CN107863401A - 一种硫化锑基全无机薄膜太阳能电池的制备方法 - Google Patents

一种硫化锑基全无机薄膜太阳能电池的制备方法 Download PDF

Info

Publication number
CN107863401A
CN107863401A CN201711003470.3A CN201711003470A CN107863401A CN 107863401 A CN107863401 A CN 107863401A CN 201711003470 A CN201711003470 A CN 201711003470A CN 107863401 A CN107863401 A CN 107863401A
Authority
CN
China
Prior art keywords
film
deposition
preparation
antimony trisulfide
vulcanization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711003470.3A
Other languages
English (en)
Other versions
CN107863401B (zh
Inventor
谭新玉
肖业权
朱宏伟
李昌黎
张礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201711003470.3A priority Critical patent/CN107863401B/zh
Publication of CN107863401A publication Critical patent/CN107863401A/zh
Application granted granted Critical
Publication of CN107863401B publication Critical patent/CN107863401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种硫化锑基全无机薄膜太阳能电池的制备方法,首先采用溶胶‑凝胶法在FTO上制备一层致密的二氧化钛薄膜;二氧化钛薄膜经过退火后使用热蒸镀沉积硫化锑薄膜;然后使用硫代乙酰胺对硫化锑薄膜进行表面硫化同时进行退火处理;最后将化学气相沉积法生长的石墨烯薄膜转移到硫化锑薄膜上,形成TiO2/Sb2S3/Gr薄膜结构。器件在室温、100mW/cm2的模拟太阳光源照射下得到为560 mV的开路光电压、6.8 mA/cm2的短路光电流、1.17%的光电转换效率。本发明采用石墨烯作为硫化锑基太阳能电池的空穴传输层及透明导电电极具有价格低廉,制备简单且相较于硫化锑基太阳能电池大多使用的有机空穴传输具有更加稳定的器件性能。

Description

一种硫化锑基全无机薄膜太阳能电池的制备方法
技术领域
本发明涉及一种硫化锑基新型全无机薄膜太阳能电池及其制备方法,属于无机非金属材料器件制造工艺领域。
技术背景
随着环境污染和能源短缺日益严重,人类正在寻求可再生能源来代替或补充常规一次性能源(如石油、煤炭等)。太阳能作为一种洁净可再生能源被认为是解决能源危机和环境污染最有效的途径之一。自太阳能电池问世以来,先后经历了第一代晶硅太阳能电池,第二代薄膜太阳能电池,第三代新概念太阳能电池和第四代复合薄膜太阳能电池。虽然太阳能电池研究技术得到了快速发展,但是硅基太阳能电池仍在目前光伏市场中占主体地位。然而,硅基太阳能电池制作工艺复杂,生产成本较高,同时硅基太阳电池的性能在长期光照条件下会有减,限制了其使用寿命和稳定性。因此,亟需制造一种新型、高效和低成本的新一代光伏电池。
硫化锑(Sb2S3)是一种性质稳定的Ⅴ-Ⅵ族直接带隙半导体材料,地壳中含量丰富、安全无毒。由于Sb2S3具有较高的光吸收系数(α >5×104 cm-1),并且带隙宽度适中、易于调控(1.5~2.2 eV),覆盖了大部分可见光光谱,因此被视为最有希望得到应用的太阳能电池材料之一。虽然硫化锑基太阳能电池近年来取得了一定的成果,但同时也存在大量的问题。如硫化锑薄膜的制备方法仍然比较匮乏,目前普遍以含硫与锑的化合物配置成溶液采用化学浴沉积法制备硫化锑薄膜,这种方法制备温度较低,使得硫化锑薄膜多为非晶态,在退火过程中容易发生团聚现象;现今研究主要集中于硫化锑敏化二氧化钛纳米结构太阳能电池,大多使用有机空穴传输材料层,使得电池稳定性较差。而无机空穴传输层只有硫氰化亚铜或极少数的p 型半导体,这限制了硫化锑在全无机薄膜电池的应用。所以探究其他廉价、无毒的无机空穴传输材料,以提高电池转化效率的新思想和新型结构是很有必要的。石墨烯因具有优异的导电性、超高的本征载流子迁移率、对可见光及红外光高的透明性常作为透明导电电极、空穴与电子受体材料应用于太阳能电池。故可将石墨烯作为空穴传输层与硫化锑薄膜组成全无机新型薄膜太阳能电池。
发明内容
本发明的目的是以硫化锑作为吸光材料,吸收光能产生电子-空穴,电子经n-TiO2传输到外电路,而空穴经石墨烯薄膜传输到外电路。其中石墨烯薄膜作为空穴传输层及透明导电电极。本发明所提供的新型全无机薄膜太阳能电池具有价格低廉,制备简单且稳定性好。
一种硫化锑基新型全无机薄膜太阳能电池及其制备方法,其特征在于具有以下的工艺过程和步骤:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃(FTO)(~7 Ω·sq)作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15 分钟,洗去表面的杂质与有机物,随后用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:首先配置0.5mol/L 的四异丙醇钛乙醇溶液2.5mL,其中四异丙醇钛的纯度为99.8%;同时配置2.5mL 0.04mol/L 的盐酸乙醇溶液;然后将两种溶液混合均匀后,旋涂到洗净的FTO 上,旋涂前用高温胶带粘住FTO 边缘0.2cm 作为电池背电极;最后将带有二氧化钛前驱体的FTO 放入管式电阻炉中,在500oC 下空气中退火60min;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至5x10-4 Pa以下;通过调节加热电流来控制样品沉积速度,沉积速度控制在10~30 nm/s,硫化锑薄膜沉积的厚度为200~500nm(通过振晶片控制);在沉积的硫化锑薄膜表面旋涂0.001g/mL~0.1g/mL的硫代乙酰胺(TA)DMF溶液,然后在氩气氛围中退火30~60min,退火温度为200-400 ℃;
(4)石墨烯的生长:使用化学气相沉积法(CVD)生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到1000 ℃,在1000 ℃条件下通入氢气,退火30~40 min分钟后,再通入氩气(300 mL/min)、氢气(30~50 mL/min)、甲烷(10~20 mL/min)的混合气体,反应10~30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)太阳能电池的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr电池结构。
同现有技术相比,本发明具有如下显著优点:
(1)石墨烯的功函数与硫化锑的能带结构能有较好的匹配,可获得较大开路光电压。
(2)制备的全无机薄膜TiO2/Sb2S3/Gr太阳能电池稳定性好,具有创新性与独创性。
附图说明
图1:本发明的一种全无机薄膜TiO2/Sb2S3/Gr太阳能电池的结构示意图。
图2:实施例1 的TiO2/Sb2S3/Gr太阳能电池在未使用硫代乙酰胺处理的室温J-V特性(有光与无光照情况)。
图3:实施例2 的TiO2/Sb2S3/Gr太阳能电池在使用0.001g/mL硫代乙酰胺处理的室温J-V 特性(有光与无光照情况)。
图4:实施例3 的TiO2/Sb2S3/Gr太阳能电池在使用0.01g/mL硫代乙酰胺处理的室温J-V 特性(有光与无光照情况)。
图5:实施例4 的TiO2/Sb2S3/Gr太阳能电池在使用0.05g/mL硫代乙酰胺处理的室温J-V 特性(有光与无光照情况)。
具体实施方式
下面结合附图对本发明作进一步说明。
实施例1
本实施例的制备过程和步骤如下:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃(FTO)(~7 Ω·sq)作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15 分钟,洗去表面的杂质与有机物,随后用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:首先配置0.5mol/L 的四异丙醇钛乙醇溶液2.5mL,其中四异丙醇钛的纯度为99.8%;同时配置2.5mL 0.04mol/L 的盐酸乙醇溶液;然后将两种溶液混合均匀后,旋涂到洗净的FTO 上,旋涂前用高温胶带粘住FTO 边缘0.2cm 作为电池背电极;最后将带有二氧化钛前驱体的FTO 放入管式电阻炉中,在500oC 下空气中退火60min;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至5x10-4 Pa以下;通过调节加热电流来控制样品沉积速度,沉积速度控制在20nm/s,硫化锑薄膜沉积的厚度为300 nm(通过振晶片控制);然后在氩气氛围中退火45 min,退火温度为325 ℃;
(4)石墨烯的生长:使用化学气相沉积法(CVD)生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到1000 ℃,在1000 ℃条件下通入氢气,退火30~40 min分钟后,再通入氩气(300 mL/min)、氢气(30 mL/min)、甲烷(20 mL/min)的混合气体,反应30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)太阳能电池的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr电池结构。在室温、AM1.5 太阳光模拟器模拟光强为100mW/cm2太阳光下进行光伏测试,测试结构如图2。
实施例2
本实施例的制备过程和步骤如下:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃(FTO)(~7 Ω·sq)作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15 分钟,洗去表面的杂质与有机物,随后用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:首先配置0.5mol/L 的四异丙醇钛乙醇溶液2.5mL,其中四异丙醇钛的纯度为99.8%;同时配置2.5mL 0.04mol/L 的盐酸乙醇溶液;然后将两种溶液混合均匀后,旋涂到洗净的FTO 上,旋涂前用高温胶带粘住FTO 边缘0.2cm 作为电池背电极;最后将带有二氧化钛前驱体的FTO 放入管式电阻炉中,在500oC 下空气中退火60min;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至5x10-4 Pa以下;通过调节加热电流来控制样品沉积速度,沉积速度控制在20nm/s,硫化锑薄膜沉积的厚度为300 nm(通过振晶片控制);在沉积的硫化锑薄膜表面旋涂0.001g/mL的硫代乙酰胺(TA)DMF溶液,然后在氩气氛围中退火45 min,退火温度为325 ℃;
(4)石墨烯的生长:使用化学气相沉积法(CVD)生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到1000 ℃,在1000 ℃条件下通入氢气,退火30~40 min分钟后,再通入氩气(300 mL/min)、氢气(30 mL/min)、甲烷(20 mL/min)的混合气体,反应30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)太阳能电池的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr电池结构。在室温、AM1.5 太阳光模拟器模拟光强为100mW/cm2太阳光下进行光伏测试,测试结构如图3。
实施例3
本实施例的制备过程和步骤如下:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃(FTO)(~7 Ω·sq)作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15 分钟,洗去表面的杂质与有机物,随后用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:首先配置0.5mol/L 的四异丙醇钛乙醇溶液2.5mL,其中四异丙醇钛的纯度为99.8%;同时配置2.5mL 0.04mol/L 的盐酸乙醇溶液;然后将两种溶液混合均匀后,旋涂到洗净的FTO 上,旋涂前用高温胶带粘住FTO 边缘0.2cm 作为电池背电极;最后将带有二氧化钛前驱体的FTO 放入管式电阻炉中,在500oC 下空气中退火60min;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至5x10-4 Pa以下;通过调节加热电流来控制样品沉积速度,沉积速度控制在20nm/s,硫化锑薄膜沉积的厚度为300 nm(通过振晶片控制);在沉积的硫化锑薄膜表面旋涂0.01g/mL的硫代乙酰胺(TA)DMF溶液,然后在氩气氛围中退火45 min,退火温度为325 ℃;
(4)石墨烯的生长:使用化学气相沉积法(CVD)生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到1000 ℃,在1000 ℃条件下通入氢气,退火30~40 min分钟后,再通入氩气(300 mL/min)、氢气(30 mL/min)、甲烷(20 mL/min)的混合气体,反应30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)太阳能电池的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr电池结构。在室温、AM1.5 太阳光模拟器模拟光强为100mW/cm2太阳光下进行光伏测试,测试结构如图4。
实施例4
本实施例的制备过程和步骤如下:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃(FTO)(~7 Ω·sq)作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15 分钟,洗去表面的杂质与有机物,随后用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:首先配置0.5mol/L 的四异丙醇钛乙醇溶液2.5mL,其中四异丙醇钛的纯度为99.8%;同时配置2.5mL 0.04mol/L 的盐酸乙醇溶液;然后将两种溶液混合均匀后,旋涂到洗净的FTO 上,旋涂前用高温胶带粘住FTO 边缘0.2cm 作为电池背电极;最后将带有二氧化钛前驱体的FTO 放入管式电阻炉中,在500oC 下空气中退火60min;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至5x10-4 Pa以下;通过调节加热电流来控制样品沉积速度,沉积速度控制在20nm/s,硫化锑薄膜沉积的厚度为300 nm(通过振晶片控制);在沉积的硫化锑薄膜表面旋涂0.05g/mL的硫代乙酰胺(TA)DMF溶液,然后在氩气氛围中退火45 min,退火温度为325 ℃;
(4)石墨烯的生长:使用化学气相沉积法(CVD)生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到1000 ℃,在1000 ℃条件下通入氢气,退火30~40 min分钟后,再通入氩气(300 mL/min)、氢气(30 mL/min)、甲烷(20 mL/min)的混合气体,反应30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)太阳能电池的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr电池结构。在室温、AM1.5 太阳光模拟器模拟光强为100mW/cm2太阳光下进行光伏测试,测试结构如图5。

Claims (4)

1.一种硫化锑基全无机薄膜太阳能电池的制备方法,其特征在于,具有以下的工艺过程和步骤:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15分钟,用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:将四异丙醇钛乙醇溶液与盐酸乙醇溶液混合后旋涂到洗净的FTO上,再放入管式电阻炉中,在500oC下空气中退火60min,得到FTO/TiO2薄膜;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积的硫化锑薄膜表面旋涂硫代乙酰胺的DMF溶液,然后在氩气氛围中200-400 ℃下退火30~60 min得到Sb2S3薄膜;
(4)石墨烯的生长:使用化学气相沉积法生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到900-1200 ℃,在900-1200 ℃条件下通入氢气,退火30~40 min分钟后,再通入氩气、氢气、甲烷的混合气体,反应10~30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)太阳能电池的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr电池结构。
2.权利要求1所述的硫化锑基全无机薄膜太阳能电池的制备方法,其特征在于,所述的步骤(3)中,采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至5x10-4 Pa以下;通过调节加热电流来控制样品沉积速度,沉积速度控制在10~30 nm/s,硫化锑薄膜沉积的厚度为200~500nm。
3.权利要求1所述的硫化锑基全无机薄膜太阳能电池的制备方法,其特征在于,硫代乙酰胺DMF溶液的浓度为0.001g/mL~0.1g/mL。
4.权利要求1所述的硫化锑基全无机薄膜太阳能电池的制备方法,其特征在于,步骤(4)中,通入氩气、氢气、甲烷的混合气体中,氩气的通入速度为300 mL/min、氢气的通入速度为30~50 mL/min、甲烷的通入速度为10~20 mL/min。
CN201711003470.3A 2017-10-24 2017-10-24 一种硫化锑基全无机薄膜太阳能电池的制备方法 Active CN107863401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711003470.3A CN107863401B (zh) 2017-10-24 2017-10-24 一种硫化锑基全无机薄膜太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711003470.3A CN107863401B (zh) 2017-10-24 2017-10-24 一种硫化锑基全无机薄膜太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN107863401A true CN107863401A (zh) 2018-03-30
CN107863401B CN107863401B (zh) 2019-09-24

Family

ID=61697374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711003470.3A Active CN107863401B (zh) 2017-10-24 2017-10-24 一种硫化锑基全无机薄膜太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN107863401B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244248A (zh) * 2018-10-15 2019-01-18 湖南师范大学 一种以CuI/PbPc薄膜作为空穴传输层的硫化锑太阳能电池及其制备方法
CN110379874A (zh) * 2019-07-25 2019-10-25 中国科学技术大学 一种太阳能薄膜电池及其制备方法
CN111554754A (zh) * 2020-05-22 2020-08-18 福州大学 一种硫化锑薄膜的快速制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491315A (zh) * 2011-12-08 2012-06-13 中国科学院化学研究所 制备石墨烯的方法
CN103367512A (zh) * 2013-06-27 2013-10-23 中国科学院等离子体物理研究所 一种基于无机体异质结的太阳电池及其制备方法
CN103762316A (zh) * 2013-12-24 2014-04-30 中电电气(南京)太阳能研究院有限公司 一种Sb2S3基有机无机复合太阳能电池的制备方法
CN104593858A (zh) * 2014-12-22 2015-05-06 西南交通大学 一种Sb2S3/TiO2纳米管阵列复合单晶异质结的制备方法
CN105244445A (zh) * 2015-11-17 2016-01-13 青岛大学 一种杂化异质结太阳能电池的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491315A (zh) * 2011-12-08 2012-06-13 中国科学院化学研究所 制备石墨烯的方法
CN103367512A (zh) * 2013-06-27 2013-10-23 中国科学院等离子体物理研究所 一种基于无机体异质结的太阳电池及其制备方法
CN103762316A (zh) * 2013-12-24 2014-04-30 中电电气(南京)太阳能研究院有限公司 一种Sb2S3基有机无机复合太阳能电池的制备方法
CN104593858A (zh) * 2014-12-22 2015-05-06 西南交通大学 一种Sb2S3/TiO2纳米管阵列复合单晶异质结的制备方法
CN105244445A (zh) * 2015-11-17 2016-01-13 青岛大学 一种杂化异质结太阳能电池的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOI, YC ET AL.: "Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy", 《DVANCED FUNCTIONAL MATERIALS》 *
HUI DENG ET AL: "Effcient and stable TiO2/Sb2S3 planar solar cells from absorber crystallization and Se-atmosphere annealing", 《MATERIALS TODAY ENERGY》 *
LI, XM ET AL.: ""Graphene-On-Silicon Schottky Junction Solar Cells", 《ADVANCED MATERIALS》 *
ZIMMERMANN, E ET AL.: "Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells", 《ADVANCED SCIENCE》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244248A (zh) * 2018-10-15 2019-01-18 湖南师范大学 一种以CuI/PbPc薄膜作为空穴传输层的硫化锑太阳能电池及其制备方法
CN110379874A (zh) * 2019-07-25 2019-10-25 中国科学技术大学 一种太阳能薄膜电池及其制备方法
CN111554754A (zh) * 2020-05-22 2020-08-18 福州大学 一种硫化锑薄膜的快速制备方法

Also Published As

Publication number Publication date
CN107863401B (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
Yang et al. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell
Zhou et al. Substrate dependence on (Sb4Se6) n ribbon orientations of antimony selenide thin films: morphology, carrier transport and photovoltaic performance
CN107154460A (zh) 一种全碳基钙钛矿太阳能电池及其制备工艺
CN107863401B (zh) 一种硫化锑基全无机薄膜太阳能电池的制备方法
CN110289332B (zh) 一种叠层电池的制备方法及结构
CN106601916B (zh) 基于异质结阴极缓冲层的有机太阳能电池及其制备方法
CN104103759A (zh) 一种基于钙钛矿型有机铅碘化合物的纤维状太阳电池及其制备方法
CN108281552A (zh) 一种具有能带梯度的钙钛矿太阳能电池及其制备方法
CN110854273A (zh) 一种有机体异质结掺杂的钙钛矿太阳能电池及其制备方法
CN108039412A (zh) 一种硫化复合电子传输层结构的钙钛矿太阳能电池
CN112038439A (zh) 一种CZTSSe柔性双面太阳电池及其制备方法
CN102723212A (zh) 氧化铟锡纳米纤维/硫化镉量子点太阳能电池及其制备方法
CN107170894B (zh) 一种钙钛矿太阳能电池及其制备方法
CN105280818A (zh) 一种稳定的平面异质结钙钛矿太阳能电池及其制备方法
CN109285951A (zh) 一种低温柔性钙钛矿太阳能电池及其制备方法
CN107910444A (zh) 钙钛矿太阳电池
CN108023018A (zh) 基于带隙连续可调控的倒置钙钛矿太阳电池的制备方法
CN104377252B (zh) 一种柔性铜基硫属半导体薄膜太阳电池窗口层结构
CN105489672A (zh) 一种氯化物体系两步法制备铜铟硒光电薄膜的方法
CN113258003B (zh) 一种基于金属纳米颗粒磁热效应退火工艺的有机光伏器件制备工艺
CN109037034A (zh) 硒化锑薄膜及其制备方法、应用其的太阳能电池
CN110707173A (zh) 一种全无机无铅钙钛矿太阳能电池
CN113964274A (zh) 含Al掺杂ZnO纳米棒阵列的钙钛矿太阳能电池及其制备方法
KR20180096872A (ko) 광흡수층 조성물, 이를 포함하는 투명태양전지 및 이의 제조방법
CN108461635B (zh) 一种联硼化合物表面修饰钙钛矿薄膜的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant