CN107814570B - 硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法 - Google Patents

硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法 Download PDF

Info

Publication number
CN107814570B
CN107814570B CN201610815631.8A CN201610815631A CN107814570B CN 107814570 B CN107814570 B CN 107814570B CN 201610815631 A CN201610815631 A CN 201610815631A CN 107814570 B CN107814570 B CN 107814570B
Authority
CN
China
Prior art keywords
rare earth
diboron
powder
boron
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610815631.8A
Other languages
English (en)
Other versions
CN107814570A (zh
Inventor
陈继新
赵国瑞
李美栓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201610815631.8A priority Critical patent/CN107814570B/zh
Publication of CN107814570A publication Critical patent/CN107814570A/zh
Application granted granted Critical
Publication of CN107814570B publication Critical patent/CN107814570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5156Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及结构陶瓷领域,具体为一种硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法。采用稀土氧化物粉、碳化硼粉和石墨粉为原料,进行机械混合后,在加热炉内反应,升温速率为10~50℃/分钟,反应温度为1900~2100℃,反应时间为30分钟~2小时。采用本发明方法能够实现合成高纯三元稀土二硼二碳陶瓷粉体,具有原料成本低、操作简单、对工艺条件要求低的优点,并且为工业化生产奠定了良好的基础。

Description

硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法
技术领域
本发明涉及结构陶瓷领域,具体为一种硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法。
背景技术
三元稀土硼碳陶瓷材料即REB2C2(RE包括但不限于Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu),是三元稀土硼碳化合物庞大家族中的一大类别。其晶体结构可以描述为RE片层与B2C2在c轴方向上交替堆垛而成(文献1J.Bauer等,Coordin.Chem.Rev.178(1998)723-753)。这一点与目前广泛研究的MAX相陶瓷极为相似,因此这类材料极有可能具有一些和MAX相陶瓷非常相似的性能,如:抗损伤、抗热震、可加工等(文献2,M.W.Barsoum,Prog.Solid State Chem.28(2000)201-81)。最近文献3(G.R.Zhao等Scripta Materialia,2016,124:86-89.)报道了REB2C2家族中的YB2C2具有优异的损伤容限及可加工性能。另外,文献4(A.Goldstein等J.Euro.Ceram.Soc.27(2007)695-700)报道,YB2C2在2180℃热处理条件下仍然可以稳定存在,说明这类材料有可能具有很好的耐超高温性能。因此,REB2C2在航空航天、核材料、燃料电池、电子信息、超高温结构件等高新技术领域都有广泛的应用前景。
然而,目前关于此类材料合成及性能的报道非常少见,可能是由于其制备非常困难。通过分析目前很少的关于此类材料的文献可以发现,制备此类材料的方法主要为电弧熔炼和热压反应。对电弧熔炼而言,其以稀土金属粉,硼粉和石墨粉为原料,需要经过多次电弧熔炼,而后在2000℃长时间保温,成本昂贵、极其及耗时而且难以制备大尺寸、高纯度、高致密、均匀的块体材料。与电弧熔炼相比,热压反应可显著降低材料的制备成本,然而其制备过程中仍需使用稀土金属粉末,价格昂贵,不利于大规模的生产,极大地限制了对此类材料的研究及应用。
与稀土金属粉末相比,稀土氧化物粉具有价格低廉,来源广泛,易于保存等优点。因此,发展一种简单高效的利用硼/碳热还原法制备高纯度三元稀土二硼二碳陶瓷粉体的方法,对降低其生产成本,研究其性能及推广其应用具有重要的意义。
发明内容
本发明的目的在于提供一种硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,能够实现廉价简单高效合成高纯三元稀土二硼二碳陶瓷粉体。
本发明的技术方案是:
一种硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,具体步骤如下:
(1)原料组成及成分范围:
原料由稀土氧化物粉RE2O3、碳化硼粉B4C和石墨粉C组成,其中RE2O3:B4C:C的摩尔比为(0.9~1.1):(0.9~1.1):(5.5~6.5);
(2)制备工艺:
首先将稀土氧化物粉、碳化硼粉和石墨粉按配比称重,经物理机械方法混合8~24小时;在通有保护气氛的加热炉内进行原位反应,升温速率为10~50℃/分钟,反应温度为1900~2100℃,反应时间为30分钟~2小时,合成的材料为单相的稀土二硼二碳REB2C2陶瓷粉体。
所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,原位发生的化学反应为:
RE2O3+B4C+6C→2REB2C2+3CO。
所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,RE为稀土元素,包括但不限于周期表中原子序数从57到71号的稀土金属元素La,Ce,Pr,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb或Lu,或原子序数分别为21和39的稀土金属元素Sc和Y中的一种。
所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,稀土氧化物粉的粒度范围为50纳米~10微米,碳化硼粉的粒度范围为200~400目,石墨粉的粒度范围为200~400目。
所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,原位反应的保护气氛为氩气或氦气。
所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,物理机械方法混合为在聚氨酯球磨罐中干混或在酒精介质中球磨。
本发明的优点及有益效果是:
本发明方法以稀土氧化物粉,碳化硼粉和石墨粉为原料,合成了高纯的三元稀土二硼二碳陶瓷粉体,具有原料成本低、操作简单、对工艺条件要求低的优点,其工艺简单、效率高,为工业化生产奠定了良好的基础。
附图说明
图1为实施例1中反应产物的XRD分析图谱。图中,横坐标2θ为衍射角(degrees);纵坐标为Intensity为强度(arb.units)。
图2为实施例1中反应产物的扫描电镜照片。
图3为实施例2中反应产物的XRD分析图谱。图中,横坐标2θ为衍射角(degrees);纵坐标为Intensity为强度(arb.units)。
图4为实施例2中反应产物的扫描电镜照片。
图5为实施例3中反应产物的XRD分析图谱。图中,横坐标2θ为衍射角(degrees);纵坐标为Intensity为强度(arb.units)。
图6为实施例3中反应产物的扫描电镜照片。
具体实施方式
在具体实施过程中,本发明硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,原料由稀土氧化物粉(RE2O3)、碳化硼粉(B4C)和石墨粉(C),其中RE2O3:B4C:C的摩尔比为(0.9~1.1):(0.9~1.1):(5.5~6.5)组成,在制备过程中,首先将稀土氧化物粉、碳化硼粉和石墨粉按配比称重,经物理机械方法混合8~24小时;在通有保护气氛的加热炉内反应,升温速率为10~50℃/分钟,反应温度为1900~2100℃,反应时间为30分钟~2小时,合成的材料为接近单相的稀土二硼二碳REB2C2陶瓷粉体。
下面,通过实施例和附图进一步详述本发明。
实施例1
本实施例中,将粒度为50纳米的氧化钇粉66.12克、300目的碳化硼粉14.71克和粒度为200目的石墨粉19.17克在玛瑙球磨罐中球磨24小时,之后装入石墨坩埚中,将石墨坩埚放入以石墨为发热体的电阻炉中,升温速率为20℃/分钟,加热到2000℃保温90分钟进行反应。整个反应过程都是在氩气保护下进行。本实施例中,将获得的反应产物进行XRD分析(见图1),可以发现制备材料为YB2C2相。如图2所示,从扫描电镜照片可以发现,制备的粉体具有典型的片层结构。
实施例2
本实施例中,将粒度为1微米的氧化镝粉72.89克、400目的碳化硼粉11.87克和粒度为400目的石墨粉12.54克在聚氨酯球磨罐中球磨16小时,之后装入石墨坩埚中,将石墨坩埚放入以石墨为发热体的电阻炉中,升温速率为50℃/分钟,加热到1900℃保温2小时进行反应。整个反应过程都是在氩气保护下进行。本实施例中,将获得的反应产物进行XRD分析(见图3),可以发现制备材料由单相DyB2C2组成。如图4所示,从扫描电镜照片可以发现,制备的粉体具有典型的片层结构。
实施例3
本实施例中,将粒度为10微米的氧化镱粉74.52克、400目的碳化硼粉11.61克和粒度为400目的石墨粉13.87克在聚氨酯球磨罐中球磨16小时,之后装入石墨坩埚中,将石墨坩埚放入以石墨为发热体的电阻炉中,升温速率为10℃/分钟,加热到2100℃保温30分钟进行反应。整个反应过程都是在氩气保护下进行。本实施例中,将获得的反应产物进行XRD分析(见图5),可以发现制备材料由单相YbB2C2组成。如图6所示,从扫描电镜照片可以发现,制备的粉体具有典型的片层结构。
实施例结果表明,采用本发明方法能够实现三元稀土二硼二碳陶瓷粉体的合成。采用本发明方法制备的粉体具有非常高的纯度,同时原料成本大幅度的降低。本发明为三元稀土二硼二碳陶瓷的大规模制备开辟了道路,对研究其性能及推广其应用具有重要的意义。因此,在航空航天、核工业、超高温结构件等高新技术领域有着广泛的应用前景。

Claims (6)

1.一种硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,其特征在于,具体步骤如下:
(1)原料组成及成分范围:
原料由稀土氧化物粉RE2O3、碳化硼粉B4C和石墨粉C组成,其中RE2O3:B4C:C的摩尔比为(0.9~1.1):(0.9~1.1):(5.5~6.5);
(2)制备工艺:
首先将稀土氧化物粉、碳化硼粉和石墨粉按配比称重,经物理机械方法混合8~24小时;在通有保护气氛的加热炉内进行原位反应,升温速率为10~50℃/分钟,反应温度为1900~2100℃,反应时间为30分钟~2小时,合成的材料为单相的稀土二硼二碳REB2C2陶瓷粉体。
2.按照权利要求1所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,其特征在于,原位发生的化学反应为:
RE2O3+B4C+6C→2REB2C2+3CO。
3.按照权利要求1所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,其特征在于,RE为稀土元素,采用周期表中原子序数从57到71号的稀土金属元素La,Ce,Pr,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb或Lu,或原子序数分别为21和39的稀土金属元素Sc和Y中的一种。
4.按照权利要求1所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,其特征在于,稀土氧化物粉的粒度范围为50纳米~10微米,碳化硼粉的粒度范围为200~400目,石墨粉的粒度范围为200~400目。
5.按照权利要求1所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,其特征在于,原位反应的保护气氛为氩气或氦气。
6.按照权利要求1所述的硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法,其特征在于:物理机械方法混合为在聚氨酯球磨罐中干混或在酒精介质中球磨。
CN201610815631.8A 2016-09-12 2016-09-12 硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法 Active CN107814570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610815631.8A CN107814570B (zh) 2016-09-12 2016-09-12 硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610815631.8A CN107814570B (zh) 2016-09-12 2016-09-12 硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法

Publications (2)

Publication Number Publication Date
CN107814570A CN107814570A (zh) 2018-03-20
CN107814570B true CN107814570B (zh) 2020-08-21

Family

ID=61601196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610815631.8A Active CN107814570B (zh) 2016-09-12 2016-09-12 硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法

Country Status (1)

Country Link
CN (1) CN107814570B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678505A (zh) * 2019-01-23 2019-04-26 航天材料及工艺研究所 一种yb2c2超高温多孔陶瓷及其制备方法
CN112759397B (zh) * 2019-11-06 2022-04-05 中国科学院金属研究所 稀土二硼二碳材料与水反应制备氢、氧和烃类混合气体的方法
CN113443915A (zh) * 2020-03-27 2021-09-28 中国科学院金属研究所 一种制备三元稀土二硼二碳陶瓷粉体的方法
CN112830785A (zh) * 2021-01-19 2021-05-25 山东大学 一种层状高熵双硼碳化物陶瓷粉体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330942A (en) * 1993-01-22 1994-07-19 Martin Marietta Energy Systems, Inc. Composite of refractory material
CN101428812A (zh) * 2008-09-19 2009-05-13 中国科学院上海硅酸盐研究所 一种高纯硼化铪粉体的合成方法
CN103588216A (zh) * 2013-10-23 2014-02-19 航天材料及工艺研究所 一种硼/碳热还原法低温制备硼化锆粉体的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245125B2 (ja) * 2001-11-26 2009-03-25 日本碍子株式会社 窒化アルミニウム質セラミックス、半導体製造用部材、耐蝕性部材および導電性部材
CN101948117B (zh) * 2010-10-11 2013-01-30 山东大学 一种稀土六硼化物纳米超细粉体的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330942A (en) * 1993-01-22 1994-07-19 Martin Marietta Energy Systems, Inc. Composite of refractory material
CN101428812A (zh) * 2008-09-19 2009-05-13 中国科学院上海硅酸盐研究所 一种高纯硼化铪粉体的合成方法
CN103588216A (zh) * 2013-10-23 2014-02-19 航天材料及工艺研究所 一种硼/碳热还原法低温制备硼化锆粉体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Structural,electronic and magnetic properties of layered REB2C compounds;Volodymyr babizhetskyy等;《Journal of solid state chemistry》;20120307(第191期);121-128 *

Also Published As

Publication number Publication date
CN107814570A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
Fu et al. MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications
CN107814570B (zh) 硼/碳热还原法制备三元稀土二硼二碳陶瓷粉体的方法
Hu et al. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics
CN107285771B (zh) 一种三元稀土二硼二碳陶瓷材料的制备方法
Verger et al. Anisotropic thermal expansions of select layered ternary transition metal borides: MoAlB, Cr2AlB2, Mn2AlB2, and Fe2AlB2
Cahill et al. Hexaborides: a review of structure, synthesis and processing
Suri et al. Synthesis and consolidation of boron carbide: a review
Hu et al. Developments in hot pressing (HP) and hot isostatic pressing (HIP) of ceramic matrix composites
Chen et al. Synthesis and formation mechanism of high‐purity Ti3AlC2 powders by microwave sintering
Drouelle et al. Oxidation resistance of Ti3AlC2 and Ti3Al0. 8Sn0. 2C2 MAX phases: A comparison
CN114715907B (zh) 一种单相高熵金属二硼化物及其制备方法
Zeng et al. Highly‐efficient preparation of anisotropic ZrB2–SiC powders and dense ceramics with outstanding mechanical properties
Zhang et al. Improvement of densification and microstructure of HfB2 ceramics by Ta/Ti substitution for Hf
CN114560699A (zh) 一种中高熵陶瓷材料及其制备方法与应用
CN113443915A (zh) 一种制备三元稀土二硼二碳陶瓷粉体的方法
CN114606426A (zh) 新型中高熵材料增强金属基复合材料及其制备方法与应用
Yavetskiy et al. An approach to Y2O3: Eu3+ optical nanostructured ceramics
Nguyen et al. Synthesis of YB2C2 by high‐energy ball milling and reactive spark plasma sintering
CN103113125A (zh) 层状化合物板状晶粒弥散增强的过渡金属碳化物复相材料及其超低温制备方法
CN105502400B (zh) 一种b4c晶须的制备方法
CN115073183B (zh) 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法
CN106800413B (zh) 一种钇铝碳陶瓷材料的制备方法
Huang et al. Microstructural and mechanical characterization of pressure‐less sintered AlN‐polytypoid based composites by compositional design
Zou et al. Dense additive-free bulk boron nitride ceramics developed by self-densification of borazine
CN110589831B (zh) 一种低温制备硅/碳化硅材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant