CN107879318B - 一种气泡剥离法制备类石墨相氮化碳纳米片的方法 - Google Patents

一种气泡剥离法制备类石墨相氮化碳纳米片的方法 Download PDF

Info

Publication number
CN107879318B
CN107879318B CN201711056240.3A CN201711056240A CN107879318B CN 107879318 B CN107879318 B CN 107879318B CN 201711056240 A CN201711056240 A CN 201711056240A CN 107879318 B CN107879318 B CN 107879318B
Authority
CN
China
Prior art keywords
graphite
carbon nitride
phase carbon
nanosheets
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711056240.3A
Other languages
English (en)
Other versions
CN107879318A (zh
Inventor
申倩倩
薛晋波
杨薛峰
马涛
贾虎生
胡兰青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201711056240.3A priority Critical patent/CN107879318B/zh
Publication of CN107879318A publication Critical patent/CN107879318A/zh
Application granted granted Critical
Publication of CN107879318B publication Critical patent/CN107879318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及一种气泡剥离法制备类石墨相氮化碳纳米片的方法,是以三聚氰胺为前驱体材料、碳酸氢钠水溶液做电解液,采用脉冲电压电解法进行电解,收集类石墨相氮化碳粉末,经洗涤、离心分离、真空冷冻干燥,制得终产物类石墨相氮化碳纳米片,纳米片厚度为1.67nm,产物纯度达99.8%,可在光照条件下催化降解有机物,可在光伏产品中使用,是先进的制备类石墨相氮化碳纳米片的方法。

Description

一种气泡剥离法制备类石墨相氮化碳纳米片的方法
技术领域
本发明涉及一种气泡剥离法制备类石墨相氮化碳纳米片的方法、属光催化材料制备及应用的技术领域。
背景技术
新兴的光催化技术由于能够利用太阳光分解水制氢气和降解环境污染物,使其成为解决能源危机和环境污染问题的研究热点;传统的光催化剂存在光响应范围窄、太阳能利用率低、量子效率低的问题,严重限制了它们的应用;近年来,由碳元素和氮元素组成的有机聚合物半导体光催化剂——类石墨相氮化碳,由于禁带宽度较窄,对可见光有响应,而且具有较高的化学稳定性、易改性和高的光催化性能;类石墨相氮化碳制备过程简单,可通过直接加热三聚氰胺、尿素和双氰氨制得,可在光催化领域应用。
但是类石墨相氮化碳也存在一些不足之处,例如比表面积较小、带隙宽度相对较大、对可见光响应的范围较窄、光生电子和空穴分离程度不高、容易复合;这些不足制约了类石墨相氮化碳在光催化领域和能源领域的应用;由于类石墨相氮化碳是一种层状化合物,层状结构之间靠范德华力连接,所以可通过剥离法得到二维纳米片结构,得到的二维纳米片由于比表面积增大使其表面活性位点增多,由于晶体的各向异性,随着纳米片厚度减小使载流子迁移到表面的垂直距离缩短;此外,由于量子限制效应,使纳米片具有独特的物理化学性能,比如增大的带隙可以提高电荷载体的氧化还原能力;类石墨相氮化碳制备成纳米片后光吸收和光响应体相有増强;通过热侵蚀、超声剥离、化学剥离以及利用浓盐酸、浓硝酸方法剥离类石墨相氮化碳,可以成功获得比表面积高、光催化活性好、应用范围广的类石墨相氮化碳纳米片;上述制备过程既费时又低效,而且存在安全隐患;因此,需要开发一种绿色方法来制备类石墨相氮化碳纳米片,此技术还在科学研究中。
发明内容
发明目的
本发明的目的是针对背景技术的不足和弊端,采用电化学计时电流法电解碳酸氢钠电解液产生气体,利用气泡剥离类石墨相氮化碳,制得类石墨相氮化碳纳米片,以获得比表面积高、光催化活性好、应用范围广的类石墨相氮化碳纳米片。
技术方案
本发明使用的化学物质为:三聚氰胺、泡沫镍片、甘汞片、碳酸氢钠、去离子水,其组合准备用量如下:以克、毫升、毫米为计量单位
Figure BDA0001453729190000021
制备方法如下:
(1)制备类石墨相氮化碳细粉
将三聚氰胺10g±0.01g置于坩埚中,将坩埚放于热处理炉中,加热温度550℃,保温2h,然后停止加热,随炉冷却至25℃,成类石墨相氮化碳;
研磨、过筛,热处理后将类石墨相氮化碳用玛瑙研钵、研棒进行研磨,然后用300目筛网过筛,研磨,过筛反复进行,成类石墨相氮化碳细粉;
(2)制备工作电极
将泡沫镍片平展置于钢质平板上,将类石墨相氮化碳细粉0.5g±0.01g均匀铺在泡沫镍片上部,然后将另一泡沫镍片压在类石墨相氮化碳细粉上部,并压实,成工作电极;
(3)制备对电极
将另一泡沫镍片平展置于另一钢质平板上,将类石墨相氮化碳细粉0.5g±0.01g均匀铺在泡沫镍片上部,然后将另一泡沫镍片压在类石墨相氮化碳细粉上部,并压实,成对电极;
(4)制备碳酸氢钠电解液
称取碳酸氢钠7g±0.01g,量取去离子水100mL±0.01mL,加入烧杯中,用搅拌器搅拌5min,成0.833mol/L的碳酸氢钠电解液;
(5)制备类石墨相氮化碳纳米片
类石墨相氮化碳纳米片的制备是在电解槽内进行的,是在电化学工作站脉冲电压电解作用下,在工作电极、对电极、参比电极作用下完成的;
①将配置的碳酸氢钠电解液加入电解槽内;
②将工作电极、对电极、参比电极垂直置于电解槽内,电解液要淹没工作电极、对电极、参比电极;
③开启电化学工作站,采用计时电流法来提供脉冲电压,高电位0.8V(相对于甘汞片电位)、低电位-0.8V(相对于甘汞片电位),脉冲步数320,脉冲持续时间6s,总时间1920s;脉冲电压对工作电极、对电极内的类石墨相氮化碳细粉进行电解;
④电解后,将工作电极、对电极内的类石墨相氮化碳细粉进行收集,并置于烧杯中;
⑤洗涤,将烧杯中的类石墨相氮化碳细粉加入去离子水100mL,搅拌清洗10min,成洗涤液;
⑥离心分离,将洗涤液加入离心机的离心管内,进行离心分离,分离转速8000r/min,分离时间10min;
分离后,留存沉淀物,并去洗涤液;
