CN107871574A - 一种负温度系数陶瓷热敏电阻的制造方法 - Google Patents

一种负温度系数陶瓷热敏电阻的制造方法 Download PDF

Info

Publication number
CN107871574A
CN107871574A CN201610864243.9A CN201610864243A CN107871574A CN 107871574 A CN107871574 A CN 107871574A CN 201610864243 A CN201610864243 A CN 201610864243A CN 107871574 A CN107871574 A CN 107871574A
Authority
CN
China
Prior art keywords
prepared
thermistor
temperature
surface electrode
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610864243.9A
Other languages
English (en)
Inventor
盖浩然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Dong Hao Software Technology Co Ltd
Original Assignee
Qingdao Dong Hao Software Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Dong Hao Software Technology Co Ltd filed Critical Qingdao Dong Hao Software Technology Co Ltd
Priority to CN201610864243.9A priority Critical patent/CN107871574A/zh
Publication of CN107871574A publication Critical patent/CN107871574A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/044Zinc or cadmium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种负温度系数陶瓷热敏电阻的制造方法。在Mn 3 O 4,Co 3 O 4,Fe 2 O 3中微量掺杂ZnO,混合均匀经过球磨、预烧、喷雾造粒后成型,置于热压炉,通过升温时升压、恒温、恒压1050‑1150℃、10Mpa烧结、降温同时降压;再在瓷体表面用真空蒸发镀膜方式制备表面电极。本发明通过升温时升压、恒温时恒压、降温时降压的热压烧结工艺,烧结恒温温度1050‑1200℃,低于1400℃,大大提高了材料的致密度、热传导系数;采用蒸发镀膜工艺制备陶瓷表面电极,表面金属电极与瓷体结合好,提高了热传导系数,进而提高了负温度系数热敏电阻的耗散系数、伏安特性值;提高了可耐受的最大直流电压,使其避免了在大的工作电压冲击下因为散热不良引起的自热现象,提高了热敏电阻温度测量和控制的准确性。

Description

一种负温度系数陶瓷热敏电阻的制造方法
技术领域
本发明涉及一种负温度系数(NTC)陶瓷热敏电阻的制造方法。
背景技术
在半导体类负温度系数热敏电阻中,常用的负温度系数(NTC)热敏电阻由锰、钴、铁、镍等过渡金属氧化物组成,该种负温度系数热敏电阻(NTC)具有电阻值随着温度上升而呈指数形式下降的特性。由于热敏电阻具备芯片体积小、尺寸与形状的变化灵活、绝对电阻大的特点,在进行温度测量时具有反应灵敏、高精度、低成本的特点,且能够使用很长的连接线和容许较大的接触电阻。由于其独特的特性,在家电、汽车、医疗、航空航天等领域的温度测量控制、温度补偿、间接测量其它参数如液体位置、液体流量、真空度等有广泛应用,
NTC热敏电阻芯片体积小、反应灵敏、组装方是它的优点,它能很快稳定,不会造成热负载。但热敏电阻是一种电阻性器件,需要使用电流源,任何电流源都会在其上因功率而造成发热。为了能够让NTC热敏电阻精确地反映出温度的高低,就必须注意避免因电流过大而引起热敏电阻“自热”的现象。NTC热敏电阻的静态伏安特性即电压-电流特性是NTC热敏电阻基本又重要的特性之一。它表示在热敏电阻器两端的电压和通过它的电流在热敏电阻器和周围介质热平衡时—即加在元件上的电功率和耗散功率相等时的关系。该特性曲线表明了在一定温度的静止介质中,随着通过NTC元件上的电流改变,元件两端电压的变化规律。
在NTC静态伏安特性曲线中,存在一个Im对应的Umax,达到Umax,NTC热敏电阻的电功率和耗散功率达到了平衡状态,由于自热带来的温升影响最小,影响测试精度最小,这个Umax通常也称为最大可耐受直流电压,提高最大可耐受直流电压即可有效避免热敏电阻产生的自热现象,真实的反映环境温度,避免产生测量误差。
传统的NTC热敏电阻材料成型后采用常压高温烧结,烧结温度高达1400℃,耗能极大,由于烧渗传热一致性欠缺,造成瓷体容易开裂,且致密度不高,热敏芯片热传导系数低;表面电极制备采用丝网印刷工艺经高温烧结,表面金属电极与瓷体之间附着力不好,接触电阻大,同样影响了材料的热传导,导致耗散系数低,通过电流时,可耐受最大直流电压低,散热能力不好,导致自热影响测量精度。
发明内容
本发明的目的是针对上述现状,旨在提供一种烧结温度低、耗能小,材料致密度高、表面金属电极与瓷体结合好,热传导性好的负温度系数(NTC)陶瓷热敏电阻的制造方法。
本发明目的的实现方式为,一种负温度系数陶瓷热敏电阻的制造方法,具体步骤如下:
1)制备粉体:将锰、钴、铁元素分别以纳米级分析纯Mn3O4,Co3O4,Fe2O3的形式引入,作为主要原料,各氧化物中Mn、Co、Fe元素比为0.6-0.9:1.0:0.3,微量掺杂ZnO,ZnO掺入量为Mn3O4,Co3O4,Fe2O3总量的2%-10%,混合均匀经过球磨、在900℃下预烧2-4小时后,喷雾,加入PVA溶液造粒,得陶瓷颗粒;
2)制备陶瓷基体:陶瓷颗粒常温等静压成型后,置于热压炉内,温度在由常温升至1050-1150℃的同时,压力由常压升至10MPa烧结6-14小时,而后在降温的同时降压至常温、常压,得热敏陶瓷基体;
3)制备表面电极:在热敏陶瓷基体表面用真空蒸发镀膜方式制备表面电极,所述表面电极为金、银、铜金属中的任意两种金属按一定比例结合,其中银的重量比为80%,金的重量比为20%或80%,铜的重量比为20%。
本发明通过升温同时升压、恒温时恒压、降温同时时降压的热压烧结工艺,烧结恒温温度1050-1150℃,低于1400℃,耗能小,大大提高了材料的致密度、热传导系数;采用蒸发镀膜工艺制备陶瓷表面电极,表面金属电极与瓷体结合好,提高了热传导系数,进而提高了负温度系数热敏电阻的耗散系数、伏安特性值;提高了可耐受的最大直流电压,使其避免了在大的工作电压冲击下因为散热不良引起的自热现象,提高了热敏电阻温度测量和控制的准确性。
具体实施方式
本发明是在纳米级分析纯Mn3O4,Co3O4,Fe2O3中微量掺杂ZnO,混合均匀,经过球磨、预烧、喷雾造粒后,通过升温时升压、恒温、恒压在1050-1150℃、10Mpa烧结、降温,降温同时降压;而后在表面用真空蒸发镀膜方式制备表面电极。
下面用具体实施例说明本发明。
例1、
1)制备粉体:将锰、钴、铁元素分别以纳米级分析纯Mn3O4,Co3O4,Fe2O3的形式引入,作为主要原料,各氧化物中Mn、Co、Fe元素比为0.6:1.0:0.3,微量掺杂ZnO,ZnO掺入量为Mn3O4,Co3O4,Fe2O3总量的2%。混合均匀经过球磨、在900℃下预烧2小时后,喷雾,加入PVA溶液造粒,得陶瓷颗粒;
2)制备陶瓷基体:陶瓷颗粒常温等静压成型后,置于热压炉内,温度在由常温升至1050的同时,压力由常压升至10MPa烧结6小时,而后在降温的同时降压至常温、常压,得热敏陶瓷基体;
3)制备表面电极:在热敏陶瓷基体表面用真空蒸发镀膜方式制备表面电极,表面电极厚度约8μm。所述表面电极为金、银。其中银、金的重量比为80%、20%。
例2、
同例1,不同的是各氧化物中Mn、Co、Fe元素比为0.75:1.0:0.3,ZnO掺入量为Mn3O4,Co3O4,Fe2O3总量的5%。混合均匀经过球磨、在900℃下预烧3小时后,喷雾,加入PVA溶液造粒,得陶瓷颗粒陶瓷,颗粒成型后在1080℃,10MPa烧结8小时。所述表面电极为银、铜,其中银、铜的重量比为80%、20%。
例3、
同例1,不同的是各氧化物中Mn、Co、Fe元素比为0.9:1.0:0.3,ZnO掺入量为Mn3O4,Co3O4,Fe2O3总量的10%。混合均匀经过球磨、在900℃下预烧4小时后,喷雾,加入PVA溶液造粒,得陶瓷颗粒陶瓷,颗粒成型后在1150℃,10MPa下烧结14小时。所述表面电极为金、铜,其中金、铜的重量比为80%、20%。

Claims (2)

1.一种负温度系数陶瓷热敏电阻的制造方法,其特征在于具体步骤如下:
1)制备粉体:将锰、钴、铁元素分别以纳米级分析纯Mn3O4,Co3O4,Fe2O3的形式引入,作为主要原料,各氧化物中Mn、Co、Fe元素比为0.6-0.9:1.0:0.3,微量掺杂ZnO,ZnO掺入量为Mn3O4,Co3O4,Fe2O3总量的2%-10%,混合均匀经过球磨、在900℃下预烧2-4小时后,喷雾,加入PVA溶液造粒,得陶瓷颗粒;
2)制备陶瓷基体:陶瓷颗粒常温等静压成型后,置于热压炉内,温度在由常温升至1050-1150的同时,压力由常压升至10MPa烧结6-14小时,而后在降温的同时降压至常温、常压,得热敏陶瓷基体;
3)制备表面电极:在热敏陶瓷基体表面用真空蒸发镀膜方式制备表面电极,所述表面电极为金、银、铜金属中两种金属按比例结合,其中银的重量比为80%,金的重量比为20%或80%,铜的重量比为20%。
2.根据权利要求1所述的一种负温度系数陶瓷热敏电阻的制造方法,其特征在于在热敏陶瓷基体表面用真空蒸发镀膜方式制备表面电极,表面电极厚度为8μm。
CN201610864243.9A 2016-09-27 2016-09-27 一种负温度系数陶瓷热敏电阻的制造方法 Pending CN107871574A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610864243.9A CN107871574A (zh) 2016-09-27 2016-09-27 一种负温度系数陶瓷热敏电阻的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610864243.9A CN107871574A (zh) 2016-09-27 2016-09-27 一种负温度系数陶瓷热敏电阻的制造方法

Publications (1)

Publication Number Publication Date
CN107871574A true CN107871574A (zh) 2018-04-03

Family

ID=61761735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610864243.9A Pending CN107871574A (zh) 2016-09-27 2016-09-27 一种负温度系数陶瓷热敏电阻的制造方法

Country Status (1)

Country Link
CN (1) CN107871574A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054488A (zh) * 2019-05-14 2019-07-26 中国科学院新疆理化技术研究所 一种含有复相添加剂的热敏陶瓷材料及其制备方法
CN112366052A (zh) * 2020-11-09 2021-02-12 肇庆市金龙宝电子有限公司 一种医疗体温测量用高精度热敏电阻芯片及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054488A (zh) * 2019-05-14 2019-07-26 中国科学院新疆理化技术研究所 一种含有复相添加剂的热敏陶瓷材料及其制备方法
CN112366052A (zh) * 2020-11-09 2021-02-12 肇庆市金龙宝电子有限公司 一种医疗体温测量用高精度热敏电阻芯片及其制备方法

Similar Documents

Publication Publication Date Title
CN102775154B (zh) 一种负温度系数陶瓷热敏电阻的制造方法
CN205017608U (zh) 一种功能膜陶瓷电阻电加热元件
CN105967656B (zh) 一种基于氧化镍的新型ntc热敏电阻材料
CN107056273A (zh) 一种双层负温度系数热敏电阻及其制备方法
CN112876232B (zh) 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
Jagtap et al. Study on I–V characteristics of lead free NTC thick film thermistor for self heating application
CN105753474A (zh) 一种锶掺杂铬酸镧热敏电阻材料
CN107871574A (zh) 一种负温度系数陶瓷热敏电阻的制造方法
CN105967674A (zh) 一种铬掺杂铝酸镁高温热敏电阻材料及其制备方法
CN107396466A (zh) 电子浆料及其制备方法、厚膜电路芯片热源及其制备方法
CN108147790B (zh) 医用含金高精度高稳定ntc热敏芯片及其制作方法
CN111465131A (zh) 一种基于厚膜技术的测温反馈电磁感应发热体
CN108329015B (zh) 一种掺杂改性氧化镍基ntc热敏电阻材料及其制备方法
CN105024007A (zh) 一种热电厚膜制备的方法
CN104987059B (zh) 一种基于氧化铜的新型ntc热敏电阻材料
CN106278226A (zh) 一种三元系负温度系数热敏电阻材料的制备方法
CN107622851B (zh) 一种具有纳米颗粒膜的负温度系数热敏电阻及其制备方法
CN106866130A (zh) 一种负温度系数陶瓷热敏电阻的制造方法
CN113170927A (zh) 一种加热组件及气溶胶生成装置
CN109256246B (zh) 一种含钙四元系负温度系数热敏电阻材料及其制备方法
CN104671746B (zh) 一种热敏电阻陶瓷片、热敏电阻及其制备方法
CN107129284B (zh) 一种高性能多温区ntc热敏电阻器介质材料及其制备方法
CN110317045A (zh) 一种锰镍铁钴基ntc热敏电阻材料及其制备方法
CN114886161A (zh) 一种基于Mo发热电阻丝的可测温MEMS发热雾化芯及其制造方法
CN115299653A (zh) 一种多层感应加热体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180403

WD01 Invention patent application deemed withdrawn after publication