鳌合型重金属捕捉剂及其合成方法及其应用
技术领域
本发明属于水处理技术及高分子功能材料领域,具体涉及一种鳌合型重金属捕捉剂及其合成方法及其应用;本发明主要在电镀、冶炼、采矿、选矿、化工及机械等排放重金属废水行业应用。
背景技术
重金属废水主要来源于电镀、冶炼、采矿、选矿、化工及机械等行业。这些行业产生的含重金属的废水排入天然水体后,不仅对水生生物构成威胁,而且可能通过食物链而不断富集于生物体内,最终危害到人类的健康。重金属废水处理传统方法主要包括化学沉淀法、重金属捕捉剂沉淀法、离子交换法、活性炭吸附法等。相比于离子交换法和活性炭吸附法,重金属捕捉剂沉淀法具有设备投入少,处理高效率及成本低等优势,广泛用于重金属废水处理行业。目前在实际研究应用较多的重金属捕捉剂主要有二硫代胺基甲酸盐类衍生物(DTC类)。
在电镀行业中,重金属不再以单一的重金属离子形式存在,而是与EDTA、酒石酸、柠檬酸、NH3等物质形成稳定的络合物,因此去除难度更大,普通的重金属捕捉剂沉淀法难以获得满意的处理效果。目前,电镀行业含镍的络合型电镀废水最难处理,很难通过调节重金属捕捉剂配方及处理工艺达到电镀污染物排放标准表3要求,镍含量小于0.1 mg/L。镍废水已成为电镀行业处理难题,急需研制新型重金属捕捉剂,满足行业需求。
近年来,新型重金属捕捉剂成为研究热点。中国专利公开了“一种聚乙烯二胺四乙酸单元的聚合物”发明专利申请,其公开号为CN 106986432A,具有较好的重金属螯合能力,可广泛应用于各种重金属废水行业及土壤修复;但其存在一些技术缺陷:(1)大多数络合型电镀废水是酸性废水,不能直接添加使用,需调节pH值至中性到碱性才能发生有效沉降;(2)在碱性条件下,该新型重金属捕捉剂投料比难控制问题,投料过量易产生沉淀慢或不沉淀反溶解现象;(3)该新型重金属捕捉剂螯合能力一般,其每个单元化学结构只能提供3个配位原子参与螯合反应,对高度络合型重金属废水处理效果不佳。
总之,现有的重金属捕捉剂的沉降速率通常会受官能基团、投料比、pH等因素影响。投料比因素最难控制,投料过量易造成沉降速率慢,投料少易造成重金属沉淀不完全。
发明内容
本发明的目的是克服现有技术的不足而提供一种鳌合型重金属捕捉剂及其合成方法及其应用,其能团吸附络合型重金属离子,每个基本单位能提供六配位原子进行强力螯合吸附,进一步通过聚合物分子刷助沉降侧链的二硫代氨基甲酸钠与助沉降剂发生化学沉淀反应,在数秒内生成大的聚集体,从而实现快速沉降,操作方便。
为了达到上述目的,本发明的鳌合型重金属捕捉剂的技术方案是这样实现的,其特征在于包括1~5份的聚合物主链聚羟乙基丙烯酰胺(PHEMAA)、1~100份的功能高分子侧链前驱体聚合物末端含羧基的聚N-乙烯基甲酰胺(PNVF-COOH)、100~500份的水、1~5份的催化剂、1~5份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I)、 1~5份的氢氧化钠, 1~100份的乙二醇二乙醚二胺四乙酸二酐(EGTAD)及1~5份的二硫化碳;以上均为质量份数,所述催化剂是N-羟基琥珀酰亚胺(NHS)。
在本技术方案中,所述聚合物主链聚羟乙基丙烯酰胺(PHEMAA)是通过普通自由基聚合或可控活性聚合法合成聚合物主链聚羟乙基丙烯酰胺(PHEMAA);
所述功能高分子侧链前驱体聚合物PNVF-COOH主要采用偶氮二氰基戊酸为引发剂通过普通自由基聚合合成末端含羧基的聚N-乙烯基甲酰胺(PNVF-COOH)聚合物;
所述乙二醇二乙醚二胺四乙酸二酐(EGTAD) 的合成方法为:将1~100份的乙二醇二乙醚二胺四乙酸和1~100份的乙酸酐溶解于1~100份的2-甲基吡啶中,控制于50~70℃,反应20~40小时,获得乙二醇二乙醚二胺四乙酸二酐;以上均为质量份数。
为了达到上述目的,本发明的鳌合型重金属捕捉剂的合成方法是这样实现的,其特征在于将1~5份的聚合物主链聚羟乙基丙烯酰胺(PHEMAA)和1~100份的功能高分子侧链前驱体聚合物末端含羧基的聚N-乙烯基甲酰胺(PNVF-COOH)混合溶于100~500份的水里,加入1~5份的催化剂和1~5份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I),控温于50~80℃,进行酯化反应10~100小时,获得聚羟乙基丙烯酰胺-接枝-聚N-乙烯基甲酰胺(PHEMAA-g-PNVF);再加入1~5份的氢氧化钠,控温于50~80℃,进行水解反应12~48小时,获得聚羟乙基丙烯酰胺-接枝-聚乙烯胺(PHEMAA-PVA);再加入1~100份的乙二醇二乙醚二胺四乙酸二酐(EGTAD),进行酰基化反应1~48小时,酰化度范围控制在80~99%,获得聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺)(PHEMAA-g-(PVAEGTANa-r-PVA));再加入1~5份的二硫化碳,控温于20~40℃,进行加成反应1~3小时,最终获得水溶性聚合物分子刷聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PVAEGTANa-r-PVACS2Na)) 即鳌合型重金属捕捉剂;以上均为质量份数;所述催化剂是N-羟基琥珀酰亚胺(NHS)。
在本技术方案中,所述聚羟乙基丙烯酰胺(PHEMAA)的聚合度为1~1000,所述功能高分子侧链前驱体聚合物PNVF-COOH的聚合度均为10~200,螯合型高分子侧链PVAEGTANa的接枝率5~100%及助沉降高分子侧链PVACS2Na的接枝率为1~5%。
为了达到上述目的,本发明的鳌合型重金属捕捉剂的应用是这样实现的,其特征在于0.1~1份的水溶性聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PVAEGTANa-r-PVACS2Na))加入到100~1000份的废水中,常温下搅拌1~5分钟,调节pH至1~14,废水中重金属离子与聚合物分子刷(PHEMAA-g-(PVAEGTANa-r-PVACS2Na))的螯合型侧链PVAEGTANa发生螯合吸附,再加入0.01~0.1份的助沉降剂,常温下搅拌1分钟,助沉降剂的金属离子将快速与水溶性聚合物分子刷(PHEMAA-g-(PVAEGTANa-r-PVACS2Na))上的助沉降侧链PVACS2Na发生化学沉淀反应,5秒内生成粒径大于300 μm的絮体沉淀,可快速实现去除废水中的络合型重金属离子,以上均为质量份数。
在本技术方案中,所述助沉降剂为氯化钙、硫酸镁、氯化亚铁、三氯化铁、三氯化铝的一种或两种以上的任意组合。
本发明与现有技术相比,具有如下的优点及效果:
1. 本发明解决了现有技术重金属捕捉剂沉降速率难控制技术难题,本发明从分子层面进行优化设计,通过引入新型螯合官能团及二硫代氨基甲酸钠官能团,具有高效的捕捉和沉降性能,在助沉降剂的协同作用下,能在数秒内生成大的沉降聚集体。沉降速率不受投料比及pH值的影响,在较宽的pH1~14范围内实现快速沉降;
2.本发明引入了新型螯合型官能基团,能对络合型重金属离子发生络合吸附,解决了工业使用的DTC类捕捉剂捕捉性能不佳问题;
3. 本发明可有效解决含镍络合型电镀废水的处理难题,处理的含镍络合型电镀废水达到电镀污染物排放标准表3要求。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。以下实施例中所涉及的份数均是质量份数。
实施例一
其是一种鳌合型重金属捕捉剂,由以下步骤制备得到:
步骤一 合成PHEMAA聚合物主链
取1份的偶氮二异丁腈引发剂、200份的羟乙基丙烯酰胺(HEMAA)、100的份甲醇,在氮气保护下80℃进行聚合反应4小时,得到聚合度(DP)为230的聚羟乙基丙烯酰胺(PHEMAA);
步骤二 功能高分子侧链前驱体聚合物PNVF-COOH
取1份的偶氮二氰基戊酸引发剂、300份的N-乙烯基甲酰胺(NVF)和300份的水,在氮气保护下50℃进行自由基聚合反应4小时,得到聚合度(DP)为50的功能高分子侧链前驱体聚合物PNVF-COOH;
步骤三 合成乙二醇二乙醚二胺四乙酸二酐(EGTAD)
将20份的乙二醇二乙醚二胺四乙酸和20份的乙酸酐溶解于20份的2-甲基吡啶中,控制于50℃,反应20小时,获得乙二醇二乙醚二胺四乙酸二酐;
步骤四 合成PHEMAA-g-(PVAEGTANa-r-PVACS2Na)
取步骤一中所得到的1份的聚羟乙基丙烯酰胺(PHEMAA)与步骤二中所得到的25份的功能高分子侧链前驱体聚合物PNVF-COOH混合溶于100份的水里,再加入1份的N-羟基琥珀酰亚胺(NHS)和1份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I),50℃下反应10小时,获得水溶性聚合物分子刷PHEMAA-g-PNVF;再加入1份的氢氧化钠,控温于50℃,进行水解反应48小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酸纳-无规-聚乙烯胺)(PHEMAA-PVA);再加入步骤三中所得到的25份的乙二醇二乙醚二胺四乙酸二酐(EGTAD),控温于50℃,酰基化反应36小时,酰化度为92%,获得聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺)(PHEMAA-g-(PVAEGTANa-r-PVA));再加入1份的二硫化碳,控温于20℃,进行加成反应1小时,最终获得水溶性聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PVAEGTANa-r-PVACS2Na))即鳌合型重金属捕捉剂,采用核磁共振仪测定PVAEGTANa和PVACS2Na侧链的接枝率分别为23%和2%。
在本实施例中,鳌合型重金属捕捉剂的应用
取本实施例的鳌合型重金属捕捉剂做重金属废水测试,取200份的含5 mg/L Ni2+离子和8 mg/L柠檬酸废水,加入0.2份的水溶性聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PVAEGTANa-r-PVACS2Na)),常温下搅拌1分钟,用0.1 mol/L盐酸调节pH至4,加入0.03份氯化钙,常温下搅拌1分钟,5秒内生成粒径为350 μm以上的絮体沉淀。过滤后,采用原子吸收分光光度计测定Ni2+离子浓度为0.02 mg/L,脱除效率>99%。
以上均为质量份数。
实施例二
其是一种鳌合型重金属捕捉剂,由以下步骤制备得到:
步骤一 合成PHEMAA聚合物主链
取1份的偶氮二异丁腈引发剂、400份的羟乙基丙烯酰胺(HEMAA)、50的份甲醇,在氮气保护下70℃进行聚合反应9小时,得到聚合度(DP)为570的聚羟乙基丙烯酰胺(PHEMAA);
步骤二 功能高分子侧链前驱体聚合物PNVF-COOH
取1份的偶氮二氰基戊酸引发剂、300份的N-乙烯基甲酰胺(NVF)和100份的水,在氮气保护下60℃进行自由基聚合反应5小时,得到聚合度(DP)为120的PNVF-COOH;
步骤三 合成乙二醇二乙醚二胺四乙酸二酐(EGTAD)
将60份的乙二醇二乙醚二胺四乙酸和60份乙酸酐溶解于60份的2-甲基吡啶中,控制于60℃,反应30小时,获得乙二醇二乙醚二胺四乙酸二酐;
步骤四 合成PHEMAA-g-(PVAEGTANa-r-PVACS2Na)
取步骤一中所得到的2份的聚羟乙基丙烯酰胺(PHEMAA)与步骤二中所得到的80份的功能高分子侧链前驱体聚合物PNVF-COOH混合溶于300份的水里,再加入3份N-羟基琥珀酰亚胺(NHS)和3份1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I),60℃下反应50小时,获得水溶性聚合物分子刷PHEMAA-g-PNVF;;再加入5份的氢氧化钠,控温于60℃,进行水解反应36小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酸纳-无规-聚乙烯胺)(PHEMAA-PVA);再加入步骤三中所得到的80份的乙二醇二乙醚二胺四乙酸二酐(EGTAD),控温于60℃,酰基化反应10小时,酰化度为96%,获得聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺)(PHEMAA-g-(PVAEGTANa-r-PVA));再加入5份的二硫化碳,控温于30℃,进行加成反应2小时,最终获得水溶性聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PVAEGTANa-r-PVACS2Na)) 即鳌合型重金属捕捉剂,采用核磁共振仪测定PVAEGTANa和PVACS2Na侧链的接枝率分别为68%和3%。
在本实施例中,鳌合型重金属捕捉剂的应用
取本实施例的鳌合型重金属捕捉剂做重金属废水测试,取600份含10 mg/L Ni2+离子和2 mg/L乙二胺四乙酸二钠废水,先加入上述制备的0.6份PHEMAA-g-(PVAEGTANa-r-PVACS2Na),常温下搅拌3分钟,用0.1 mol/L盐酸调节pH至5,加入0.02份硫酸镁,常温下搅拌1分钟,3秒内生成粒径为450 μm以上的絮体沉淀。过滤后,采用原子吸收分光光度计测定Ni2+离子浓度为0.02 mg/L,脱除效率>99%。
以上均为质量份数。
实施例三
其是一种鳌合型重金属捕捉剂,由以下步骤制备得到:
步骤一 合成PHEMAA聚合物主链
取1份的偶氮二异丁腈引发剂、500份的羟乙基丙烯酰胺(HEMAA)、20的份甲醇,在氮气保护下60℃进行聚合反应10小时,得到聚合度(DP)为850的聚羟乙基丙烯酰胺(PHEMAA);
步骤二 功能高分子侧链前驱体聚合物PNVF-COOH
取1份的偶氮二氰基戊酸引发剂、300份的N-乙烯基甲酰胺(NVF)和50份的水,在氮气保护下70℃进行自由基聚合反应6小时,得到聚合度(DP)为180的PNVF-COOH;
步骤三 合成乙二醇二乙醚二胺四乙酸二酐(EGTAD)
将80份的乙二醇二乙醚二胺四乙酸和80份乙酸酐溶解于80份的2-甲基吡啶中,控制于70℃,反应40小时,获得乙二醇二乙醚二胺四乙酸二酐;
步骤四 合成PHEMAA-g-(PVAEGTANa-r-PVACS2Na)
取步骤一中所得到的2份的聚羟乙基丙烯酰胺(PHEMAA)与步骤二中所得到的100份的功能高分子侧链前驱体聚合物PNVF-COOH混合溶于500份的水里,再加入5份的N-羟基琥珀酰亚胺(NHS)和5份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I),80℃下反应70小时,获得水溶性聚合物分子刷PHEMAA-g-PNVF;;再加入9份的氢氧化钠,控温于80℃,进行水解反应12小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酸纳-无规-聚乙烯胺)(PHEMAA-PVA);再加入步骤三中所得到的100份的乙二醇二乙醚二胺四乙酸二酐(EGTAD),控温于80℃,进行酰基化反应5小时,酰化度为95%,获得聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺)(PHEMAA-g-(PVAEGTANa-r-PVA));再加入4份的二硫化碳,控温于40℃,进行加成反应3小时,最终获得水溶性聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PVAEGTANa-r-PVACS2Na)) 即鳌合型重金属捕捉剂,采用核磁共振仪测定PVAEGTANa和PVACS2Na侧链的接枝率分别为94%和5%。
在本实施例中,鳌合型重金属捕捉剂的应用
取本实施例的鳌合型重金属捕捉剂做重金属废水测试,取1000份的含5 mg/L Pb2+离子、7 mg/L Cu2+离子、8 mg/L Zn2+离子、12 mg/L Ni2+离子和5 mg/L 乙二胺四乙酸二钠废水,加入的1份的水溶性聚羟乙基丙烯酰胺-接枝-(聚乙烯胺基乙二醇二乙醚二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PVAEGTANa-r-PVACS2Na)),常温下搅拌4分钟,用1 mol/L氢氧化钠调节pH至9,常温下搅拌1分钟,2秒内生成粒径为490μm以上的絮体沉淀。过滤后,采用原子吸收分光光度计测定Pb 2+离子浓度为0.0 2 mg/L,Cu2+离子浓度为0.01 mg/L,Zn 2+离子浓度为0.03 mg/L,Ni 2+离子浓度为0.02 mg/L,脱除效率>99%。
以上均为质量份数。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。