⑦真空冷冻干燥,将沉淀物置于石英容器中,然后置于真空冷冻干燥箱中冷冻干燥,冷冻干燥温度-80℃,真空度2Pa,冷冻干燥时间10h,冷冻干燥后得类石墨相氮化碳纳米片;
(6)检测、分析、表征
对制备的类石墨相氮化碳纳米片的形貌、成份、化学物理性能进行检测、分析、表征;
用扫描电子显微镜对类石墨相氮化碳纳米片进行形貌和结构分析;
用原子力显微镜对类石墨相氮化碳纳米片厚度进行测量;
用X射线衍射仪对类石墨相氮化碳纳米片进行衍射强度分析;
用紫外-可见分光光度计对类石墨相氮化碳纳米片进行紫外可见光吸收分析;
结论:类石墨相氮化碳纳米片为淡黄色粉体片层状结构,层与层之间呈堆垛状,剥离后的类石墨相氮化碳纳米片厚度为1.67nm,产物纯度达99.8%;
(7)产物储存
对制备的类石墨相氮化碳纳米片储存于棕色透明的玻璃瓶中,密闭避光保存,要防潮、防晒、防酸碱盐侵蚀,储存温度20℃,相对湿度10%。
有益效果
本发明与背景技术相比具有明显的先进性,是以三聚氰胺作为前驱体材料、碳酸氢钠水溶液做电解液,采用脉冲电压进行电解,收集类石墨相氮化碳纳米片粉末,经洗涤、离心分离、真空冷冻干燥,制得类石墨相氮化碳纳米片,此制备方法工艺先进,数据精确翔实,制备的类石墨相氮化碳纳米片呈片状结构,纳米片厚度为1.67nm,产物纯度达99.8%,可在光催化应用中使用,是先进的制备类石墨相氮化碳纳米片的方法。
附图说明
图1、类石墨相氮化碳电解状态图
图2、类石墨相氮化碳与类石墨相氮化碳纳米片形貌对比图
图3、类石墨相氮化碳与类石墨相氮化碳纳米片原子力对比图谱
图4、类石墨相氮化碳与类石墨相氮化碳纳米片X射线衍射强度对比图谱
图5、类石墨相氮化碳与类石墨相氮化碳纳米片紫外可见光吸收对比图谱
图中所示,附图标记清单如下:
1、电化学工作站,2、脉冲电解槽,3、顶盖,4、显示屏,5、指示灯,6、电源开关,7、脉冲电源控制器,8、第一吊丝,9、第二吊丝,10、第三吊丝,11、碳酸氢钠电解液,12、工作电极,13、参比电极,14、对电极。
具体实施方式
以下结合附图对本发明做进一步说明:
图1所示,为类石墨相氮化碳电解状态图,各部位置、连接关系要正确,按量配比,按序操作。
制备使用的化学物质的量值是按预先设置的范围确定的,以克、毫升、毫米为计量单位。
制备类石墨相氮化碳纳米片是在脉冲电解槽内进行的,是在脉冲电源电解、在碳酸氢钠电解液内、在工作电极、参比电极、对电极作用下完成的;
电化学工作站1为立式,在电化学工作站1上部为脉冲电解槽2,脉冲电解槽2上部为顶盖3;顶盖3下部设有第一吊丝8、第二吊丝9、第三吊丝10,并深入脉冲电解槽2内;第一吊丝8下部连接工作电极12,第二吊丝9下部连接参比电极13,第三吊丝10下部连接对电极14;脉冲电解槽2内盛放碳酸氢钠电解液11,碳酸氢钠电解液11要淹没工作电极12、参比电极13、对电极14;在电化学工作站1上设有显示屏4、指示灯5、电源开关6、脉冲电源控制器7。
图2所示,为类石墨相氮化碳与类石墨相氮化碳纳米片对比形貌图,图a、图c为类石墨相氮化碳形貌图,图中可见,类石墨相氮化碳由纳米片相互堆叠而成,是典型的叠层层状结构,图b、图d为类石墨相氮化碳纳米片形貌图,图中可见,类石墨相氮化碳纳米片为片层结构,呈现蓬松的层状结构,类石墨相氮化碳纳米片出现卷曲。
图3所示,为类石墨相氮化碳与类石墨相氮化碳纳米片原子力对比图谱,图a、图b为类石墨相氮化碳原子力图谱,图中可见,类石墨相氮化碳厚度为14.59nm,图c、图d为类石墨相氮化碳纳米片原子力图谱,图中可见,类石墨相氮化碳纳米片厚度为1.67nm。
图4所示,为类石墨相氮化碳与类石墨相氮化碳纳米片X射线衍射强度对比图谱,纵坐标为衍射强度,横坐标为衍射角,(a)为类石墨相氮化碳X射线衍射图谱,(b)为类石墨相氮化碳纳米片X射线衍射图谱,图中可见,类石墨相氮化碳纳米片(100)和(002)晶面接近消失或强度减弱,是由于颗粒的变小和片层结构变薄所致。
图5所示,为类石墨相氮化碳与类石墨相氮化碳纳米片紫外可见光吸收对比图谱,(a)为类石墨相氮化碳紫外可见光吸收图谱,(b)为类石墨相氮化碳纳米片紫外可见光吸收图谱,图中可见,类石墨相氮化碳纳米片出现了蓝移,是由于量子限制效应的作用,进一步说明类石墨相氮化碳颗粒的变小和片层结构变薄。

Claims (2)

1.一种气泡剥离法制备类石墨相氮化碳纳米片的方法,其特征在于:
使用的化学物质为:三聚氰胺、泡沫镍片、甘汞片、碳酸氢钠、去离子水,其组合准备用量如下:以克、毫升、毫米为计量单位
三聚氰胺:C3H6N6 10 g ± 0.01 g
泡沫镍片:Ni 4片 30 mm × 10 mm × 1 mm
甘汞片 1片 30 mm × 10 mm × 1 mm
碳酸氢钠:NaHCO3 7 g ± 0.01g
去离子水:H2O 1000 mL ± 10 mL
制备方法如下:
(1)制备类石墨相氮化碳细粉
将三聚氰胺10 g ± 0.01 g置于坩埚中,将坩埚放于热处理炉中,加热温度550℃,保温2 h,然后停止加热,随炉冷却至25℃,成类石墨相氮化碳;
研磨、过筛,热处理后将类石墨相氮化碳用玛瑙研钵、研棒进行研磨,然后用300目筛网过筛,研磨,过筛反复进行,成类石墨相氮化碳细粉;
(2)制备工作电极
将泡沫镍片平展置于钢质平板上,将类石墨相氮化碳细粉0.5 g ± 0.01 g均匀铺在泡沫镍片上部,然后将另一泡沫镍片压在类石墨相氮化碳细粉上部,并压实,成工作电极;
(3)制备对电极
将另一泡沫镍片平展置于另一钢质平板上,将类石墨相氮化碳细粉0.5 g ± 0.01 g均匀铺在泡沫镍片上部,然后将另一泡沫镍片压在类石墨相氮化碳细粉上部,并压实,成对电极;
(4)制备碳酸氢钠电解液
称取碳酸氢钠7 g ± 0.01 g,量取去离子水100 mL ± 0.01 mL,加入烧杯中,用搅拌器搅拌5 min,成0.833 mol/L的碳酸氢钠电解液;
(5)制备类石墨相氮化碳纳米片
类石墨相氮化碳纳米片的制备是在电解槽内进行的,是在电化学工作站脉冲电压电解作用下,在工作电极、对电极、参比电极作用下完成的;
① 将配置的碳酸氢钠电解液加入电解槽内;
② 将工作电极、对电极、参比电极垂直置于电解槽内,电解液要淹没工作电极、对电极、参比电极;
③ 开启电化学工作站,采用计时电流法来提供脉冲电压,高电位0.8 V相对于甘汞片电位、低电位-0.8 V相对于甘汞片电位,脉冲步数320,脉冲持续时间6 s,总时间1920 s;脉冲电压对工作电极、对电极内的类石墨相氮化碳细粉进行电解;
④ 电解后,将工作电极、对电极内的类石墨相氮化碳细粉进行收集,并置于烧杯中;
⑤ 洗涤,将烧杯中的类石墨相氮化碳细粉加入去离子水100 mL,搅拌清洗10 min,成洗涤液;
⑥ 离心分离,将洗涤液加入离心机的离心管内,进行离心分离,分离转速8000 r/min,分离时间10 min;
分离后,留存沉淀物,并去洗涤液;
⑦ 真空冷冻干燥,将沉淀物置于石英容器中,然后置于真空冷冻干燥箱中冷冻干燥,冷冻干燥温度-80℃,真空度2 Pa,冷冻干燥时间10 h,冷冻干燥后得类石墨相氮化碳纳米片;
(6)检测、分析、表征
对制备的类石墨相氮化碳纳米片的形貌、成份、化学物理性能进行检测、分析、表征;
用扫描电子显微镜对类石墨相氮化碳纳米片进行形貌和结构分析;
用原子力显微镜对类石墨相氮化碳纳米片厚度进行测量;
用X射线衍射仪对类石墨相氮化碳纳米片进行衍射强度分析;
用紫外-可见分光光度计对类石墨相氮化碳纳米片进行紫外可见光吸收分析;
结论:类石墨相氮化碳纳米片为淡黄色粉体片层状结构,层与层之间呈堆垛状,剥离后的类石墨相氮化碳纳米片厚度为1.67 nm,产物纯度达99.8%;
(7)产物储存
对制备的类石墨相氮化碳纳米片储存于棕色透明的玻璃瓶中,密闭避光保存,要防潮、防晒、防酸碱盐侵蚀,储存温度20℃,相对湿度10%。
2.根据权利要求1所述的一种气泡剥离法制备类石墨相氮化碳纳米片的方法,其特征在于:
制备类石墨相氮化碳纳米片是在电解槽内进行的,是在脉冲电源电解、在碳酸氢钠电解液内、在工作电极、参比电极、对电极作用下完成的;
电化学工作站(1)为立式,在电化学工作站(1)上部为脉冲电解槽(2),脉冲电解槽(2)上部为顶盖(3);顶盖(3)下部设有第一吊丝(8)、第二吊丝(9)、第三吊丝(10),并深入脉冲电解槽(2)内;第一吊丝(8)下部连接工作电极(12),第二吊丝(9)下部连接参比电极(13),第三吊丝(10)下部连接对电极(14);脉冲电解槽(2)内盛放碳酸氢钠电解液(11),碳酸氢钠电解液(11)要淹没工作电极(12)、参比电极(13)、对电极(14);在电化学工作站(1)上设有显示屏(4)、指示灯(5)、电源开关(6)、脉冲电源控制器(7)。
CN201711056240.3A 2017-11-01 2017-11-01 一种气泡剥离法制备类石墨相氮化碳纳米片的方法 Active CN107879318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711056240.3A CN107879318B (zh) 2017-11-01 2017-11-01 一种气泡剥离法制备类石墨相氮化碳纳米片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711056240.3A CN107879318B (zh) 2017-11-01 2017-11-01 一种气泡剥离法制备类石墨相氮化碳纳米片的方法

Publications (2)

Publication Number Publication Date
CN107879318A CN107879318A (zh) 2018-04-06
CN107879318B true CN107879318B (zh) 2020-11-06

Family

ID=61783523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711056240.3A Active CN107879318B (zh) 2017-11-01 2017-11-01 一种气泡剥离法制备类石墨相氮化碳纳米片的方法

Country Status (1)

Country Link
CN (1) CN107879318B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993416A (zh) * 2018-08-10 2018-12-14 太原理工大学 一种铜离子印迹膜的制备方法
CN109650357B (zh) * 2019-01-30 2020-05-05 太原理工大学 一种金属蒸汽热刻蚀法制备非晶态氮化碳纳米片的方法
CN112010272B (zh) * 2019-05-31 2022-02-01 中国科学院大连化学物理研究所 一种剥层的氮化碳材料及其制备方法
CN110127638A (zh) * 2019-06-11 2019-08-16 上海大学 一种纳米级类石墨相二维氮化碳分散液的制备方法
CN114592197B (zh) * 2022-01-20 2024-01-12 华南理工大学 一种二维g-C3N4纳米片膜及其电化学制备方法与在离子分离中的应用
CN115196605A (zh) * 2022-05-19 2022-10-18 张家港市东大工业技术研究院 一种石墨相氮化碳纳米片的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696047A (zh) * 2016-01-26 2016-06-22 太原理工大学 一种氧化亚铜纳米薄膜的快速制备方法
CN105800953A (zh) * 2016-03-21 2016-07-27 中国科学院生态环境研究中心 一种可见光响应的碳石墨相氮化碳薄膜电极及其制备方法
CN105817253A (zh) * 2016-04-12 2016-08-03 中国计量大学 石墨相氮化碳纳米片/二氧化钛纳米管阵列光催化材料的制备方法
CN106865536A (zh) * 2017-03-25 2017-06-20 哈尔滨摆渡新材料有限公司 一种制备石墨烯的方法及装置
CN107235487A (zh) * 2016-03-23 2017-10-10 上海新池能源科技有限公司 石墨烯的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405860B2 (en) * 2002-11-26 2008-07-29 Texas Instruments Incorporated Spatial light modulators with light blocking/absorbing areas
CN106053564B (zh) * 2016-05-18 2018-08-21 南京师范大学 一种石墨相碳化氮-壳聚糖修饰电极作为工作电极检测原儿茶酸的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696047A (zh) * 2016-01-26 2016-06-22 太原理工大学 一种氧化亚铜纳米薄膜的快速制备方法
CN105800953A (zh) * 2016-03-21 2016-07-27 中国科学院生态环境研究中心 一种可见光响应的碳石墨相氮化碳薄膜电极及其制备方法
CN107235487A (zh) * 2016-03-23 2017-10-10 上海新池能源科技有限公司 石墨烯的制备方法
CN105817253A (zh) * 2016-04-12 2016-08-03 中国计量大学 石墨相氮化碳纳米片/二氧化钛纳米管阵列光催化材料的制备方法
CN106865536A (zh) * 2017-03-25 2017-06-20 哈尔滨摆渡新材料有限公司 一种制备石墨烯的方法及装置

Also Published As

Publication number Publication date
CN107879318A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN107879318B (zh) 一种气泡剥离法制备类石墨相氮化碳纳米片的方法
Teng et al. Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition
Li et al. 3D ZnIn2S4 nanosheets/TiO2 nanotubes as photoanodes for photocathodic protection of Q235 CS with high efficiency under visible light
Lei et al. Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes
Wu et al. In-situ assembling 0D/2D Z-scheme heterojunction of Lead-free Cs2AgBiBr6/Bi2WO6 for enhanced photocatalytic CO2 reduction
Yin et al. Fabrication of plasmonic Au/TiO2 nanotube arrays with enhanced photoelectrocatalytic activities
Zhao et al. One-step fabrication of carbon decorated Co3O4/BiVO4 pn heterostructure for enhanced visible-light photocatalytic properties
Nan et al. Fabrication of Ni3S2/TiO2 photoanode material for 304 stainless steel photocathodic protection under visible light
Liu et al. Electrodeposition of ZnO nanoflake-based photoanode sensitized by carbon quantum dots for photoelectrochemical water oxidation
CN107699901B (zh) 用于光生阴极保护的锌铁铝水滑石/二氧化钛复合膜光阳极的制备方法
Zhang et al. Type II cuprous oxide/graphitic carbon nitride pn heterojunctions for enhanced photocatalytic nitrogen fixation
CN110241439B (zh) 一种等离子体处理制备表面羟基化wo3薄膜光电极材料的方法
Zheng et al. Improved photocathodic protection performance of g-C3N4/rGO/ZnS for 304 stainless steel
Li et al. Platelike WO3 from hydrothermal RF sputtered tungsten thin films for photoelectrochemical water oxidation
Chen et al. A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity
Yang et al. Direct Z-scheme nanoporous BiVO4/CdS quantum dots heterojunction composites as photoanodes for photocathodic protection of 316 stainless steel under visible light
Zhang et al. Graphitic carbon nitride homojunction films for photocathodic protection of 316 stainless steel and Q235 carbon steel
Liu et al. Morphology-controlled α-Fe2O3 nanostructures on FTO substrates for photoelectrochemical water oxidation
Xie et al. Efficient and stable photoelctrochemical water oxidation by ZnO photoanode coupled with Eu2O3 as novel oxygen evolution catalyst
Sharma et al. Electrodeposition of highly porous ZnO nanostructures with hydrothermal amination for efficient photoelectrochemical activity
Zhu et al. Electrochemically etched triangular pore arrays on GaP and their photoelectrochemical properties from water oxidation
Roy et al. Unique features of the photocatalytic reduction of H2O and CO2 by new catalysts based on the analogues of CdS, Cd4P2X3 (X= Cl, Br, I)
CN107694589B (zh) 一种用于光电催化产氢的薄膜复合材料的制备方法
You et al. Manipulating the charge separation via piezoelectric field and heterojunction to enhance the photoelectrochemical water splitting ability of Bi2WO6/BiOBr photoanode
Al-Hamamre et al. Aerogels-inspired based photo and electrocatalyst for water splitting to produce hydrogen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant