CN107828007B - 一种低温质子交换膜及其制备方法 - Google Patents
一种低温质子交换膜及其制备方法 Download PDFInfo
- Publication number
- CN107828007B CN107828007B CN201711152600.XA CN201711152600A CN107828007B CN 107828007 B CN107828007 B CN 107828007B CN 201711152600 A CN201711152600 A CN 201711152600A CN 107828007 B CN107828007 B CN 107828007B
- Authority
- CN
- China
- Prior art keywords
- low
- exchange membrane
- preparation
- temperature
- temperature protonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2231—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/18—Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Composite Materials (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明公开了一种低温质子交换膜及其制备方法,属于高分子材料技术领域。其制备方法为:将四[4‑(4'‑羧基苯基)苯基]乙烯、二烯丙基二硫、羧基化富勒烯、乳化剂和光引发剂混合,滴在玻璃板上,放入在氮气或惰性气体氛围下的220‑300nm的紫外灯下照40‑50分钟,发生聚合反应,得到低温质子交换膜。本发明还公开了按照所述制备方法制备得到的低温质子交换膜。本发明公开的低温质子交换膜价格低廉,质子传导率高,机械性能、吸水保水性能优异。
Description
技术领域
本发明属于高分子材料技术领域,涉及一种燃料电池部件,具体涉及一种低温质子交换膜及其制备方法。
背景技术
质子交换膜是质子交换膜燃料电池的“心脏”部件,其性能的好坏直接影响质子交换膜燃料电池的正常工作、寿命、能量转化率,在质子交换膜燃料电池中起着阻隔燃料和传递质子的双重作用。
目前,应用最多的质子交换膜为以杜邦公司生产的以Nafion膜为代表的全氟磺酸聚合物膜,这类质子交换膜具有极好的热力学和化学稳定性,且在湿态条件下具有较高的质子传导率,然而,它们存在高成本、高甲醇渗透等缺点,这些缺点阻碍了这类质子交换膜的进一步应用。作为改进,现有技术中报道了一些改性Nafion膜和新型结构聚合物膜,这类膜或多或少存在湿态条件下溶胀度太大,机械性能得不到保障,吸水保水性能弱,成本仍然昂贵的缺点。
因此,市场上亟需一种能替代Nafion膜,价格低廉,质子传导率高、机械性能好、甲醇渗透率低、吸水保水性能优异的低温质子交换膜。
发明内容
为了克服现有技术中的缺陷,本发明提供一种低温质子交换膜及其制备方法,该制备方法简单易行,对设备要求不高,原料易得,价格低廉,通过这种制备方法制备得到的低温质子交换膜比现有技术中公开的质子交换膜机械性能、化学稳定性更优异,质子传导率更高。
为达到上述发明目的,本发明采用的技术方案是,一种低温质子交换膜的制备方法,包括如下步骤:将四[4-(4'-羧基苯基)苯基]乙烯、二烯丙基二硫、羧基化富勒烯、乳化剂和光引发剂混合,滴在玻璃板上,放入在氮气或惰性气体氛围下的220-300nm的紫外灯下照40-50分钟,发生聚合反应,得到低温质子交换膜;
其中,所述四[4-(4'-羧基苯基)苯基]乙烯、二烯丙基二硫、羧基化富勒烯、乳化剂、光引发剂的质量比为3:(1-2):(0.3-0.5):(0.03-0.05):(0.03-0.05);
所述乳化剂选自十二烷基苯磺酸钠、聚氧丙烯聚乙烯甘油醚、壬基酚聚氧乙烯醚中的一种或几种;
所述引发剂选自安息香、安息香双甲醚、安息香乙醚、安息香异丙醚、安息香丁醚中的一种或几种;
所述惰性气体选自氖气、氦气、氩气中的一种或几种。
一种低温质子交换膜,采用所述一种低温质子交换膜的制备方法制备得到;
一种质子交换膜燃料电池,采用所述一种低温质子交换膜作为聚合物电解质膜。
采用上述技术方案所产生的有益效果在于:
1)本发明提供的一种低温质子交换膜的制备方法简单易行,对设备要求不高,原料易得,价格低廉。
2)本发明提供的一种低温质子交换膜,基体采用含多芳香环结构的聚合型单体与含有硫基的单体聚合形成,且设计有交联结构,使得膜具有较好的机械力学性能、化学稳定性和热稳定性。
3)本发明提供的一种低温质子交换膜,分子结构中含有较多的羧基,且提供了更多质子传导活性位点,更易吸收更多水份,从而提高质子传导率。
4)本发明提供的一种低温质子交换膜,利用富勒烯进行掺杂,一方面起到保湿吸水作用,从而提高质子传导率,另一方面,起到增强作用,提高膜的机械性能。
具体实施方式
为了使本技术领域人员更好地理解本发明的技术方案,并使本发明的上述特征、目的以及优点更加清晰易懂,下面结合实施例对本发明做进一步的说明。实施例仅用于说明本发明而不用于限制本发明的范围。
本发明下述实施例中所使用的原料来自于上海泉昕进出口贸易有限公司。
实施例1
一种低温质子交换膜的制备方法,包括如下步骤:四[4-(4'-羧基苯基)苯基]乙烯3g、二烯丙基二硫1g、羧基化富勒烯0.3g、十二烷基苯磺酸钠0.03g和安息香0.03g混合,滴在玻璃板上,放入在氮气氛围下的220nm的紫外灯下照40分钟,发生聚合反应,得到低温质子交换膜;
一种低温质子交换膜,采用所述一种低温质子交换膜的制备方法制备得到;
一种质子交换膜燃料电池,采用所述一种低温质子交换膜作为聚合物电解质膜。
实施例2
一种低温质子交换膜的制备方法,包括如下步骤:四[4-(4'-羧基苯基)苯基]乙烯3g、二烯丙基二硫1.2g、羧基化富勒烯0.4g、聚氧丙烯聚乙烯甘油醚0.04g和安息香双甲醚0.04g混合,滴在玻璃板上,放入在氩气氛围下的250nm的紫外灯下照45分钟,发生聚合反应,得到低温质子交换膜;
一种低温质子交换膜,采用所述一种低温质子交换膜的制备方法制备得到;
一种质子交换膜燃料电池,采用所述一种低温质子交换膜作为聚合物电解质膜。
实施例3
一种低温质子交换膜的制备方法,包括如下步骤:四[4-(4'-羧基苯基)苯基]乙烯3g、二烯丙基二硫1.6g、羧基化富勒烯0.45g、壬基酚聚氧乙烯醚0.05g和安息香乙醚0.04g混合,滴在玻璃板上,放入在氖气氛围下的280nm的紫外灯下照48分钟,发生聚合反应,得到低温质子交换膜;
一种低温质子交换膜,采用所述一种低温质子交换膜的制备方法制备得到;
一种质子交换膜燃料电池,采用所述一种低温质子交换膜作为聚合物电解质膜。
实施例4
一种低温质子交换膜的制备方法,包括如下步骤:四[4-(4'-羧基苯基)苯基]乙烯3g、二烯丙基二硫2g、羧基化富勒烯0.5g、十二烷基苯磺酸钠0.05g和安息香异丙醚0.05g混合,滴在玻璃板上,放入在氦气氛围下的300nm的紫外灯下照50分钟,发生聚合反应,得到低温质子交换膜;
一种低温质子交换膜,采用所述一种低温质子交换膜的制备方法制备得到;
一种质子交换膜燃料电池,采用所述一种低温质子交换膜作为聚合物电解质膜。
对比例
市售Nafion膜
对上述实施例1-4以及对比例所得样品进行相关性能测试,测试结果如表1所示,测试方法如下,
(1)拉伸强度测试:按照GB/T 1040-2006《塑料拉伸性能试验方法》进行测试;
(2)质子电导率:制备的质子交换膜的阻抗,是采用两电极交流阻抗法在电化学工作站(Zahner IM6EX)上测得的,测试频率为1Hz~1MHz。电导率测试是在装满去离子水的容器里测定的,这是为了保证膜的相对湿度为100%,并控制温度在30℃。在这一温度点测试之前,样品在此温度下保持恒温30min,电导率根据下列公式计算:
其中,σ为质子电导率(S cm-1),l为两电极之间的距离(cm),R为所测样品的交流阻抗,S为膜的横截面面积。
(3)氧化稳定性:制备的质子交换膜的氧化稳定性是通过将膜浸泡在70℃的Fenton试剂(含有4ppm Fe2+的3%的双氧水溶液)中20小时,称量并计算膜的重量保留率来衡量的。计算公式为:保留率=(浸泡后膜重量-浸泡前膜重量)/浸泡前膜重量×100%。
(4)溶胀度、吸水率:膜样品在水中的溶胀度是通过比较膜在室温下浸泡24小时后表面积的变化来计算得到的,计算公式如下:溶胀度=(浸泡后膜表面积-浸泡前膜表面积)/浸泡前膜表面积×100%;膜样品在水中的吸水率是通过比较膜在室温下浸泡24小时后重量的变化来计算得到的,计算公式如下:吸水率=(浸泡后膜重量-浸泡前膜重量)/浸泡前膜重量×100%。
表1实施例和对比例样品性能
从表1可以看出,本发明公开的低温质子交换膜具有较好的机械性能和化学稳定性,并且质子传导率率也比市售质子交换膜高,溶胀度低,吸水率高,符合质子交换膜燃料电池使用要求。
以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书所示和以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,可利用以上所揭示的技术内容而作出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。
Claims (7)
1.一种低温质子交换膜的制备方法,其特征在于,包括如下步骤:四[4-(4'-羧基苯基)苯基]乙烯、二烯丙基二硫、羧基化富勒烯、乳化剂和光引发剂混合,滴在玻璃板上,放入在氮气或惰性气体氛围下的220-300nm的紫外灯下照40-50分钟,发生聚合反应,得到低温质子交换膜;
其中,所述四[4-(4'-羧基苯基)苯基]乙烯、二烯丙基二硫、羧基化富勒烯、乳化剂、光引发剂的质量比为3:(1-2):(0.3-0.5):(0.03-0.05):(0.03-0.05)。
2.根据权利要求1所述的一种低温质子交换膜的制备方法,其特征在于,所述乳化剂选自十二烷基苯磺酸钠、聚氧丙烯聚乙烯甘油醚、壬基酚聚氧乙烯醚中的一种或几种。
3.根据权利要求1所述的一种低温质子交换膜的制备方法,其特征在于,所述引发剂选自安息香、安息香双甲醚、安息香乙醚、安息香异丙醚、安息香丁醚中的一种或几种。
4.根据权利要求1所述的一种低温质子交换膜的制备方法,其特征在于,所述惰性气体选自氖气、氦气、氩气中的一种或几种。
5.一种低温质子交换膜,其特征在于,采用权利要求1-4任一项所述一种低温质子交换膜的制备方法制备得到。
6.一种低温质子交换膜的应用方法,其特征在于,采用权利要求5所述的一种低温质子交换膜用作燃料电池的聚合物电解质膜。
7.一种质子交换膜燃料电池,其特征在于,采用权利要求5所述的一种低温质子交换膜作为聚合物电解质膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711152600.XA CN107828007B (zh) | 2017-11-19 | 2017-11-19 | 一种低温质子交换膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711152600.XA CN107828007B (zh) | 2017-11-19 | 2017-11-19 | 一种低温质子交换膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107828007A CN107828007A (zh) | 2018-03-23 |
CN107828007B true CN107828007B (zh) | 2019-11-05 |
Family
ID=61652821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711152600.XA Active CN107828007B (zh) | 2017-11-19 | 2017-11-19 | 一种低温质子交换膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107828007B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113410496B (zh) * | 2021-06-16 | 2023-02-14 | 东北大学秦皇岛分校 | 一种全固态微量含水低温适用质子交换膜及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101070397A (zh) * | 2007-06-11 | 2007-11-14 | 苏州大学 | 一种高温质子交换聚合物膜及其制备方法 |
CN103467396A (zh) * | 2013-09-12 | 2013-12-25 | 长春工业大学 | 含1,2,4-三唑环的化合物、含1,2,4-三唑环的聚合物质子交换膜和制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6890676B2 (en) * | 2002-02-05 | 2005-05-10 | Sony Corporation | Fullerene based proton conductive materials |
-
2017
- 2017-11-19 CN CN201711152600.XA patent/CN107828007B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101070397A (zh) * | 2007-06-11 | 2007-11-14 | 苏州大学 | 一种高温质子交换聚合物膜及其制备方法 |
CN103467396A (zh) * | 2013-09-12 | 2013-12-25 | 长春工业大学 | 含1,2,4-三唑环的化合物、含1,2,4-三唑环的聚合物质子交换膜和制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107828007A (zh) | 2018-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6018135B2 (ja) | フッ素化アイオノマー性架橋コポリマー | |
US20130252134A1 (en) | High molecular weight ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell | |
CN110797561B (zh) | 一种基于碳量子点的质子交换膜及其制备方法 | |
WO2012088166A1 (en) | Ionomers and ionically conductive compositions | |
KR100914340B1 (ko) | 고 수소 이온 전도성 연료전지용 비닐술폰산 가교 고분자전해질 복합막의 제조방법 및 이를 이용한 연료전지 | |
US20130253157A1 (en) | Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell | |
CN105390721B (zh) | 一种磷酸硼包覆碳纳米管复合质子交换膜的制备方法 | |
US20100093878A1 (en) | Crosslinkable fluoropolymer, crosslinked fluoropolymers and crosslinked fluoropolymer membranes | |
JP6211249B2 (ja) | 高分子電解質及びその製造方法、並びに、燃料電池 | |
CN107828007B (zh) | 一种低温质子交换膜及其制备方法 | |
Yuan et al. | H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes | |
CN108649257A (zh) | 一种高温质子交换膜及其制备方法 | |
Kim et al. | Effect of organo clay content on proton conductivity and methanol transport through crosslinked PVA hybrid membrane for direct methanol fuel cell | |
CN107978769B (zh) | 一种钒电池用基于三嗪衍生物隔膜及其制备方法 | |
Su et al. | Influence of catalyst layer polybenzimidazole molecular weight on the polybenzimidazole-based proton exchange membrane fuel cell performance | |
CN111193054B (zh) | 一种质子交换膜的制备方法 | |
CN108676184B (zh) | 一种聚合物阴离子交换膜及其制备方法 | |
Chi et al. | Preparation of poly (vinylidene fluoride) nanocomposite membranes based on graft polymerization and sol–gel process for polymer electrolyte membrane fuel cells | |
CN108550873B (zh) | 一种燃料电池用质子交换膜及其制备方法 | |
CN108598539B (zh) | 一种钒电池用电解质隔膜及其制备方法 | |
Lu et al. | Proton-conducting composite membranes derived from poly (2, 6-dimethyl-1, 4-phenylene oxide) doped with phosphosilicate gels | |
James Jr et al. | Determination of the effect of temperature and humidity on the O2 sorption in sulfonated poly (arylene ether sulfone) membranes | |
CN102522574B (zh) | 一种液流电池用隔膜及其制备方法 | |
CN107978778A (zh) | 一种高温无水质子交换膜及其制备方法 | |
Wainwright et al. | Characterization of perfluorosulfonimide polymer electrolytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201104 Address after: Taihu County, Anhui city of Anqing Province Jin Xi Zhen 246400 Patentee after: Taihu County market supervision and Inspection Institute (Taihu County functional membrane Testing Institute) Address before: 410217 Changsha, Changsha City, Hunan Wangcheng economic and Technological Development Zone gold Pioneer Park 4 Building C5 Patentee before: HUNAN CHENLI NEW MATERIAL Co.,Ltd. |
|
TR01 | Transfer of patent right |