CN107814408A - 一种富含S空缺位的SnS2超薄纳米片的制备方法 - Google Patents

一种富含S空缺位的SnS2超薄纳米片的制备方法 Download PDF

Info

Publication number
CN107814408A
CN107814408A CN201711128867.5A CN201711128867A CN107814408A CN 107814408 A CN107814408 A CN 107814408A CN 201711128867 A CN201711128867 A CN 201711128867A CN 107814408 A CN107814408 A CN 107814408A
Authority
CN
China
Prior art keywords
sns
rich
ultrathin nanometer
nanometer piece
vacancies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711128867.5A
Other languages
English (en)
Other versions
CN107814408B (zh
Inventor
熊锦华
杨钰莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyan University
Original Assignee
Longyan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longyan University filed Critical Longyan University
Priority to CN201711128867.5A priority Critical patent/CN107814408B/zh
Publication of CN107814408A publication Critical patent/CN107814408A/zh
Application granted granted Critical
Publication of CN107814408B publication Critical patent/CN107814408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开一种富含S空缺位的SnS2超薄纳米片的制备方法,以SnCl4·5H2O和L‑半胱氨酸为主要原料,将反应原料溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬,用钢套拧紧,经一步水热合成得到富含S空缺位的SnS2超薄纳米片。该SnS2超薄纳米片具有丰富的S空缺位,并且S空穴位的存在显著地调节了SnS2的能带结构、提高了其光吸收效率和载流子分离效率。本发明工艺简单,制备周期短,环保绿色,选择性高,能耗低,符合实际生产需要,具有较大的应用潜力。

Description

一种富含S空缺位的SnS2超薄纳米片的制备方法
技术领域
本发明属于纳米材料领域,具体涉及到一种富含S空缺位的SnS2超薄纳米片的制备方法。
背景技术
随着化石能源的逐渐枯竭和环境污染的日益加剧,发展绿色新能源和清洁 生产已成为我国迫在眉睫的战略课题。半导体光催化是一种以半导体光催化材料为媒介、直接利用太阳能来驱动化学反应进行的技术,可实现太阳能转化成为人类所需能源。从能源开发和利用的角度来说,这一特点使得半导体光催化技术具有很大的发展潜力,近年来一直倍受科学界的高度重视。
然而,光催化反应的低量子效率限制了光催化技术的广泛应用。科学家们围绕着光催化量子效率的科学问题,对光催化材料进行了大量探索。近来,具有纳米级厚度的超薄二维纳米片材料因具有以下特点而备受关注。①大比表面积、活性位增多:超薄二维纳米片的表面原子是充分暴露的,这必然引起比表面积增大;同时,由于催化活性位通常分布在催化剂表面,催化剂比表面积增大、活性位也增多。②胶体性质、量子尺寸效应:超薄二维纳米片的厚度仅有几个纳米甚至零点几个纳米,其充分分散在溶剂中能够形成胶体,并且纳米级的厚度甚至能够引起材料的能级分裂而出现量子尺寸效应。③表面原子新颖的化学特性:由于三维静电场的消失或者在纳米片制备过程中容易出现结构缺陷,纳米片表面原子的配位情况会发生变化而诱导新的化学特性。④准分子级别的异相催化反应:单分子层的二维纳米片表面发生的异相催化反应可以看成准分子与分子的化学反应,为分子水平上认识异相催化反应提供平台。
SnS2是一种无毒、价廉、具有典型的CdI2型层状结构并且带宽约为2.2 eV的可见光响应半导体材料。此外,金属硫化物半导体材料在晶格中引入缺陷结构例如S空穴(Vs),能够在半导体导带下方诱导产生一个新的分裂能级。新能级的产生不仅能够窄化半导体的带隙、提高半导体光吸收效率,而且新生的能级能够作为载流子的捕获陷阱从而进一步诱导载流子在半导体体相内分离。
因此,如果能有效控制合成具有丰富Vs的SnS2超薄纳米片,对于提高SnS2半导体材料在光催化或光电化学领域中的催化效率有重要作用。
发明内容
针对传统体相SnS2易团聚、比表面积小、活性位少以及载流子分离效率差的技术问题,本发明提供了一种富含S空缺位的SnS2超薄纳米片的制备方法,所述的方法不仅能有效地解决SnS2制备的技术问题,并且该方法简单、选择性高、成本低廉,具有广阔的应用前景。
为了实现上述目的,本发明采用如下技术方案:
一种富含S空缺位的SnS2超薄纳米片的制备方法,以SnCl4·5H2O和L-半胱氨酸为主要原料,将反应原料溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬,用钢套拧紧,经一步水热合成得到富含S空缺位的SnS2超薄纳米片。
其中水热合成的温度为160℃-220℃,时间为16 h-48 h。
所述SnCl4·5H2O和L-半胱氨酸的摩尔比为1:2或1:3或1:4。
所述的乙二醇为反应溶剂。
所述的SnS2超薄纳米片的厚度低于10 nm。
所述的SnS2超薄纳米片富含晶格缺陷结构且具有显著的对应于硫空缺位(Sv)的单电子顺磁响应信号。
采用上述方案后,本发明的显著优点在于:
(1)本发明制得的SnS2纳米片具有超薄的二维平面结构,大大地提高了SnS2比表面积和表面催化活性位点;
(2)本发明制得的SnS2纳米片富含硫空缺位(Sv),Sv能够诱导SnS2纳米片的带隙中产生次生能级,并且Sv浓度可调从而可实现SnS2的能带调控,提高了其光吸收效率和载流子分离效率;
(3)本发明涉及的一种富含S空缺位的SnS2超薄纳米片的制备方法,采用自下而上温和的水热方法,无毒、环保绿色、操作简单、制备周期短、选择性高、能耗低、成本低廉,符合实际生产需要,具有广阔的应用前景。
附图说明
图1是本发明实施例1制备的SnS2纳米片的X射线衍射图(XRD);
图2A是本发明实施例1制备的SnS2纳米片的透射电镜图(TEM);
图2B是本发明实施例1制备的SnS2纳米片的高倍透射电镜图(HRTEM);
图3是本发明实施例1制备的SnS2纳米片的顺磁电子共振谱图(EPR);
图4是本发明实施例1制备的SnS2纳米片的紫外-可见漫反射图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1:
将1 mmol SnCl4·5H2O和2 mmol L-半胱氨酸溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬并用钢套拧紧,在160 ℃下保温24 h,自然冷却至室温,收集产品,离心并且用去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得富含S空缺位的SnS2超薄纳米片。
本实施例制备的SnS2的XRD衍射峰(图1)与标准卡片 (PDF#23-0677)相吻合,表明本发明成功制备了六方晶相的SnS2。但是,制备的SnS2的(001)晶面衍射峰较弱,这是由于SnS2具有超薄纳米片结构所致。HRTEM(图2)直接证实SnS2的超薄纳米片结构及其富含丰富的无定型结构缺陷。EPR(图3)进一步证实SnS2的结构缺陷为硫空缺位(Sv),并且DRS谱(图4)表明Sv结构缺陷的引入能够拓展SnS2光吸收能力。
实施例2:
将1 mmol SnCl4·5H2O和2 mmol L-半胱氨酸溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬并用钢套拧紧,在160 ℃下保温48 h,自然冷却至室温,收集产品,离心并且用去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得富含S空缺位的SnS2超薄纳米片。
实施例3:
将1 mmol SnCl4·5H2O和2 mmol L-半胱氨酸溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬并用钢套拧紧,在160 ℃下保温16 h,自然冷却至室温,收集产品,离心并且用去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得富含S空缺位的SnS2超薄纳米片。
实施例4:
将1 mmol SnCl4·5H2O和2 mmol L-半胱氨酸溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬并用钢套拧紧,在180 ℃下保温24 h,自然冷却至室温,收集产品,离心并且用去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得富含S空缺位的SnS2超薄纳米片。
实施例5:
将1 mmol SnCl4·5H2O和2 mmol L-半胱氨酸溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬并用钢套拧紧,在220 ℃下保温24 h,自然冷却至室温,收集产品,离心并且用去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得富含S空缺位的SnS2超薄纳米片。
实施例6:
将1 mmol SnCl4·5H2O和3 mmol L-半胱氨酸溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬并用钢套拧紧,在160 ℃下保温48 h,自然冷却至室温,收集产品,离心并且用去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得富含S空缺位的SnS2超薄纳米片。
实施例7:
将1 mmol SnCl4·5H2O和4 mmol L-半胱氨酸溶解在30 ml乙二醇中,搅拌60 min,然后转移到70 ml聚四氟乙烯内衬并用钢套拧紧,在160 ℃下保温48 h,自然冷却至室温,收集产品,离心并且用去离子水和乙醇清洗多遍,然后在40 ℃真空烘箱中保持10 h烘干产品,然后研磨成粉末状,即可得富含S空缺位的SnS2超薄纳米片。

Claims (4)

1.一种富含S空缺位的SnS2超薄纳米片的制备方法,其特征在于:以SnCl4·5H2O和L-半胱氨酸为主要原料,以乙二醇为溶剂,搅拌均匀后得混合溶液,进一步水热合成得到富含S空缺位的SnS2超薄纳米片。
2.如权利要求1所述的一种富含S空缺位的SnS2超薄纳米片的制备方法,其特征在于:所述水热合成的温度为160℃-220℃,时间为16 h-48 h。
3.如权利要求1所述的一种富含S空缺位的SnS2超薄纳米片的制备方法,其特征在于:所述SnCl4·5H2O和L-半胱氨酸的摩尔比为1:2或1:3或1:4。
4.如权利要求1所述的一种富含S空缺位的SnS2超薄纳米片的制备方法,其特征在于:所述的SnS2超薄纳米片的厚度低于10 nm。
CN201711128867.5A 2017-11-15 2017-11-15 一种富含S空缺位的SnS2超薄纳米片的制备方法 Active CN107814408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711128867.5A CN107814408B (zh) 2017-11-15 2017-11-15 一种富含S空缺位的SnS2超薄纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711128867.5A CN107814408B (zh) 2017-11-15 2017-11-15 一种富含S空缺位的SnS2超薄纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN107814408A true CN107814408A (zh) 2018-03-20
CN107814408B CN107814408B (zh) 2020-01-31

Family

ID=61609065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711128867.5A Active CN107814408B (zh) 2017-11-15 2017-11-15 一种富含S空缺位的SnS2超薄纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN107814408B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526281A (zh) * 2019-08-26 2019-12-03 浙江工业大学 一种合成二硫化锡的方法
CN112495400A (zh) * 2020-12-25 2021-03-16 王书珍 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
CN113996314A (zh) * 2020-07-28 2022-02-01 中国科学院上海硅酸盐研究所 一种纳米硫化锡基光催化剂及其制备方法与应用
CN115490260A (zh) * 2022-10-20 2022-12-20 延安大学 富含S空位的CuInS2超薄纳米片的制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724751A (zh) * 2015-02-14 2015-06-24 溧阳市超强链条制造有限公司 一种低温合成硫化锡纳米线的方法及应用
CN106549156A (zh) * 2016-11-02 2017-03-29 陕西科技大学 一种绒球状SnS2锂离子电池负极材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724751A (zh) * 2015-02-14 2015-06-24 溧阳市超强链条制造有限公司 一种低温合成硫化锡纳米线的方法及应用
CN106549156A (zh) * 2016-11-02 2017-03-29 陕西科技大学 一种绒球状SnS2锂离子电池负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘锦华: "SnS2形貌调控及光催化性能研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526281A (zh) * 2019-08-26 2019-12-03 浙江工业大学 一种合成二硫化锡的方法
CN110526281B (zh) * 2019-08-26 2021-08-24 浙江工业大学 一种合成二硫化锡的方法
CN113996314A (zh) * 2020-07-28 2022-02-01 中国科学院上海硅酸盐研究所 一种纳米硫化锡基光催化剂及其制备方法与应用
CN113996314B (zh) * 2020-07-28 2023-01-31 中国科学院上海硅酸盐研究所 一种纳米硫化锡基光催化剂及其制备方法与应用
CN112495400A (zh) * 2020-12-25 2021-03-16 王书珍 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
CN115490260A (zh) * 2022-10-20 2022-12-20 延安大学 富含S空位的CuInS2超薄纳米片的制备方法及应用

Also Published As

Publication number Publication date
CN107814408B (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
Guo et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline
CN107814408A (zh) 一种富含S空缺位的SnS2超薄纳米片的制备方法
Guo et al. Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value‐Added Chemicals
Li et al. Synthesis of hexagonal and triangular Fe 3 O 4 nanosheets via seed-mediated solvothermal growth
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
Bhatte et al. Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide
Yan et al. InVO4 nanocrystal photocatalysts: Microwave-assisted synthesis and size-dependent activities of hydrogen production from water splitting under visible light
Ma et al. Hierarchically structured squama-like cerium-doped titania: synthesis, photoactivity, and catalytic CO oxidation
CN107335452A (zh) 室温条件下合成溴氧化铋超薄纳米片光催化剂的方法
CN108097261A (zh) 一种高效稳定的铁锰复合氧化物催化剂及其制备方法与应用
CN109433229A (zh) 一种CdS/CoO纳米异质结构的制备方法
CN111701601A (zh) 一种Bi4O5Br2自组装空心花球的制备方法及在光催化还原CO2方面的应用
Zhao et al. Synthesis of carbon-doped nanosheets m-BiVO 4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property
WO2022268021A1 (zh) 一种Cu基催化剂及将其用于光催化水产氢-5-HMF氧化偶联反应
Wang et al. Synthetic versatility of nanoparticles: A new, rapid, one-pot, single-step synthetic approach to spherical mesoporous (metal) oxide nanoparticles using supercritical alcohols
Liu et al. Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites
Lv et al. Hydrophobized hollow TS-1 zeolite as pickering interfacial catalyst for selective oxidation reactions
CN104549374A (zh) 具有亲水表面的由纳米片组成的硒化镉花状微球及其制备方法和应用
CN107497455A (zh) 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用
Garg et al. State-of-the-art evolution of g-C3N4 based Z-scheme heterostructures towards energy and environmental applications: A Review
CN104445340B (zh) 由纳米块自组装的八面体氧化铈的制备方法
Venkatathri Synthesis of silica nanosphere from homogeneous and heterogeneous systems
Yin et al. Convenient synthesis and enhanced photocatalytic activity of BiOI/BiOBr nanostructures with different morphologies
CN108031481B (zh) 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法
CN106915769B (zh) 一种超薄混晶二氧化钛纳米片及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180320

Assignee: Longyan Qingyuan Sodium Electric Technology Co.,Ltd.

Assignor: LONGYAN University

Contract record no.: X2023350000433

Denomination of invention: Preparation method of SnS ultra-thin nanosheets rich in S vacancies

Granted publication date: 20200131

License type: Common License

Record date: 20231122