配电路的输出(包括在阻抗匹配设备的内部)与等离子体腔室之间。
传感器156a、156b对来自诸如等离子体腔室等的负载(未示出)的频谱发射进行检测,并且输出信号X和Y。传感器156a、156b可以包括电压传感器、电流传感器和/或定向耦合传感器。传感器156a、156b可以检测(i)从功率放大器154a、154b中输出的电压V和电流I;和/或(ii)从相应的功率放大器154a、154b和/或RF发生器150a、150b中输出的正向(或源)功率PFWD、以及从匹配网络或连接到相应的传感器156a、165b的负载中接收到的反向(或反射)功率FREV。电压V、电流I、正向功率PFWD和反向功率FREV可以是与相应的功率源154a、154b相关联的实际电压、电流、正向功率和反向功率的缩放和/或滤波版本。传感器156a、156b可以是模拟和/或数字传感器。在数字实现中,传感器156a、156b可以包括模拟-数字(A/D)转换器以及具有对应采样率的信号采样组件。信号X和Y可以表示电压V和电流I或正向(或源)功率PFWD和反向(或反射)功率PREV中的任何一个。
传感器156a、156b生成由相应的控制器或功率控制模块158a、158b接收的传感器信号X、Y。功率控制模块158a、158b对相应的X、Y信号160a、162a和160b、162b进行处理,并生成至相应的功率源154a、154b的一个或多个反馈控制信号。功率放大器154a、154b基于所接收的反馈控制信号来调节RF功率信号163a、163b。功率控制模块158a、158b可以至少包括比例积分微分(PID)控制器或其子集和/或直接数字合成(DDS)组件和/或下面结合术语模块描述的任何各种组件。在各种实施例中,功率控制模块158a、158b是第一PID控制器或子集,并且可以包括被标识为Dp(z)的函数、处理、处理器、子模块或模块。Dp(z)在下面描述的任何一个模块变形中实现。反馈控制信号164a、164b可以是驱动信号,并且具有DC偏移或干线电压、电压或电流幅度、频率以及相位。
RF功率供应器152a的控制模块158a将控制函数Dp(z)应用于接收到的信号X、Y,并生成反馈控制信号164a。反馈控制信号164a包括用于对RF功率源154a进行控制的频率以及功率控制分量这两者。因此,RF功率源154a根据在反馈控制信号164a中传送来的频率及功率信息来生成RF功率信号163a。在反馈控制信号164a中传送来的功率信息可以包括电压信息和/或电流信息。控制模块158a还生成输入到RF发生器152b的控制模块158b中的频率及相位信息信号166。频率及相位信息信号166包括频率信息,该频率信息包括f1的频率和f1的相位。
在各种实施例中,从属RF发生器152b对f2的相对于所输入的频率及相位信息信号166的输出相位进行调整,并由此对由RF发生器152a针对特定的相位设定点而输出的f1进行调整。频率及相位信息信号166包含关于f1的相位和频率的信息。RF功率供应器152b的控制模块158b除了接收来自传感器156b的信号X、Y之外,还接收来自RF发生器152a的频率及相位信息信号166以及相位设定点信号168,并且应用函数、处理、处理器、子模块或模块Dp(z)和Dfφ(z),以生成一个或一对相应的反馈控制信号164b'、164b”。
控制模块158b包括谐波/IMD处理器或模块170、以及时分多路复用器或多路复用模块172。控制模块158a、158b、谐波/IMD处理器或模块170、以及多路复用模块172在下面描述的任何一个模块变形中实现。控制模块158b包括耦合到传感器156b以接收信号X、Y的谐波/IMD模块170。谐波/IMD模块170还接收相位及频率信号166。谐波/IMD模块170生成针对数字控制函数Dfφ(z)的相位设定φ。相位设置φ定义相位,并且Dfφ(z)根据φ来确定针对RF功率源154b的操作的相位及频率。Dfφ在下面描述的任何一个模块变形中实现。在第一操作模式下,谐波/IMD模块170根据从外部源(诸如外部控制器等)接收到的相位设定点信号168来生成相位设定φ。第一操作模式可被称为旁路操作模式,并且当谐波/IMD模块170被禁用时可以是可操作的。
在第二操作模式中,例如当谐波/IMD模块170被启用时,谐波/IMD模块170根据输出信号X、Y和包含在频率及相位信息信号166中的信息来生成相位设定φ。根据在RF传感器156b的输出处采样到的频谱发射来确定相位设定φ。因此根据结合图1至图10所描述的方法来确定相位设定φ。也就是说,相位是结合使源或偏置信号的谐波、以及源或偏置信号的谐波和IMD这两者中的一方或双方最小化来确定的。
频谱发射可以在频域或时域中确定。对于频域处理而言,可以应用快速傅里叶变换(FFT)或小波变换,以从RF传感器信号X、Y中获得来自所关注的一个或多个频率中的信息。对于时域处理而言,模拟或数字形式的外差法以及相关滤波是提取特定频率的适当方法。
控制函数Dfφ(z)接收相位设定φ并且生成至功率放大器154b的频率及相位反馈控制信号164b”。控制函数Dfφ(z)还经由频率及相位信息信号166从RF发生器152a中接收频率及相位信息。控制函数Dfφ(z)生成至功率源154b的频率及相位控制信号164b”,以改变鞘调制函数的偏斜参数,从而对IEDF的波峰进行控制。因此Dfφ(z)的频率和相位将来自RF功率源154b的信号和来自RF功率源154a的信号锁定。
频率及相位信息信号166被输入到时分复用器(TDM)172。TDM 172对包含在频率及相位信息信号166内的信息以及来自由传感器156b输出的信号Y的信号信息进行多路复用。在各种实施例中,输入到TDM的信号Y可以是电压或电流。TDM 172对信号166和从传感器156b中输出的Y进行多路复用,并且将多路复用后的输出应用到控制函数Dfφ(z)和控制函数Dp(z)。
控制函数Dp(z)经由TDM 172接收来自RF发生器152a的频率及相位信息信号166和来自传感器165b的X或Y信号中的一个。在图13的实施例中,TDM 172从传感器156b中接收Y信号。控制函数Dp(z)还接收从传感器156b输出的信号X、Y中的另一个。因此,控制模块158b的控制函数Dy(z)176接收频率及相位信息信号166、以及来自传感器156b的X、Y信号。控制函数Dp(z)根据接收到的频率、X和Y信号来生成输出至RF源154b的功率信号164b'。RF源154b生成RF功率信号163b。因此,控制模块158b的控制函数Dp(z)生成功率信号,以控制鞘振荡振幅的宽度参数,并因此控制IDEF的宽度,如上面关于图1至图10所述。
对于频率或时域处理而言,其目的是从由传感器156a、156b输出的X、Y信号中提取与鞘电压发射有关的信号。鞘电压发射信号具有已知的频率细节。在各种实施例中,例如结合图1和图5至图8所讨论的三重功率供应器配置,对二次谐波进行采样,在一个特定示例中为27.12MHz。在结合图2、图9和图10所讨论的谐波驱动频率方案的情况下,在一个特定示例中为40.68MHz的互调失真产物(IMD)以及在一个特定示例中为54.24MHz的第二谐波包含必要的信号细节,以确定与离子能量分布的波峰位置相关的信息,并且以便能够对RF功率源154b的操作参数进行调节以在特定的离子能量下产生波峰。因此,谐波/IMD模块170从在传感器156b输出的信号X、Y中提供的采样RF传感器频谱中提取信号信息,由于其与鞘电压发射相关。在上述各种实施例中,在RF功率源154a、154b或第一阶互调产物(f2-f1)中的一个的谐波下的电压信号对离子能量分布的波峰位置进行识别。一旦IEDF的波峰位置由谐波/IMD模块170确定,就可以将IEDF波峰位置(偏斜)调节到IEDF中的期望位置。
在各种实施例中,图11的RF发生器152a、152b可以单独地如上述那样配置,或者可以相同地配置以有效地对频谱发射进行检查并相应地对频率、功率和相位进行调整。在大体上相似的配置中,RF发生器152a可以被配置为如发生器152b中所描述的那样。此外,在各种实施例中,如果类似地进行配置,则RF发生器152b可以被配置为RF发生器配置中的主控,并且将控制信号输出到从属RF发生器152a。
各种实施例可以包括耦合到等离子体腔室的上述RF功率传输系统。图12描绘了ICP系统180的各种实施例,ICP系统180利用以上关于图11所描述的RF发生器的配置,将功率提供给等离子体腔室12(诸如在图1的ICP系统10中所示)。在图12中,将使用相同的附图标记来指代来自图1的相似组件,并且可以根据需要来增加或区分对这种相似组件的描述。除了与图1中所描述的组件相似的组件之外,图12还包括传感器182、184、186这三者。传感器182、184、186与相应的RF发生器20、22、28相关联,并且将X、Y输入提供给相应的RF发生器20、22、28。
参考图11和图12,RF发生器20、22的操作类似于在美国专利第7,602,127号、美国专利第8,110,991号和美国专利第8,395,322号中定义并且被并入本文的主从关系。RF发生器20作为针对RF发生器22和RF发生器28中的每一个的主控RF发生器来进行操作。相对于RF发生器22,RF发生器20将频率及相位信号输出到RF发生器22,并且RF发生器22在上面参考的美国专利中所讨论的内容中作为从属发生器来进行操作。RF发生器20将相位及频率信息信号输出到RF发生器28,该RF发生器28在关于图11所讨论的上下文中作为从属来进行操作。
在ICP系统180的各种实施例中,在RF功率供应器20充当对于RF发生器20和RF发生器28这两者的主控的情况下,偏置RF发生器28被锁定至RF发生器20、22的频率及相位。在ICP系统180的配置中,频谱采样发生在偏置RF发生器28处。RF发生器28被配置为与图11的RF发生器152b相类似。偏置RF发生器28包括谐波/IMD模块170,谐波/IMD模块170对在各个谐波XE,YE处采样到的偏置信号进行检查,以对偏置RF发生器28与源RF发生器20之间的相对相位进行调节。相对于从RF发生器20中接收到的频率及相位信号来调节RF发生器28的相位提供了对离子能量分布内的波峰位置的控制。
图13描绘了CCP系统190的各种实施例,CCP系统190利用与以上关于图2所描述的RF发生器的相似配置,用于将功率提供给等离子体腔室32(诸如图2的等离子体系统30中所描述的)。在图13中,将使用相同的附图标记来指代图1的相似组件,并且可以根据需要来增加或区分对这种相似组件的描述。图2的RF发生器40以类似于图11的RF发生器152a的配置来实现,并且RF功率源42以类似于图11的RF发生器152b的配置来实现。
如上关于图2所描述的,RF发生器40、42可以连接到诸如电极36、38等的公共电极,并且两个电极36、38中的另一个可以接地或者连接至其他的第三RF发生器。图13还包括一对匹配网络192、194。匹配网络192被配置为双匹配网络,该双匹配网络接收频率信号f1和f2,并且为每个RF发生器40、42提供适当的阻抗匹配。双匹配网络192可以交替地被实现为独立网络,每个网络针对相应的RF发生器40、42中的每一个提供适当的阻抗匹配。CCP系统190还包括特高频(VHF)RF发生器或源196。在各种实施例中,VHF RF发生器196将RF信号提供给等离子体腔室32的两个电极36、38中的另一个。VHF RF发生器196将VHF RF功率信号198提供给匹配网络194。匹配网络194提供VHF RF发生器196与等离子体腔室32之间的阻抗匹配。在各个实施例中,RF发生器40、42将功率施加到偏压电极,并且VHF RF发生器186将功率提供至源电极。因此,对于图13中的CCP系统而言,偏置由两个RF发生器40、42来提供功率,这两个RF发生器利用参考图2、图8和图9所讨论的方法锁定与相位及频率相关的谐波。
图14描绘根据各种实施例的用于针对离子能量分布210的RF波形修改的反馈控制方法的流程图。在块212处,控制开始并且各种参数被初始化。在块214处,将主控RF功率供应器的频率设定在诸如具有一相位的频率f1处。在各种实施例中,频率f1被输出到诸如上述的等离子体腔室等的负载。接下来控制行进到块216,其中具有频率及相位信息的信号被发送到用于从属功率供应器的控制器。在218的判定块中,确定主控功率供应器和从属功率供应器是在大致相同的频率下(例如上面讨论的ICP系统)还是在双频下(例如在上面讨论的CCP系统)进行操作。应该注意的是,块218被认为是可选的范围,如果已经确定了主控和从属是在大致相同的还是在不同的频率下驱动,则块218并非是必要的。因此,块218被包括以便于理解取决于主控功率供应器和从属功率供应器操作时的频率而进行检查的频谱发射。
如果主控功率供应器和从属功率供应器在大致相同的频率下进行操作,则控制行进到块220,其中对在来自负载的频谱发射内包含的谐波进行检查,并确定目标相位。如果主控功率供应器和从属功率供应器在不同的频率下进行操作,则控制行进到块222,其中对在来自负载的频谱发射内包含的谐波和IMD进行检查,并确定目标相位。在各种实施例中,目标相位对IED中的波峰进行确定。在块220或222中的任何一个中,确定出目标相位,并且控制行进到块224。在块224中,根据目标相位来设定从属功率供应器的相位及频率。接下来控制行进到块226,其中从属功率供应器的功率也根据块220或222的输出来确定。在各种实施例中,通过从属设定的功率将对IED的宽度进行确定。
在各种实施例中,可能期望对从属RF生成器152b进行脉冲,以改变离子电压。也就是说,虽然在一些实施例中,可以期望在诸如图5的波峰86等的单能量波峰处、或者在沿着图9的波峰112的特定位置处进行操作,但是其他各种等离子体处理也可以受益于在远离上面提到的波峰处进行操作。参考图5,在波峰86处进行操作提供了大约155eV的离子电压。在制造工艺中有时可能会需要更多更少的离子电压。如图5所示,离子电压可以通过在远离-0.8的相位处进行操作来调节。例如,如果相位被选择为0.2,则等离子体操作可以需要较少的定向波峰,参考图5,离子电压将根据较低波峰和较高波峰而为大约128eV和185eV的复合物。在各种实施例中,可能会期望对在提供单能量波峰86的相位与提供两个波峰的第二相位之间的相位进行脉冲。在上述示例中,相位可以在-0.8和0.2之间交替。
参考图9,各种等离子体工艺可以受益于沿着波峰112的线性范围来改变相位。例如,可以在图9和图10的示例中针对沿着由附图标记112限定的波峰线的波峰,自等于0.3的相位处起改变相位。通过改变相位,可以在由结合图9和图10所描述的环境驱动的等离子体系统中提供离子电压的范围。
识别和控制离子能量分布的波峰的位置的一个益处在于改善了系统的相位控制。例如,在常规主-从配置下运行的双RF功率传输系统中,其中相位和频率被锁定而不关注频谱发射,并且存在至少三个来源的系统相位误差。第一来源存在于从主控传送到从属的控制信号之间;第二来源存在于从属RF发生器和与其连接的匹配网络这两者的输出之间;并且第三来源存在于与从属RF生成器相关联的匹配网络中。由本公开的相位调整提供的离子波峰密度控制共同地解决了所有三个来源的相位误差。从属RF发生器对由从属RF发生器相对于输入到从属RF发生器的频率及相位信号中的相位而输出的波形的相位进行调整。
在从属RF功率供应器以及电极的、输出至等离子体腔室的相位之间,如上所述存在若干个系统相位偏移。对于相对于参考频率信号输入的相位偏移而言(即,在主控RF发生器的输出与至从属RF发生器的输入之间),将主控耦合至从属的电缆将具有长度L1和传播速度Vp1。忽略电缆损耗,主控RF发生器的输出与至从属RF发生器的输入之间的电缆将具有通过传输线参数而相关的相位偏移,且被表示为ejφ1。在从属RF功率供应器的输出端,存在两个系统相位偏移促成因素:(1)ejφ2表征将来自从属RF发生器的RF功率耦合到其相关的匹配网络的传输线,以及(2)相位φMN与用于匹配网络的传递函数相关联。此外,功率产生器将具有在超过设计的功率范围变化的相位输出。
一种对上述相位偏移进行补偿的方法,其共同地表征系统相位偏移,需要测量每个促成因素,并且将校准后的相位调整施加于在从属RF发生器的输出端所调节的期望相位。校准后的相位调整必须针对改变系统中的元素进行补偿,例如φPA和φMN。本公开中描述的各种实施例避免了这种复杂方法的固有缺陷。本公开的各种实施例依赖于RF谐波参数的频谱发射来针对系统相位偏移进行补偿。也就是说,依赖于来自采样到的RF频谱的谐波或互调失真产物中的一方或双方的测量电压,对系统相位偏移进行调整。
本文描述的实施例公开了对来自等离子体腔室的频谱发射进行采样,使得能够直接对离子能量和对应的离子能量分布进行控制。在一些系统中,可以使用各种传感器和仪器(包括发夹式共振器、能量栅格分析仪和光学发射频谱仪)来测量包含在频谱发射中的等离子体参数。根据这些传感器的输出,可以建立一种相关性,以根据用于对RF功率传输系统进行控制的设定参数,来确定离子能量波峰分布。然而,诸如发夹式共振器、能量栅格分析仪和光学发射频谱仪等的仪器扰乱了等离子体腔室内的等离子体处理,并且在大批量的制造环境中具有有限的实用性。相比之下,本公开中描述的各种实施例产生较少的破坏性RF功率采样,以达成自包含的RF功率传输系统解决方案。
因此,通过根据来自等离子体腔室的频谱发射来调节RF波形,从而可以提供窄的IEDF,以满足各种工业要求。通常,在偏置功率供应器处产生的较低的激发频率会导致较高的离子能量。较高的离子能量又提供了改进的蚀刻速率。然而,尽管较低的频率提供了较高的离子能量,但是离子的分布大幅变宽。通常,希望将所有离子能量聚集成相对于对两个宽波峰的单一波峰(例如上面讨论的单能量波峰)。例如,在15-30eV下的离子能量会损坏1-2nm范围内的材料。当单个频率对偏压电极进行驱动时,每个波峰提供两个不同的材料去除速率。利用两个不同的材料去除速率,通过较低频率和增加功率而获得的蚀刻速率增加最多只能带来来自两个波峰的平均蚀刻速率。为了获得改进的表面材料去除保真度,希望形成针对恒定材料去除速率的离子能量分布。在本公开中讨论的各种实施例提供单一波峰的离子的单能量组,用于具有恒定材料速率的相同的蚀刻速率。改进的蚀刻速率也提供了改进的选择性。
前面的描述在本质上仅仅是说明性的,并且决非旨在对本公开、其应用或用途加以限制。本公开的广泛教导可以以各种形式来实现。因此,尽管本公开包括特定示例,但是本公开的真实范围不应受此限制,因为其他修改将根据对附图、说明书和所附权利要求的研究而变得显而易见。应该理解的是,方法内的一个或多个步骤可以以不同的顺序(或同时)执行而不改变本公开的原理。此外,尽管每个实施例都在以上被描述为具有某些特征,但是关于本公开的任何实施例所描述的那些特征中的任意一个或多个可以在任何其他实施例的特征中实现和/或与任何其他实施例的特征相结合来实现,即使该结合并未明确地说明。换言之,所描述的实施例不是相互排斥的,并且一个或多个实施例与另一实施例之间的置换也保留在本公开的范围内。
使用包括“连接”、“接合”、“耦合”、“相邻”、“旁边”、“在顶部的”、“之上”、“之下”和“设置”等各种术语来描述元件之间(例如,模块、电路元件、半导体层等之间)的空间及功能关系。当在以上公开中描述第一和第二元件之间的关系时,除非明确描述为“直接”,否则该关系可以为没有其他中间元件存在于第一和第二元件之间的直接关系,但是也可以为其中一个或多个中间元件存在于(空间地或功能地存在于)第一和第二元件之间的间接关系。如本文所使用的,短语“A、B和C中的至少一个”应被解释为意味着使用非排他性的逻辑或的逻辑(A或B或C),并且不应被解释为意味着“A中的至少一个,B中的至少一个、和C中的至少一个”。
在本申请中,包括下面的定义,术语“模块”或术语“控制器”可以用术语“电路”来替换。术语“模块”可以指以下的一部分或者包括以下:用于执行代码的专用集成电路(ASIC),数字、模拟或混合模拟/数字离散电路,数字、模拟或混合模拟/数字集成电路,组合逻辑电路,现场可编程门阵列(FPGA),处理器电路(共享的、专用的或成组的处理器电路);用于存储由处理器电路执行的代码的存储器电路(共享的、专用的或成组的存储器电路);用于提供所述功能的其他适当的硬件组件;或者上述的一些或全部的组合物,例如在片上系统中。
模块可以包括一个或多个接口电路。在一些示例中,接口电路可以包括连接到局域网(LAN)、互联网、广域网(WAN)或其组合的有线或无线接口。本公开的任何给定模块的功能可以分布在经由接口电路连接的多个模块之间。例如,多个模块可以允许负载平衡。在进一步的示例中,服务器(也称为远程或云)模块可以代表客户端模块实现一些功能。
如上所使用的术语代码可以包括软件、固件和/或微代码,并且可以指程序、例程、函数、类、数据结构和/或对象。术语“共享处理器电路”包括单个处理器电路,该单个处理器电路执行来自多个模块的一些或全部代码。术语“群组处理器电路”包括处理器电路,该处理器电路与附加的处理器电路组合,来执行来自一个或多个模块的一些或全部代码。对多个处理器电路的引用包括离散模具(die)上的多个处理器电路、单个模具上的多个处理器电路、单个处理器电路的多个内核、单个处理器电路的多个线程、或以上的组合。术语“共享存储器电路”包括单个存储器电路,该单个存储器电路存储来自多个模块的一些或全部代码。术语“群组存储器电路”包括存储器电路,该存储器电路与附加的存储器组合,来存储来自一个或多个模块的一些或全部代码。
术语“存储器电路”是术语“计算机可读介质”的子集。如本文所使用的术语“计算机可读介质”并未包括通过介质(诸如在载波上的介质)传播的暂态电子或电磁信号;因此术语“计算机可读介质”可以被认为是有形的且非暂时性的。非暂时性的有形的计算机可读介质的非限制性示例是非易失性存储器电路(诸如闪存电路、可擦除可编程只读存储器电路、或掩模只读存储器电路)、易失性存储器电路(诸如静态随机存取存储器电路或动态随机存取存储器电路)、磁性储存介质(诸如模拟或数字磁带或硬盘驱动器)、以及光学储存介质(诸如CD、DVD或蓝光光盘)。
本申请中所描述的装置和方法可以由通过配置通用计算机而实现的专用计算机来部分或全部地实现,以执行在计算机程序中体现的一个或多个特定功能。上面描述的功能块和流程图要素用作软件规范,其可以通过熟练技术人员或程序员的常规作业被转译成计算机程序。
计算机程序包括在至少一个非暂时性的有形的计算机可读介质上存储的处理器可执行指令。计算机程序还可以包括或依赖于所存储的数据。计算机程序可以包括与专用计算机的硬件交互的基本输入/输出系统(BIOS)、与专用计算机的特定设备交互的设备驱动程序、一个或多个操作系统、用户应用程序、后台服务、后台应用程序等。
计算机程序可以包括:(i)诸如HTML(超文本标记语言)或XML(可扩展标记语言)等将要解析的描述性文本;(ii)汇编代码;(iii)由编译器从源代码中生成的目标代码;(iv)由解释器执行的源代码;(v)由即时编译器编译并执行的源代码等。仅作为示例,源代码可以使用包括C、C++、C#、Objective C、Haskell、Go、SQL、R、Lisp、
Figure BDA0001583392180000201
Fortran、Perl、Pascal、Curl、OCaml、
Figure BDA0001583392180000202
HTML5、Ada、ASP(动态服务器页面)、PHP、Scala、Eiffel、Smalltalk、Erlang、Ruby、
Figure BDA0001583392180000203
Lua、以及
Figure BDA0001583392180000204
的语言的语法来编写。
除非使用短语“用于...的装置”或者在使用短语“用于...的操作”或“用于...的步骤”的方法权利要求的情况下明确地记载要素,否则权利要求中所列举的要素皆不旨在为35U.S.C§112(f)意义下的装置加功能要素。

Claims (56)

1.一种射频RF发生器系统,包括:
功率源,生成施加到负载的RF输出信号;
传感器,检测来自所述负载的频谱发射,所述频谱发射包括谐波和互调失真(IMD)中的至少一个;以及
控制模块,根据在所述频谱发射中检测到的所述谐波和所述互调失真(IMD)中的一个来改变所述RF输出信号的参数,其中所述参数是相位、频率和振幅中的一个。
2.根据权利要求1所述的RF发生器系统,其中,
所述控制模块对所述RF输出信号的电流和电压中的一个进行调节以改变离子能量分布(IED)的宽度,或者对所述RF输出信号的相位进行调节以改变所述离子能量分布(IED)的波峰。
3.根据权利要求1所述的RF发生器系统,其中,
所述负载是感性耦合等离子体(ICP)系统。
4.根据权利要求3所述的RF发生器系统,其中,
所述控制模块根据在所述频谱发射中检测到的所选谐波来改变所述RF输出信号。
5.根据权利要求4所述的RF发生器系统,其中,
所述控制模块改变所述RF输出信号中的电流或电压以便对离子能量分布(IED)的宽度进行控制,或者改变所述RF输出信号的相位以改变所述离子能量分布(IED)的波峰。
6.根据权利要求1所述的RF发生器系统,其中,
在CCP系统中,所述控制模块根据在所述频谱发射中检测到的所选谐波和所选互调失真(IMD)来改变所述RF输出信号。
7.根据权利要求6所述的RF发生器系统,其中,
所述控制模块改变所述RF输出信号中的电流或电压以便对离子能量分布(IED)的宽度进行控制,或者改变所述RF输出信号的相位以改变所述离子能量分布(IED)的波峰。
8.根据权利要求1所述的RF发生器系统,其中,
所述传感器设置于匹配网络的输入处、匹配网络的输出处、和RF发生器之内中的一处。
9.根据权利要求1所述的RF发生器系统,其中,所述控制模块进一步包括:
谐波/互调失真(IMD)模块,根据来自所述负载的所述频谱发射,从所述传感器接收输出信号;以及
相位确定模块,生成频率或相位,以对所述功率源的频率和相位中的至少一个进行控制。
10.根据权利要求1所述的RF发生器系统,其中,
所述负载是容性耦合等离子体(CCP)系统。
11.根据权利要求10所述的RF发生器系统,其中,
所述控制模块改变所述RF输出信号中的电流或电压以便对离子能量分布(IED)的宽度进行控制,或者改变所述RF输出信号的相位以改变所述离子能量分布(IED)的波峰。
12.一种射频RF功率传输系统,包括:
第一功率供应器,生成第一RF输出信号;
第二功率供应器,生成第二RF输出信号;
传感器,对来自负载的频谱发射进行检测,所述频谱发射包括所述第一功率供应器或所述第二功率供应器的谐波和所述第一RF信号与所述第二RF信号之间的互调失真(IMD)这两者中的至少一个;以及
控制器,根据所述谐波和所述互调失真(IMD)中的至少一个以及来自所述第一功率供应器的控制信号,来改变所述第二RF输出信号的参数,其中所述参数是相位、频率和振幅中的一个。
13.根据权利要求12所述的功率传输系统,其中,
所述控制器改变所述第二RF信号的电流和电压中的一个以改变离子能量分布(IED)的宽度,或者改变所述第一RF信号与所述第二RF信号之间的相位以改变所述离子能量分布(IED)的波峰。
14.根据权利要求13所述的功率传输系统,其中,
所述控制器改变所述相位,以使至少一个所述谐波最小化。
15.根据权利要求14所述的功率传输系统,其中,
当所选谐波被最小化时,在所述离子能量分布(IED)中出现波峰。
16.根据权利要求14所述的功率传输系统,其中,
改变所述相位使所述离子能量分布(IED)的波峰的位置改变。
17.根据权利要求13所述的功率传输系统,其中,
所述控制器改变所述相位,以使所述互调失真(IMD)最小化。
18.根据权利要求17所述的功率传输系统,其中,
当所述互调失真(IMD)被最小化时,在所述离子能量分布(IED)中出现波峰。
19.根据权利要求17所述的功率传输系统,其中,
改变所述相位使所述离子能量分布(IED)中的波峰的位置改变。
20.根据权利要求12所述的功率传输系统,其中,
所述第一功率供应器和所述第二功率供应器中的一个是主控功率供应器,并且所述第一功率供应器和所述第二功率供应器中的另一个是从属功率供应器。
21.根据权利要求12所述的功率传输系统,其中,
所述负载是感性耦合等离子体(ICP)系统。
22.根据权利要求12所述的功率传输系统,其中,
所述第一功率供应器和所述第二功率供应器在相同的频率下进行操作。
23.根据权利要求22所述的功率传输系统,其中,
所述控制器根据所述谐波来改变所述第二RF输出信号。
24.根据权利要求12所述的功率传输系统,其中,
所述第一功率供应器和所述第二功率供应器在不同的频率下进行操作。
25.根据权利要求24所述的功率传输系统,其中,
所述控制器根据所述谐波和所述互调失真(IMD)来改变所述第二RF输出信号。
26.根据权利要求24所述的功率传输系统,其中,
所述第一功率供应器和所述第二功率供应器中的一个在所述第一功率供应器和所述第二功率供应器中的另一个的谐波频率下进行操作。
27.根据权利要求26所述的功率传输系统,其中,
所述控制器根据所述谐波和所述互调失真(IMD)来改变所述第二RF输出信号。
28.根据权利要求12所述的功率传输系统,其中,
所述负载是容性耦合等离子体(CCP)系统。
29.一种射频RF系统,包括:
第一RF发生器,包括第一功率源,所述第一RF发生器生成控制信号;以及
第二RF发生器,包括第二功率源,所述第二RF发生器接收来自所述第一RF发生器的所述控制信号,所述控制信号包括相位及频率信息,所述第二RF发生器包括信号处理单元,所述信号处理单元生成施加到所述第二功率源的相位和功率指令中的至少一个;
其中,所述信号处理单元包括谐波/互调失真(IMD)处理器,所述谐波/互调失真(IMD)处理器对来自负载的频谱发射进行分析,所述负载由所述第一RF发生器和所述第二RF发生器中的一个提供功率。
30.根据权利要求29所述的RF系统,其中,
所述信号处理单元进一步包括相位确定处理器,所述相位确定处理器接收来自所述谐波/互调失真(IMD)处理器的相位信号,并且生成至所述第二功率源的控制信号,所述控制信号改变由所述第二功率源输出的信号的相位或频率。
31.根据权利要求30所述的RF系统,进一步包括:
传感器,所述传感器对来自所述负载的所述频谱发射进行检测,所述传感器生成根据所述频谱发射而变化的传感器信号,其中所述传感器信号被施加到所述谐波/互调失真(IMD)处理器。
32.根据权利要求29所述的RF系统,其中,
谐波/互调失真(IMD)处理器将相位信号输出到相位模块,所述相位模块根据所述相位信号和来自所述第一RF发生器的控制信号来生成至所述第二功率源的相位控制信号,所述相位控制信号改变所述第二功率源的相位。
33.根据权利要求29所述的RF系统,其中,
所述第一功率源和所述第二功率源中的一个是主控功率供应器,并且所述第一功率源和所述第二功率源中的另一个是从属功率供应器。
34.一种用于对射频RF发生器进行控制的方法,包括:
对来自负载的频谱发射进行检测,所述频谱发射包括谐波和互调失真(IMD)中的至少一个;以及
根据在所述频谱发射中检测到的所述谐波和所述互调失真(IMD)中的一个来改变RF功率源的RF输出信号的参数,其中所述参数是相位、频率和振幅中的一个。
35.根据权利要求34所述的方法,进一步包括:
对所述RF输出信号的电流和电压中的一个进行调节以改变离子能量分布(IED)的宽度,或者对所述RF输出信号的相位进行调节以改变所述离子能量分布(IED)的波峰。
36.根据权利要求34所述的方法,进一步包括:
将所述RF输出信号施加到感性耦合等离子体(ICP)系统中的负载。
37.根据权利要求36所述的方法,其中,
在ICP系统中,根据在所述频谱发射中检测到的至少一个所选谐波来改变所述RF输出信号。
38.根据权利要求37所述的方法,进一步包括:
改变所述RF输出信号的电流或电压以便对离子能量分布(IED)的宽度进行控制,或者改变所述RF输出信号的相位以改变所述离子能量分布(IED)的波峰。
39.根据权利要求36所述的方法,其中,
在CCP系统中,根据在所述频谱发射中检测到的所选谐波和所选互调失真(IMD)来改变所述RF输出信号。
40.根据权利要求39所述的方法,进一步包括:
改变所述RF输出信号中的电流或电压以便对离子能量分布(IED)的宽度进行控制,或者改变所述RF输出信号的相位以改变所述离子能量分布(IED)的波峰。
41.根据权利要求34所述的方法,进一步包括:
在匹配网络的输入处、匹配网络的输出处、或RF发生器之内进行感测。
42.根据权利要求34所述的方法,进一步包括:
在相同的频率下对第一功率供应器和第二功率供应器进行操作。
43.根据权利要求42所述的方法,进一步包括:
根据所述谐波来改变所述第一功率供应器和所述第二功率供应器中的一个的操作。
44.根据权利要求34所述的方法,进一步包括:
在不同的频率下对第一功率供应器和第二功率供应器进行操作。
45.根据权利要求44所述的方法,进一步包括:
根据所述谐波和所述互调失真(IMD)来改变所述第一功率供应器和所述第二功率供应器中的一个的操作。
46.根据权利要求44所述的方法,进一步包括:
使所述第一功率供应器和所述第二功率供应器中的一个在所述第一功率供应器和所述第二功率供应器中的另一个的谐波频率下进行操作。
47.根据权利要求46所述的方法,进一步包括:
根据所述谐波和所述互调失真(IMD)来改变所述第一功率供应器和所述第二功率供应器中的一个的操作。
48.根据权利要求34所述的方法,进一步包括:
将所述RF输出信号施加到容性耦合等离子体(CCP)系统中的负载。
49.一种射频RF发生器系统,包括:
功率源,生成施加到负载的RF输出信号;
传感器,检测来自所述负载的频谱发射,所述传感器在所述频谱发射内检测由施加到所述负载的第二RF信号产生的谐波和互调失真(IMD)中的至少一个;以及
控制模块,根据在所述频谱发射中检测到的所述谐波和所述互调失真(IMD)中的一个来改变所述RF输出信号的参数,其中所述参数是相位、频率和振幅中的一个。
50.根据权利要求49所述的RF发生器系统,其中,
所述控制模块对所述RF输出信号的电流和电压中的一个进行调节以改变离子能量分布(IED)的宽度,或者对所述RF输出信号的相位进行调节以改变所述离子能量分布(IED)的波峰。
51.根据权利要求49所述的RF发生器系统,其中,
所述负载是感性耦合等离子体(ICP)系统。
52.根据权利要求51所述的RF发生器系统,其中,
所述控制模块根据在所述频谱发射中检测到的所选谐波来改变所述RF输出信号。
53.根据权利要求52所述的RF发生器系统,其中,
所述控制模块改变所述RF输出信号中的电流或电压以便对离子能量分布(IED)的宽度进行控制,或者改变所述RF输出信号的相位以改变所述离子能量分布(IED)的波峰。
54.根据权利要求49所述的RF发生器系统,其中,
在CCP系统中,所述控制模块根据在所述频谱发射中检测到的所选谐波和所选互调失真(IMD)来改变所述RF输出信号。
55.根据权利要求54所述的RF发生器系统,其中,
所述控制模块改变所述RF输出信号中的电流或电压以便对离子能量分布(IED)的宽度进行控制,或者改变所述RF输出信号的相位以改变所述离子能量分布(IED)的波峰。
56.根据权利要求49所述的RF发生器系统,其中,
所述传感器设置于匹配网络的输入处、匹配网络的输出处、和RF发生器之内中的一处。
CN201680049837.2A 2015-08-27 2016-05-12 通过针对离子能量分布的rf波形修改的反馈控制 Active CN107924806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110062133.1A CN112908824B (zh) 2015-08-27 2016-05-12 通过针对离子能量分布的rf波形修改的反馈控制

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/837,512 2015-08-27
US14/837,512 US10395895B2 (en) 2015-08-27 2015-08-27 Feedback control by RF waveform tailoring for ion energy distribution
PCT/US2016/032158 WO2017034632A1 (en) 2015-08-27 2016-05-12 Feedback control by rf waveform tailoring for ion energy distribution

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110062133.1A Division CN112908824B (zh) 2015-08-27 2016-05-12 通过针对离子能量分布的rf波形修改的反馈控制

Publications (2)

Publication Number Publication Date
CN107924806A CN107924806A (zh) 2018-04-17
CN107924806B true CN107924806B (zh) 2021-02-05

Family

ID=58100787

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110062133.1A Active CN112908824B (zh) 2015-08-27 2016-05-12 通过针对离子能量分布的rf波形修改的反馈控制
CN201680049837.2A Active CN107924806B (zh) 2015-08-27 2016-05-12 通过针对离子能量分布的rf波形修改的反馈控制

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110062133.1A Active CN112908824B (zh) 2015-08-27 2016-05-12 通过针对离子能量分布的rf波形修改的反馈控制

Country Status (8)

Country Link
US (2) US10395895B2 (zh)
EP (1) EP3341955B1 (zh)
JP (2) JP6692895B2 (zh)
KR (1) KR102364174B1 (zh)
CN (2) CN112908824B (zh)
SG (1) SG10201908638WA (zh)
TW (1) TWI656810B (zh)
WO (1) WO2017034632A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6449674B2 (ja) * 2015-02-23 2019-01-09 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
US10553411B2 (en) 2015-09-10 2020-02-04 Taiwan Semiconductor Manufacturing Co., Ltd. Ion collector for use in plasma systems
JP6640608B2 (ja) * 2016-03-02 2020-02-05 東京エレクトロン株式会社 基板処理装置
US10026592B2 (en) * 2016-07-01 2018-07-17 Lam Research Corporation Systems and methods for tailoring ion energy distribution function by odd harmonic mixing
US10312048B2 (en) 2016-12-12 2019-06-04 Applied Materials, Inc. Creating ion energy distribution functions (IEDF)
KR102439682B1 (ko) 2017-01-18 2022-09-01 어플라이드 머티어리얼스, 인코포레이티드 고속 이미징에 의한 플라즈마 파라미터들 및 스큐 특성화
DE102018204585A1 (de) * 2017-03-31 2018-10-04 centrotherm international AG Plasmagenerator, Plasma-Behandlungsvorrichtung und Verfahren zum gepulsten Bereitstellen von elektrischer Leistung
US10546724B2 (en) * 2017-05-10 2020-01-28 Mks Instruments, Inc. Pulsed, bidirectional radio frequency source/load
US10396601B2 (en) 2017-05-25 2019-08-27 Mks Instruments, Inc. Piecewise RF power systems and methods for supplying pre-distorted RF bias voltage signals to an electrode in a processing chamber
KR102347373B1 (ko) * 2017-07-13 2022-01-04 어플라이드 머티어리얼스, 인코포레이티드 기판 프로세싱 방법 및 장치
US10264663B1 (en) * 2017-10-18 2019-04-16 Lam Research Corporation Matchless plasma source for semiconductor wafer fabrication
DE102017129330B3 (de) * 2017-12-08 2019-01-10 Infineon Technologies Ag Erzeugung eines HF-Testsignals zum Testen einer HF-Empfangsschaltung
US10304669B1 (en) * 2018-01-21 2019-05-28 Mks Instruments, Inc. Adaptive counter measure control thwarting IMD jamming impairments for RF plasma systems
CN111902317B (zh) 2018-03-26 2023-10-31 古河电气工业株式会社 线缆卷绕装置以及滑动座椅用扁平线缆布置结构
US10553400B2 (en) * 2018-03-30 2020-02-04 Applied Materials, Inc. Methods and apparatus for frequency generator and match network communication
US20190311884A1 (en) * 2018-04-04 2019-10-10 Applied Materials, Inc. Rf tailored voltage on bias operation
US10998170B2 (en) * 2018-04-13 2021-05-04 Tokyo Electron Limited Method for ion mass separation and ion energy control in process plasmas
JP7263676B2 (ja) * 2018-04-13 2023-04-25 東京エレクトロン株式会社 プロセスプラズマにおけるイオンエネルギー分布を制御するための方法
US11042140B2 (en) * 2018-06-26 2021-06-22 Mks Instruments, Inc. Adaptive control for a power generator
KR20210080555A (ko) 2018-11-21 2021-06-30 어플라이드 머티어리얼스, 인코포레이티드 위상 제어를 사용하여 플라즈마 분배를 조절하기 위한 디바이스 및 방법
KR20200086808A (ko) * 2019-01-10 2020-07-20 삼성전자주식회사 플라즈마 균일성 제어 방법 및 플라즈마 프로세싱 시스템
CN111524782B (zh) * 2019-02-05 2023-07-25 东京毅力科创株式会社 等离子体处理装置
JP2022519663A (ja) * 2019-02-06 2022-03-24 エヴァテック・アーゲー イオンを生成する方法および装置
WO2020166009A1 (ja) * 2019-02-14 2020-08-20 株式会社日立国際電気 高周波電源装置
KR20200126177A (ko) * 2019-04-29 2020-11-06 삼성전자주식회사 Rf 파워 모니터링 장치, 및 그 장치를 포함하는 pe 시스템
GB2584146A (en) * 2019-05-23 2020-11-25 Comet Ag Radio frequency generator
US11158488B2 (en) * 2019-06-26 2021-10-26 Mks Instruments, Inc. High speed synchronization of plasma source/bias power delivery
US11232931B2 (en) * 2019-10-21 2022-01-25 Mks Instruments, Inc. Intermodulation distortion mitigation using electronic variable capacitor
US20210183622A1 (en) * 2019-12-17 2021-06-17 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
CN111211740B (zh) * 2020-03-30 2021-01-15 河南精工工程管理咨询有限公司 一种基于区块链的桥梁施工监控系统
US20230125521A1 (en) * 2021-10-25 2023-04-27 Advanced Energy Industries, Inc. Robust tensorized shaped setpoint waveform streaming control
US11996274B2 (en) 2022-04-07 2024-05-28 Mks Instruments, Inc. Real-time, non-invasive IEDF plasma sensor
DE102022108634A1 (de) * 2022-04-08 2023-10-12 TRUMPF Hüttinger GmbH + Co. KG Plasmasystem und Verfahren zum Betrieb eines Plasmasystems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224987A (zh) * 1997-10-20 1999-08-04 恩尼技术公司 用于等离子体工艺的工艺检测系统
CN104124130A (zh) * 2013-04-26 2014-10-29 Mks仪器有限公司 频率和相位的多射频功率源控制

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302882A (en) * 1991-09-09 1994-04-12 Sematech, Inc. Low pass filter for plasma discharge
US5467013A (en) * 1993-12-07 1995-11-14 Sematech, Inc. Radio frequency monitor for semiconductor process control
US5576629A (en) * 1994-10-24 1996-11-19 Fourth State Technology, Inc. Plasma monitoring and control method and system
US6064064A (en) * 1996-03-01 2000-05-16 Fire Sentry Corporation Fire detector
JPH10241895A (ja) * 1996-11-04 1998-09-11 Applied Materials Inc プラズマシース発生高調波をフィルタリングすることによるプラズマプロセス効率の改善
US6180415B1 (en) * 1997-02-20 2001-01-30 The Regents Of The University Of California Plasmon resonant particles, methods and apparatus
CN1299226C (zh) 1997-09-17 2007-02-07 东京电子株式会社 用于监视和控制气体等离子体处理的系统和方法
US6008928A (en) * 1997-12-08 1999-12-28 The United States As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-gas sensor
US6020794A (en) 1998-02-09 2000-02-01 Eni Technologies, Inc. Ratiometric autotuning algorithm for RF plasma generator
US6449568B1 (en) * 1998-02-27 2002-09-10 Eni Technology, Inc. Voltage-current sensor with high matching directivity
AUPP573098A0 (en) * 1998-09-04 1998-10-01 Generation Technology Research Pty Ltd Apparatus and method for analyzing material
US6313584B1 (en) * 1998-09-17 2001-11-06 Tokyo Electron Limited Electrical impedance matching system and method
US6469919B1 (en) * 1999-07-22 2002-10-22 Eni Technology, Inc. Power supplies having protection circuits
US6441380B1 (en) * 1999-10-13 2002-08-27 Spectra Systems Corporation Coding and authentication by phase measurement modulation response and spectral emission
US6201208B1 (en) * 1999-11-04 2001-03-13 Wisconsin Alumni Research Foundation Method and apparatus for plasma processing with control of ion energy distribution at the substrates
US6441620B1 (en) * 2000-06-20 2002-08-27 John Scanlan Method for fault identification in a plasma process
US6939434B2 (en) * 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7294563B2 (en) * 2000-08-10 2007-11-13 Applied Materials, Inc. Semiconductor on insulator vertical transistor fabrication and doping process
US6627464B2 (en) * 2001-02-07 2003-09-30 Eni Technology, Inc. Adaptive plasma characterization system
US6741446B2 (en) * 2001-03-30 2004-05-25 Lam Research Corporation Vacuum plasma processor and method of operating same
US20030143554A1 (en) * 2001-03-31 2003-07-31 Berres Mark E. Method of genotyping by determination of allele copy number
US6642661B2 (en) * 2001-08-28 2003-11-04 Tokyo Electron Limited Method to affect spatial distribution of harmonic generation in a capacitive discharge reactor
WO2003102724A2 (en) * 2002-05-29 2003-12-11 Tokyo Electron Limited Method and system for data handling, storage and manipulation
US7084369B2 (en) * 2002-08-20 2006-08-01 Tokyo Electron Limited Harmonic multiplexer
WO2005017996A1 (en) * 2003-03-14 2005-02-24 Andreas Mandelis Method of photocarrier radiometry of semiconductors
US7901952B2 (en) 2003-05-16 2011-03-08 Applied Materials, Inc. Plasma reactor control by translating desired values of M plasma parameters to values of N chamber parameters
US6791274B1 (en) * 2003-07-15 2004-09-14 Advanced Energy Industries, Inc. RF power control device for RF plasma applications
US7328126B2 (en) * 2003-09-12 2008-02-05 Tokyo Electron Limited Method and system of diagnosing a processing system using adaptive multivariate analysis
US7602127B2 (en) * 2005-04-18 2009-10-13 Mks Instruments, Inc. Phase and frequency control of a radio frequency generator from an external source
US8102954B2 (en) * 2005-04-26 2012-01-24 Mks Instruments, Inc. Frequency interference detection and correction
US8995502B1 (en) * 2006-04-04 2015-03-31 Apple Inc. Transceiver with spectral analysis
US20070246162A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Plasma reactor apparatus with an inductive plasma source and a VHF capacitively coupled plasma source with variable frequency
US7821250B2 (en) * 2006-07-31 2010-10-26 Inficon, Inc. RF sensor clamp assembly
US7884025B2 (en) * 2007-01-30 2011-02-08 Applied Materials, Inc. Plasma process uniformity across a wafer by apportioning ground return path impedances among plural VHF sources
US20080178803A1 (en) * 2007-01-30 2008-07-31 Collins Kenneth S Plasma reactor with ion distribution uniformity controller employing plural vhf sources
US8049620B2 (en) * 2007-06-15 2011-11-01 Icove And Associates, Llc Passive microwave fire and intrusion detection system including black body and spectral emission at the hydrogen, hydroxyl and hydrogen chloride lines
EP2122657B8 (en) * 2008-03-20 2011-06-22 Ruhr-Universität Bochum Method for controlling ion energy in radio frequency plasmas
US8018164B2 (en) * 2008-05-29 2011-09-13 Applied Materials, Inc. Plasma reactor with high speed plasma load impedance tuning by modulation of different unmatched frequency sources
US8040068B2 (en) 2009-02-05 2011-10-18 Mks Instruments, Inc. Radio frequency power control system
US9287086B2 (en) * 2010-04-26 2016-03-15 Advanced Energy Industries, Inc. System, method and apparatus for controlling ion energy distribution
US8343371B2 (en) * 2010-01-15 2013-01-01 Tokyo Electron Limited Apparatus and method for improving photoresist properties using a quasi-neutral beam
US9309594B2 (en) * 2010-04-26 2016-04-12 Advanced Energy Industries, Inc. System, method and apparatus for controlling ion energy distribution of a projected plasma
KR20120041427A (ko) * 2010-10-21 2012-05-02 삼성전자주식회사 플라즈마 진단장치 및 그 제어방법
US20120163508A1 (en) * 2010-12-27 2012-06-28 Motorola, Inc. Subcarrier placement strategy for a multi-carrier signal
US8980760B2 (en) * 2011-04-29 2015-03-17 Applied Materials, Inc. Methods and apparatus for controlling plasma in a process chamber
WO2013066881A2 (en) * 2011-10-31 2013-05-10 Brooks Automation, Inc. Method and apparatus for tuning an electrostatic ion trap
US9368329B2 (en) * 2012-02-22 2016-06-14 Lam Research Corporation Methods and apparatus for synchronizing RF pulses in a plasma processing system
US8773019B2 (en) 2012-02-23 2014-07-08 Mks Instruments, Inc. Feedback control and coherency of multiple power supplies in radio frequency power delivery systems for pulsed mode schemes in thin film processing
US8952765B2 (en) * 2012-03-23 2015-02-10 Mks Instruments, Inc. System and methods of bimodal automatic power and frequency tuning of RF generators
US20130256271A1 (en) * 2012-04-03 2013-10-03 Theodoros Panagopoulos Methods and apparatuses for controlling plasma in a plasma processing chamber
US9271333B2 (en) * 2012-07-26 2016-02-23 General Electric Company Demand side management control system and methods
US9685297B2 (en) 2012-08-28 2017-06-20 Advanced Energy Industries, Inc. Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system
US9408288B2 (en) 2012-09-14 2016-08-02 Lam Research Corporation Edge ramping
WO2014099822A2 (en) * 2012-12-17 2014-06-26 Brady Patrick K System and method for identifying materials using a thz spectral fingerprint in a media with high water content
JP6078347B2 (ja) 2013-01-08 2017-02-08 株式会社日立ハイテクノロジーズ プラズマ処理装置
US9107284B2 (en) * 2013-03-13 2015-08-11 Lam Research Corporation Chamber matching using voltage control mode
US10821542B2 (en) 2013-03-15 2020-11-03 Mks Instruments, Inc. Pulse synchronization by monitoring power in another frequency band
US9336995B2 (en) * 2013-04-26 2016-05-10 Mks Instruments, Inc. Multiple radio frequency power supply control of frequency and phase
US20140367043A1 (en) * 2013-06-17 2014-12-18 Applied Materials, Inc. Method for fast and repeatable plasma ignition and tuning in plasma chambers
US9536749B2 (en) 2014-12-15 2017-01-03 Lam Research Corporation Ion energy control by RF pulse shape
EP3091559A1 (en) * 2015-05-05 2016-11-09 TRUMPF Huettinger Sp. Z o. o. Plasma impedance matching unit, system for supplying rf power to a plasma load, and method of supplying rf power to a plasma load

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224987A (zh) * 1997-10-20 1999-08-04 恩尼技术公司 用于等离子体工艺的工艺检测系统
CN104124130A (zh) * 2013-04-26 2014-10-29 Mks仪器有限公司 频率和相位的多射频功率源控制

Also Published As

Publication number Publication date
US20170062186A1 (en) 2017-03-02
TWI656810B (zh) 2019-04-11
US10395895B2 (en) 2019-08-27
JP7092824B2 (ja) 2022-06-28
WO2017034632A1 (en) 2017-03-02
CN112908824A (zh) 2021-06-04
EP3341955A1 (en) 2018-07-04
KR20180036786A (ko) 2018-04-09
EP3341955B1 (en) 2022-10-26
US20190333738A1 (en) 2019-10-31
US10692698B2 (en) 2020-06-23
CN112908824B (zh) 2024-03-22
SG10201908638WA (en) 2019-10-30
KR102364174B1 (ko) 2022-02-18
JP6692895B2 (ja) 2020-05-13
JP2020129544A (ja) 2020-08-27
CN107924806A (zh) 2018-04-17
TW201709774A (zh) 2017-03-01
JP2018534716A (ja) 2018-11-22
EP3341955A4 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
CN107924806B (zh) 通过针对离子能量分布的rf波形修改的反馈控制
TWI697205B (zh) 射頻電漿系統中用來控制阻礙及imd堵塞損害的自動調整反制之射頻產生器、裝置及方法
JP6935537B2 (ja) プラズマrfバイアス消去システム
JP7374223B2 (ja) プラズマソース/バイアス電力伝送の高速同期
US20210202209A1 (en) Integrated control of a plasma processing system
JP2022553507A (ja) Rfインピーダンス整合のための自動周波数チューニングのための極値探索制御装置および方法
CN112313876A (zh) 基于校正方案和性能重复性的阻抗匹配网络模型

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant