CN107824187B - 一种高选择性co2还原光催化剂及制备方法和应用 - Google Patents

一种高选择性co2还原光催化剂及制备方法和应用 Download PDF

Info

Publication number
CN107824187B
CN107824187B CN201711105381.XA CN201711105381A CN107824187B CN 107824187 B CN107824187 B CN 107824187B CN 201711105381 A CN201711105381 A CN 201711105381A CN 107824187 B CN107824187 B CN 107824187B
Authority
CN
China
Prior art keywords
photochemical catalyst
solution
meso
thin
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711105381.XA
Other languages
English (en)
Other versions
CN107824187A (zh
Inventor
龙金林
孟令书
赵波
赵一波
员汝胜
丁正新
张子重
侯乙东
徐超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711105381.XA priority Critical patent/CN107824187B/zh
Publication of CN107824187A publication Critical patent/CN107824187A/zh
Application granted granted Critical
Publication of CN107824187B publication Critical patent/CN107824187B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高选择性CO2还原光催化剂及制备方法和应用,其是通过高温煅烧‑水热法在基底材料上制备超薄介孔ZnO纳米片,然后采用原位光沉积法将硝酸银或氯化钯还原沉积在超薄介孔ZnO纳米片上,制得所述光催化剂。该光催化剂能高效还原二氧化碳,光照4小时,甲烷和CO的产率高达90%以上,且具有很高的选择性和活性稳定性。

Description

一种高选择性CO2还原光催化剂及制备方法和应用
技术领域
本发明属于光催化剂制备领域,具体涉及一种高效稳定的高选择性CO2还原光催化剂及制备方法和应用。
背景技术
工业的不断发展和科学技术的进步给当代社会带来了空前的繁荣。然而,工业文明在带给我们进步、发展和繁荣的同时,不可避免地带来了另外一些负面问题,如环境问题、能源问题等,已经严重地影响了人类社会生活的发展。2013年,中国的很多城市都遭遇了雾霾天气的影响,对人们生活造成了巨大的困扰,除此之外,水资源、天然气等能源缺乏的问题都提醒我们:环境问题及能源问题已经是人类可持续发展道路上亟待解决的两大难题。工业生产、燃煤、汽车尾气引起的CO2浓度不断攀升是造成全球温室效应的重要因素。由于碳排放的显著增加而导致自然界碳循环平衡被破坏,使科学家们迫切的寻找可以使CO2转化、减排的技术。
基于模拟自然界中植物的光合作用,科学家进行了人工光合成还原CO2的研究,实质上,就是半导体光催化CO2还原技术。不同于热催化,光催化还原CO2中使用的能量来源是清洁且能够再生、多次利用的太阳光,这便大大降低了成本,符合了世界在可持续发展理念的要求。在光诱导下,CO2可以被吸附转化成碳氢燃料,毫无疑问,它对未来解决能源问题与碳循环问题革命性贡献。目前,这项技术已经成为了现今半导体光催化领域的一大热点。
氧化锌因其特有的物理化学性质,如可控的多样形貌结构、卓越的电子迁移率、优良的机械性能和热导率等,吸引了大批国内外科研工作者的广泛关注。而ZnO纳米阵列,又以其良好的电子传输路径和较大的比表面积等特性在光催化领域中倍受青睐。然而,由于禁带宽度过大、太阳光利用率低等缺陷使得ZnO在光催化应用方面受到极大限制。在ZnO表面沉积银和钯纳米粒子,利用银和钯纳米粒子的等离子体共振效应是解决这一问题的有效途径,而且银和钯纳米粒子的负载可以降低光生电子-空穴对的复合率,有利于光催化活性的提高。
CN 101293741 A公开了一种制备银/氧化锌复合薄膜的方法,其将锌的化合物和硝酸银粉末溶解于有机溶剂中,得A液;将水、络合剂和有机溶剂混合,得B液;然后将B液逐滴滴入A液中,搅拌至形成稳定的溶胶;通过浸渍提拉法把溶胶涂敷在干净的载体上,于450-600℃下热处理即得。CN 101707156 A公开了一种掺杂银氧化锌的电接触材料的制备方法,其采用溶胶凝胶方法获得改性的ZnO颗粒,提高ZnO颗粒的导电率,再以改性后的ZnO为原料与银粉经过球磨,压制,烧结,热挤压等工艺流程获得氧化锌复合材料。CN104289221A 公开了一种银-氧化锌纳米复合结构的制备方法,其利用氧化锌和纳米银在水溶液中所带电荷相反的特点,将带正电荷的纳米氧化锌粉体按一定配比加入到带负电荷的纳米银溶胶中,超声分散或机械搅拌,使二者充分混合,再通过静电作用使纳米银颗粒负载到纳米氧化锌的表面上,然后离心或过滤分离所得到的固相产物,用乙醇洗涤数次,烘干干燥即得到目标产物。但以上报道的技术中存在不同程度的制备工艺复杂、制备得到的复合体系稳定性差、光响应范围窄、颗粒尺寸不均和原材料成本高等问题。
发明内容
本发明针对现有光催化剂对二氧化碳的还原性和活性不高的问题,提供一种高选择性CO2还原光催化剂及制备方法和应用。该光催化剂在太阳光下能将二氧化碳高效、稳定的转化,其转化率高达92%,甲烷和一氧化碳的产率可达96%。
为实现上述目的,本发明采用如下技术方案:
一种高选择性CO2还原光催化剂,其是通过高温煅烧-水热法在基底材料上制备超薄介孔ZnO纳米片,然后运用原位光沉积法在超薄介孔ZnO纳米片的表面上沉积Ag或Pd,制得所述光催化剂;所述超薄介孔ZnO纳米片的厚度为1.5nm;所述光催化剂中Ag或Pd的质量分数为0.05%-11%。
所述高选择性CO2还原光催化剂的制备方法包括以下步骤:
(1)称取0.04-0.10g醋酸锌于35-65mL乙醇中,搅拌40min,使其充分溶解;
(2)将洗净的基底材料于步骤(1)制得的溶液中浸渍10-30 s,取出,用氩气吹干;重复操作1-10次;
(3)将浸渍好的基底材料置于管式炉中,以1-10℃/min的速度升温至300-450℃,并在空气氛围中焙烧20-100min,得到均匀长满氧化锌晶种的基底材料;
(4)称取0.20-0.80g二水合醋酸锌于30mL去离子水中,搅拌至澄清透明,得溶液A;同时称取0.18-0.40g尿素于30mL去离子水中,搅拌至澄清透明,得溶液B;将溶液A、B同时倒入100mL聚四氟乙烯高压反应釜中,搅拌10min使其充分混合,然后加入0.01-0.05g非离子表面活性剂,搅拌均匀,用醋酸将溶液pH值调到5;
(5)将步骤(3)得到的长满氧化锌晶种的基底材料的导电面朝下,置于步骤(4)制得的混合溶液中,经100℃水热反应8-24h后得到样品,用去离子水和乙醇交替冲洗10次;
(6)将步骤(5)水热生长好的样品置于管式炉中,以1-10 ℃/min的速率升温350-550 ℃,煅烧3-5h,制得结构稳定的超薄介孔ZnO纳米片材料;
(7)取20-200μL 10-25g/L的硝酸银或氯化钯于30mL去离子水中,搅拌10-20min,调节溶液pH值至3-5;将步骤(6)所得超薄介孔ZnO纳米片材料置于所配制的硝酸银或氯化钯的溶液中,用波长范围为200-800nm的氙灯光源光照15-55min;最后置于烘箱中85℃烘干,得到所述光催化剂。
所述高选择性CO2还原光催化剂可高效催化二氧化碳的光催化还原。
本发明的优点在于:
(1)本发明通过高温煅烧-水热法首次制备得到一种厚度仅1.5nm的超薄介孔氧化锌纳米片。
(2)本发明利用原位光还原的方法将钯或银原位沉积到介孔ZnO纳米片上,使银或钯纳米颗粒能充分接触ZnO,以提供更多的反应活性位点,从而促进反应更快的进行。
(3)本发明光催化剂能够有效的将CO2转化为低碳烷烃和一氧化碳;同时,利用银和钯的等离子体共振效应和界面驱动效应,还能明显的促进CO2还原和产物的选择性。
(4)本发明制备方法简单,易于操作,原料低廉,是一种适于工业化推广应用的清洁高效和能耗较低的CO2还原方法。
附图说明
图1为本发明实施例1中制备超薄介孔ZnO纳米片材料煅烧前后的SEM图。
图2为实施例1制得的银复合的光催化剂的XRD图。
图3为实施例2制得的钯复合的光催化剂的XRD图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
(1)称取0.08g无水醋酸锌于60mL乙醇中,持续搅拌40 min使其充分溶解;
(2)将洗净的导电玻璃(FTO)的导电面朝上,浸渍于上述溶液中20s,然后取出,用氩气吹干;重复浸渍-氩气吹干步骤6次;
(3)接着将浸渍好的导电玻璃转移至管式炉中,控制升温速率,以3℃/min的速度升温至350℃,并空气氛围中焙烧30min,得到均匀长满氧化锌晶种的导电玻璃;
(4)称取0.48g二水合醋酸锌于30mL去离子水中,搅拌至澄清透明,得溶液A;同时称取0.43g尿素于30mL去离子水中,搅拌至澄清透明,得溶液B;将溶液A、B同时倒入100mL聚四氟乙烯高压反应釜中,搅拌10min使其充分混合,然后加入0.03g F-127非离子表面活性剂,搅拌均匀,用醋酸将溶液pH值调到5;
(5)将步骤(3)得到的长满氧化锌晶种的FTO导电面朝下置于步骤(4)制得的混合溶液中,接着转移至恒温烘箱中,经过100℃水热反应24h之后取出,于空气中冷却至室温,最后用乙醇、去离子水反复冲洗10次;
(6)将上述制得的样品置于管式炉中,保持升温速率为3 ℃/min,在500℃下煅烧5h,得到结构稳定的白色超薄介孔氧化锌纳米片;
(7)取20μL 20g/L的硝酸银于30mL去离子水中,450 rpm转速下搅拌10 min,调节溶液的pH值为4;将长有超薄介孔氧化锌纳米片阵列的导电玻璃置于上述溶液中,用波长范围为200-800纳米氙灯照射30min;最后置于85℃烘箱中烘干,得到银的质量分数为0.5%的光催化剂;
(8)将制得的催化剂置于特定的反应管中,经抽真空处理后充入二氧化碳,打入40μL去离子水,采用波长范围为200-800 nm氙灯作为光源,光照2h,转化产物采用气相色谱Agilent7890进行定向和定量检测。
实施例2
将实施例1步骤(7)中20μL 20g/L的硝酸银改为40μL 10g/L的氯化钯,其余制备方法和活性测试方法与实施例1基本相同。
实施例3
将实施例1步骤(7)中20μL 20g/L的硝酸银改为40μL 20g/L的硝酸银,其余制备方法和活性测试方法与实施例1基本相同。
实施例4
将实施例2步骤(7)中40μL 10g/L的氯化钯改为80μL 10g/L的氯化钯,其余制备方法和活性测试方法与实施例2基本相同。
实施例5
将实施例1步骤(7)中20μL 20g/L的硝酸银改为100μL 20g/L的硝酸银,其余制备方法和活性测试方法与实施例1基本相同。
实施例6
将实施例2步骤(7)中40μL 10g/L的氯化钯改为150μL 10g/L的氯化钯,其余制备方法和活性测试方法与实施例2基本相同。
实施例7
将实施例1步骤(7)中20μL 20g/L的硝酸银改为160μL 20g/L的硝酸银,其余制备方法和活性测试方法与实施例1基本相同。
实施例8
将实施例2步骤(7)中40μL 10g/L的氯化钯改为200μL 10g/L的氯化钯,其余制备方法和活性测试方法与实施例2基本相同。
实施例9
将实施例1步骤(8)中光照2h改为光照4h,其余制备方法和活性测试方法与实施例1基本相同。
实施例10
将实施例2步骤(8)中光照2h改为光照4h,其余制备方法和活性测试方法与实施例2基本相同。
实施例11
将实施例1步骤(8)中光照2h改为光照6h,其余制备方法和活性测试方法与实施例1基本相同。
实施例12
将实施例2步骤(8)中光照2h改为光照6h,其余制备方法和活性测试方法与实施例2基本相同。
实施例13
将实施例1步骤(8)中光照2h改为光照8h,其余制备方法和活性测试方法与实施例1基本相同。
实施例14
将实施例2步骤(8)中光照2h改为光照8h,其余制备方法和活性测试方法与实施例2基本相同。
表1 不同银含量的光催化剂在不同光照时间下光催化还原二氧化碳的性能对比
表2 不同钯含量的光催化剂在不同光照时间下光催化还原二氧化碳的性能对比
由表1、2可见,本发明光催化剂能高效还原二氧化碳,且其产物的选择性好。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种高选择性CO2还原光催化剂,其特征在于:通过高温煅烧-水热法在基底材料上制备超薄介孔ZnO纳米片,然后运用原位光沉积法在超薄介孔ZnO纳米片的表面上沉积Ag或Pd,制得所述光催化剂;
所述超薄介孔ZnO纳米片的厚度为1.5nm;
所述光催化剂中Ag或Pd的质量分数为0.05%-11%;
其制备方法包括以下步骤:
(1)称取0.04-0.10g醋酸锌于35-65mL乙醇中,搅拌40min,使其充分溶解;
(2)将洗净的基底材料于步骤(1)制得的溶液中浸渍10-30 s,取出,用氩气吹干;重复操作1-10次;
(3)将浸渍好的基底材料置于管式炉中,以1-10℃/min的速度升温至300-450℃,并在空气氛围中焙烧20-100min,得到均匀长满氧化锌晶种的基底材料;
(4)称取0.20-0.80g二水合醋酸锌于30mL去离子水中,搅拌至澄清透明,得溶液A;同时称取0.18-0.40g尿素于30mL去离子水中,搅拌至澄清透明,得溶液B;将溶液A、B同时倒入100mL聚四氟乙烯高压反应釜中,搅拌10min使其充分混合,然后加入0.01-0.05g非离子表面活性剂,搅拌均匀,用醋酸将溶液pH值调到5;
(5)将步骤(3)得到的长满氧化锌晶种的基底材料的导电面朝下,置于步骤(4)制得的混合溶液中,经100℃水热反应8-24h后得到样品,用去离子水和乙醇交替冲洗10次;
(6)将步骤(5)水热生长好的样品置于管式炉中,以1-10 ℃/min的速率升温350-550℃,煅烧3-5h,制得结构稳定的超薄介孔ZnO纳米片材料;
(7)取20-200μL 10-25g/L的硝酸银或氯化钯于30mL去离子水中,搅拌10-20min,调节溶液pH值至3-5;将步骤(6)所得超薄介孔ZnO纳米片材料置于所配制的硝酸银或氯化钯的溶液中,用波长范围为200-800nm的氙灯光源光照15-55min;最后置于烘箱中85℃烘干,得到所述光催化剂。
2.一种如权利要求1所述的高选择性CO2还原光催化剂在光催化还原二氧化碳中的应用。
CN201711105381.XA 2017-11-10 2017-11-10 一种高选择性co2还原光催化剂及制备方法和应用 Expired - Fee Related CN107824187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711105381.XA CN107824187B (zh) 2017-11-10 2017-11-10 一种高选择性co2还原光催化剂及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711105381.XA CN107824187B (zh) 2017-11-10 2017-11-10 一种高选择性co2还原光催化剂及制备方法和应用

Publications (2)

Publication Number Publication Date
CN107824187A CN107824187A (zh) 2018-03-23
CN107824187B true CN107824187B (zh) 2019-03-12

Family

ID=61654118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711105381.XA Expired - Fee Related CN107824187B (zh) 2017-11-10 2017-11-10 一种高选择性co2还原光催化剂及制备方法和应用

Country Status (1)

Country Link
CN (1) CN107824187B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110102312B (zh) * 2019-05-14 2021-03-30 福州大学 一种一维氧化亚铜/银/氧化锌纳米棒光催化复合材料及其制备方法与应用
CN110642643B (zh) * 2019-10-18 2022-04-05 闽南师范大学 一种功能性建筑瓷砖及其制备方法
CN111573713A (zh) * 2020-06-29 2020-08-25 陕西延长石油(集团)有限责任公司 一种纳米氧化锌晶面可控生长的合成方法及应用
CN112403496B (zh) * 2020-12-05 2021-09-10 清华大学 一种基于热电材料的光热热电催化剂的制备方法及应用
CN117960168B (zh) * 2024-04-01 2024-06-25 国网安徽省电力有限公司电力科学研究院 一种能光催化转化六氟化硫的氧化锌超薄纳米片及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785259B (zh) * 2015-04-21 2018-02-02 福州大学 等离子体金/氧化锌复合纳米片阵列器件的制备及其应用

Also Published As

Publication number Publication date
CN107824187A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN107824187B (zh) 一种高选择性co2还原光催化剂及制备方法和应用
Zhao et al. A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride
CN105195197B (zh) 一种大比表面积‑可见光响应TiO2催化剂及其制备方法
CN107570174B (zh) 一种高效稳定泡沫镍基光催化材料的制备方法及应用
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
CN104785259B (zh) 等离子体金/氧化锌复合纳米片阵列器件的制备及其应用
CN102350346B (zh) 具有表面等离子体效应的可见光催化剂制备方法及其应用
CN105921149B (zh) 一种溶剂热制备铜修饰二氧化钛纳米棒的方法
CN101811044B (zh) 铌酸钾纳米管光催化剂及其制备方法和应用
CN110078126B (zh) 不同形貌的固载型三氧化钨纳米材料及其制备方法和应用
CN109847786A (zh) 一种Z型光催化剂MgAlLDH/CN-H的制备方法及应用
CN111558375B (zh) 一种高活性的单原子铁修饰TiO2空心微球的制备方法及其在光催化氧化NO中的应用
CN109908959A (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
CN105498820A (zh) 高可见光电子转移Au/g-C3N4负载型光催化材料的制备方法
CN108380226A (zh) 一种超薄卤氧化铋纳米片及其制备和应用
CN110575832A (zh) 银-二氧化钛-纳米金刚石复合光催化剂的制备方法及其应用
CN106669744A (zh) 一种Ag2Mo2O7@AgBr复合光催化剂及其制备方法
CN109225194A (zh) 光催化固氮Zn掺杂氧化铟光触媒材料及其制备方法和应用
CN106994349A (zh) 一种分级结构的层状钙钛矿光催化剂钛酸铁铋的制备方法及用途
CN106044842A (zh) 一种扇形羟基氟化锌的制备方法及其应用
CN110102322A (zh) 花状的Ag@AgBr/ZnO光催化材料的制备方法
CN110354845A (zh) 一种碳纳米点修饰的钨酸铋光催化剂及其制备方法和应用
CN109499597A (zh) 一种多孔二氧化钛/氮化碳纳米颗粒复合材料的制备方法
CN1329115C (zh) 高活性光催化剂CaIn2O4及其制备方法
CN109331855A (zh) 一种制备钽基钙钛矿氮氧化物光触媒的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190312

Termination date: 20211110

CF01 Termination of patent right due to non-payment of annual fee