CN107903400A - 一种超分子聚合物及其制备和应用方法 - Google Patents

一种超分子聚合物及其制备和应用方法 Download PDF

Info

Publication number
CN107903400A
CN107903400A CN201711114347.9A CN201711114347A CN107903400A CN 107903400 A CN107903400 A CN 107903400A CN 201711114347 A CN201711114347 A CN 201711114347A CN 107903400 A CN107903400 A CN 107903400A
Authority
CN
China
Prior art keywords
supermolecule polymer
solution
polymer
tetramethylbenzidine
tmb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711114347.9A
Other languages
English (en)
Other versions
CN107903400B (zh
Inventor
时国庆
曾广易
黄静
王愉茜
李彦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201711114347.9A priority Critical patent/CN107903400B/zh
Publication of CN107903400A publication Critical patent/CN107903400A/zh
Application granted granted Critical
Publication of CN107903400B publication Critical patent/CN107903400B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种超分子聚合物及其制备和应用方法。该超分子聚合物特征是3,3’,5,5’‑四甲基联苯胺与Fe2+以Fe‑N配位键络合生成的,以3,3’,5,5’‑四甲基联苯胺、Fe2+以及与其结合的阴离子为重复单元组成的超分子聚合物。其制备方法是将3,3’,5,5’‑四甲基联苯胺与亚铁盐固体或溶液在含水量不超过10%的乙醇中,经超声震荡后获得,该超分子聚合物利用亚铁离子催化过氧基团生成氧分子,氧分子迅速氧化3,3’,5,5’‑四甲基联苯胺并使其显蓝绿色。本发明还公开了利用该超分子聚合物检测油脂中过氧化物含量的方法。对市面上各种食用油的过氧化值进行测定,反应灵敏,显色梯度明显。

Description

一种超分子聚合物及其制备和应用方法
技术领域
本发明属于分析检测领域,涉及一种(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物及其制备和应用方法。
技术背景
3,3’,5,5’-四甲基联苯胺(TMB)是一种安全的联苯胺类色原试剂,被广泛地应用于临床样品及刑侦样品如血糖、尿糖、血红蛋白、过氧化酶及抗原物质等的快速测定。TMB分子具有良好的氧化还原性质,不仅在溶液中可以被氧化而显色,而且在电化学电极表面亦可发生可逆的氧化还原反应。
超分子通常是指由两种或两种以上分子依靠分子间相互作用结合在一起,组成复杂的、有组织的聚集体,并保持一定的完整性使其具有明确的微观结构和宏观特性。超分子化合物是指在主体分子和客体分子间通过非化学键如范德华力、氢键、包合水的释出及疏水作用等或其共同的作用而形成的一类化合物。超分子化合物最主要的优点表现在其分子识别和催化方面。
在形成超分子化合物后,TMB的氧化还原得到明显加强,尤其是在有酶参与时更易被氧化。超分子化合物的形成使得TMB的排列更具规律性,因而可更快地传递电子,可在很大程度上加快反应速率并提高测定灵敏度(屠一锋,光谱学与光谱分析【J】,2000,20(5):pp736-738)。已报道的TMB超分子化合物有3,3’,5,5’-四甲基联苯胺—β-环糊精,其结构是将TMB分子包合进笼状结构的β-环糊精中,而3,3’,5,5’-四甲基联苯胺—钼磷酸纳米晶分子杂化材料,是球形颗粒纳米晶结构(吴莹,闻荻江,徐玲,王振平,材料工程与科学学报【J】,2006,24(1):1673-2812)。我们发现并制备出的是TMB与亚铁离子的链状和网状结构超分子聚合物,该结构与已报道的含TMB超分子结构相比,有明显不同。
民以食为天,近年来频频发生的食物中毒事件,让民众对食品安全问题越来越重视。而食用油作为生活必需品之一,随着储存时间的增加,食用油容易受环境的影响变质酸败。过氧化值是油脂酸败程度的重要指标。中国国家标准规定:食用油的过氧化值必须≤0.25g/100g。但由于油脂变质不易察觉,当人们长期食用过氧化值高的油脂,会导致胃癌、肝癌、动脉硬化等疾病。其相关报道也屡见不鲜。目前对过氧化值的检测方法主要有实验室检测,该方法准确但步骤很繁琐,且需要使用大型仪器。
本发明的目的是提供一种灵敏度高、反应迅速的分析试剂(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物及其制备和应用方法。
本发明将3,3’,5,5’-四甲基联苯胺和亚铁离子两种具有显色特性和催化特性的试剂结合在一起,在无水乙醇介质中,3,3’,5,5’-四甲基联苯胺分子可以和亚铁离子形成配合物,且其结构可以不断延伸形成超分子聚合物。该结构既可以表现出亚铁离子的催化能力,同时具有3,3’,5,5’-四甲基联苯胺分子的氧化还原性质,对油脂中的过氧化物有很好的催化显色效果。以此来快速、简便地检测油样的质量好坏,反应非常灵敏,显色效果很明显,目前国内外未见相关报道。
发明内容
一种(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物,其特征在于超分子聚合物为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L,其中,X代表氯离子、或硫酸根离子、或硝酸根离子,n等于2-20之间的任一数字,m等于n或1/2n,L等于m或2m
如上所述(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物的制备方法,将3,3’,5,5’-四甲基联苯胺(TMB)与亚铁盐固体或溶液在含水量不超过10%的乙醇中,经超声震荡后,离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液;将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
上述超分子聚合物的制备方法的优选方法是将TMB溶解于无水乙醇中,使其终浓度为3mg/mL,然后加入20倍TMB质量的七水合硫酸亚铁,超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液。将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
也可以将TMB溶解于含水量不高于10%的乙醇溶液中,使其终浓度为3mg/mL,然后加入不同质量的七水合硫酸亚铁,使得在体系中亚铁与TMB分子的摩尔比不小于1:2。超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液。将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
如上所述的(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物的应用方法一是将该聚合物的乙醇溶液与食用油按照体积比1:1混合,振荡混匀后,静置分层,将上层颜色与标准色卡对比,即可得出食用油中过氧化值含量。
如上所述(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物的应用方法二是用该聚合物的乙醇溶液把滤纸完全润湿后,烘干,做成试纸。将食用油滴在该试纸上,静置1-5分钟,将试纸颜色与标准色卡对比,即可得出食用油中过氧化值含量。
本发明的优点和积极效果:(1)检测时,油相和无水乙醇相分层,乙醇相显色明显,避免油脂本身颜色带来误差;(2)反应迅速,显色梯度明显;(3)无水乙醇介质可以保护亚铁离子被氧化,维持催化性能;(4)将3,3’,5,5’-四甲基联苯胺的显色特性与亚铁的催化特性结合,提高反应的灵敏度。
本发明的特点是方法简单,成本低廉,灵敏度高,性能稳定,催化反应时间短,可用于无水乙醇体系中对油脂中过氧化物的检测。
附图说明
该超分子聚合物存在的两种结构式
图1为本发明超分子聚合物结构式一,
图2为本发明超分子聚合物结构式二。
具体实施方式
实施例1:将TMB溶解于无水乙醇中,使其终浓度为3mg/mL,然后加入20倍TMB质量的七水合硫酸亚铁,超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液。将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
实施例2将TMB溶解于含水量为10%的乙醇溶液中,使其终浓度为3mg/mL,然后加入不同质量的七水合硫酸亚铁,使得在体系中亚铁与TMB分子的摩尔比分别为3:1、或2:1、或1:1、或1:2。超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液。将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
实施例3将TMB溶解于无水乙醇中,使其终浓度为3mg/mL,然后加入20倍TMB质量的四水合氯化亚铁(或六水合硝酸亚铁),超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液。将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
实施例4将TMB溶解于无水乙醇中,使其终浓度为3mg/mL,然后加入20倍TMB质量的七水合硫酸亚铁,超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液。将滤纸放入该超分子聚合物溶液中浸泡5min,取出,在50℃条件下烘干,即制备成可用于检测油脂中过氧化值得试纸。
实施例5取上述制备好的试纸,将食用油滴在该试纸上,擦拭掉多余的油样,静置1-5分钟,将试纸颜色与标准色卡对比,即可得出食用油中过氧化值含量。
实施例6将TMB溶解于无水乙醇中,使其终浓度为3mg/mL,然后加入20倍TMB质量的四水合氯化亚铁,超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺n(Fe2+)m(X)L超分子聚合物溶液。取该超分子聚合物溶液200uL,加入等体积的食用油,充分震荡,静置。待液体分层明显后,观察上层乙醇体系颜色,与标准色卡对比,即可得出食用油中过氧化值含量。

Claims (6)

1.一种超分子聚合物,其特征在于超分子聚合物为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L,其中,X代表氯离子、或硫酸根离子、或硝酸根离子,n等于2-20之间的任一数字,m等于n或1/2n,L等于m或2m。
2.按照权利要求1所描述的超分子聚合物的制备方法,其特征是将3,3’,5,5’-四甲基联苯胺(TMB)与亚铁盐固体或溶液在含水量不超过10%的乙醇中,经超声震荡后,离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液;将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
3.根据权利要求2所述的超分子聚合物的制备方法,其特征在于将TMB溶解于无水乙醇中,使其终浓度为3mg/mL,然后加入20倍TMB质量的七水合硫酸亚铁,超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液;将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
4.根据权利要求2所述的超分子聚合物的制备方法,其特征在于将TMB溶解于含水量不高于10%的乙醇溶液中,使其终浓度为3mg/mL,然后加入不同质量的七水合硫酸亚铁,使得在体系中亚铁与TMB分子的摩尔比不小于1:2;超声震荡10分钟后,12000转/分钟离心去除沉淀,得到的上清液即为(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物溶液;将该溶液挥干或烘干,即得到(3,3’,5,5’-四甲基联苯胺)n(Fe2+)m(X)L超分子聚合物固体。
5.根据权利要求1所述的超分子聚合物的应用方法,其特征是将该聚合物的乙醇溶液与食用油按照体积比1:1混合,振荡混匀后,静置分层,将上层颜色与标准色卡对比,即可得出食用油中过氧化值含量。
6.根据权利要求1所述的超分子聚合物应用方法,其特征是用该聚合物的乙醇溶液把滤纸完全润湿后,烘干,做成试纸;将食用油滴在该试纸上,静置1-5分钟,将试纸颜色与标准色卡对比,即可得出食用油中过氧化值含量。
CN201711114347.9A 2017-11-13 2017-11-13 一种超分子聚合物及其制备和应用方法 Expired - Fee Related CN107903400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711114347.9A CN107903400B (zh) 2017-11-13 2017-11-13 一种超分子聚合物及其制备和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711114347.9A CN107903400B (zh) 2017-11-13 2017-11-13 一种超分子聚合物及其制备和应用方法

Publications (2)

Publication Number Publication Date
CN107903400A true CN107903400A (zh) 2018-04-13
CN107903400B CN107903400B (zh) 2020-09-11

Family

ID=61844940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711114347.9A Expired - Fee Related CN107903400B (zh) 2017-11-13 2017-11-13 一种超分子聚合物及其制备和应用方法

Country Status (1)

Country Link
CN (1) CN107903400B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339767B1 (ko) * 2012-07-20 2013-12-11 한국과학기술원 철-아미노점토의 유사 과산화효소 활성을 이용한 면역학적 검정법
CN103674939A (zh) * 2012-09-14 2014-03-26 中国科学院青岛生物能源与过程研究所 一种用于检测双氧水的仿酶试纸及其应用
CN106290187A (zh) * 2016-07-31 2017-01-04 国家海洋局第海洋研究所 一种Fe2(MoO4)3模拟酶材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339767B1 (ko) * 2012-07-20 2013-12-11 한국과학기술원 철-아미노점토의 유사 과산화효소 활성을 이용한 면역학적 검정법
CN103674939A (zh) * 2012-09-14 2014-03-26 中国科学院青岛生物能源与过程研究所 一种用于检测双氧水的仿酶试纸及其应用
CN106290187A (zh) * 2016-07-31 2017-01-04 国家海洋局第海洋研究所 一种Fe2(MoO4)3模拟酶材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
屠一锋 等: "3,3’,5,5’-四甲基联苯胺-β-环糊精包合物性质的研究", 《分析科学学报》 *

Also Published As

Publication number Publication date
CN107903400B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
Wang et al. 3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework
Ensafi et al. A highly selective optical sensor for catalytic determination of ultra-trace amounts of nitrite in water and foods based on brilliant cresyl blue as a sensing reagent
Kavosi et al. A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite
Ji et al. Enhanced luminol chemiluminescence with oxidase-like properties of FeOOH nanorods for the sensitive detection of uric acid
He et al. Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite
Chopra et al. Organic nanoparticles for visual detection of spermidine and spermine in vapors and aqueous phase
Li et al. Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein
Arvand et al. Simultaneous voltammetric determination of synthetic colorants in foods using a magnetic core–shell Fe 3 O 4@ SiO 2/MWCNTs nanocomposite modified carbon paste electrode
Wang et al. Coupling diazotization with oxidase-mimetic catalysis to realize dual-mode double-ratiometric colorimetric and electrochemical sensing of nitrite
Pirot et al. Surface imprinted polymer on dual emitting MOF functionalized with blue copper nanoclusters and yellow carbon dots as a highly specific ratiometric fluorescence probe for ascorbic acid
Li et al. Peroxidase-like activity of 2′, 7′-difluorofluorescein and its application for galactose detection
CN109092364A (zh) 一种铜金属有机骨架模拟酶材料及其制备与应用
CN103884669A (zh) 检测汞离子用纳米银探针的制备方法及其应用
Wang et al. A dual-mode ratiometric fluorescence and smartphone-assisted colorimetric sensing platform based on bifunctional Fe, Co-CQD for glucose analysis at physiological pH
Yuan et al. CuCo2S4 nanozyme-based stimulus-responsive hydrogel kit for rapid point-of-care testing of uric acid
Deng et al. LMOF serve as food preservative nanosensor for sensitive detection of nitrite in meat products
Wu et al. A novel core-shell nanomaterial ratiometric fluorescent probe for detecting urinary TDGA as a biomarker for VCM exposure
Rattu et al. Enzyme-free colorimetric nanosensor for the rapid detection of lactic acid in food quality analysis
Guo et al. A facile and sensitive magnetic relaxation sensing strategy based on the conversion of Fe3+ ions to Prussian blue precipitates for the detection of alkaline phosphatase and ascorbic acid oxidase
Guan et al. A novel functionalized CdTe@ MOFs based fluorometric and colorimetric biosensor for dual-readout assay of creatinine
CN107903400A (zh) 一种超分子聚合物及其制备和应用方法
CN104101576A (zh) 一种测定钢或铁合金中镍含量的方法
Shahidi et al. Electrochemical analysis of sunset yellow based on NiO-SWCNTs NC/IL modified carbon paste electrode in food samples
Brainina et al. State‐of‐the‐art electrochemistry for the assessment of oxidative stress and integral antioxidant activity of biological environments
CN103926297A (zh) 一种复合材料的葡萄糖传感器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200911