CN107805730B - 自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用 - Google Patents

自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN107805730B
CN107805730B CN201710831884.9A CN201710831884A CN107805730B CN 107805730 B CN107805730 B CN 107805730B CN 201710831884 A CN201710831884 A CN 201710831884A CN 107805730 B CN107805730 B CN 107805730B
Authority
CN
China
Prior art keywords
nanometer sheet
self
surface modification
base composites
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710831884.9A
Other languages
English (en)
Other versions
CN107805730A (zh
Inventor
陈福县
麦永津
揭晓华
张留艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710831884.9A priority Critical patent/CN107805730B/zh
Publication of CN107805730A publication Critical patent/CN107805730A/zh
Application granted granted Critical
Publication of CN107805730B publication Critical patent/CN107805730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用。该方法是将Ni(NO3)2水溶液滴加到由氧化石墨烯和稀氨水组成的分散水溶液中,室温反应后,过滤、去离子水冲洗并干燥产物,干燥产物在氩气中500~600℃反应后,得到镍纳米粒子表面修饰石墨烯纳米片,将其与铜粉搅拌混合后置于石墨模具中,经加热加压烧结后,得到石墨烯/铜基复合材料,并以此为阳极,石墨电极为阴极,两极置于电解抛光液中,并在两极间施加恒定电压,部分溶解石墨烯/铜基复合材料表面铜成分,得到自支撑石墨烯纳米片表面修饰铜基复合材料。它可以用作自润滑材料,具有摩擦系数低,磨损量少,承载力高,寿命长的优点。

Description

自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和 应用
技术领域
本发明属于自润滑复合材料技术领域,更具体地,涉及一种自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用。
背景技术
铜基固体自润滑复合材料既能保持铜基体优良的导电、导热能力和良好的耐腐蚀性等综合性能,又能容纳固体润滑剂特有的润滑性能,在滑动材料和电接触材料领域有着广泛的应用空间。然而,随着现代航空航天、高速列车、汽车以及先进武器系统等的迅速发展,传统铜基固体自润滑复合材料因力学性能差、易磨损等不足严重限制了该材料在苛刻条件下的应用。与常规固体润滑剂,如石墨,二硫化钼和碳纤维等相比,石墨烯因其表面能低、强度高、抗剪切能力低等特点有望成为高性能纳米填料,进一步提高铜基固体自润滑复合材料的性能,扩展其应用领域。然而,据目前的报道,石墨烯增强铜基复合材料的力学性能与自润滑性能并不能很好的兼容。例如,申请号为201610377978.9的专利指出如果要求复合材料的力学性能优于纯铜材料,石墨烯的质量分数应控制在0.5%以内;然而文献(Carbon,96(2016)836-842)指出如果要求复合材料具有明显的润滑性能(平均摩擦系数小于0.2),石墨烯的质量分数应大于1%。上述矛盾的主要原因是当石墨烯的含量过高时,复合材料的孔隙率上升,同时复合材料中石墨烯出现团聚现象,大大地削弱石墨烯对复合材料力学性能的强化效应;然而当石墨烯的含量过低时难以在摩擦副的接触表面间形成一层剪切强度较低的固体自润滑膜,因此,未能有效阻止对磨表面间的直接接触,达到减小摩擦、降低磨损的目的。
发明内容
本发明的目的是为了克服现有技术的缺陷,提供一种自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法。该方法采用原位法制备镍纳米粒子表面修饰石墨烯纳米片,与常用的化学镀方法相比,方法简易,成本低廉,镍纳米粒子更均匀和牢固地分布于石墨烯纳米片上。
本发明的另一目的在于提供上述方法制备的自支撑石墨烯纳米片表面修饰铜基复合材料。该复合材料是由石墨烯纳米片和铜基体组成,石墨烯纳米片一部分均匀分散于铜基体内部,形成石墨烯/铜基复合材料,一部分均匀分散于石墨烯/铜基复合材料表面,且这些石墨烯纳米片的平面一部分嵌于复合材料内部,而另一部分露于复合材料表面,形成自支撑结构
本发明的再一个目的在于提供上述自支撑石墨烯纳米片表面修饰铜基复合材料的应用。
本发明上述目的通过以下技术方案予以实现:
一种自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法,包括以下具体步骤:
S1.将Ni(NO3)2水溶液滴加到由氧化石墨烯和稀氨水组成的分散水溶液中,室温反应后,过滤、去离子水冲洗并干燥产物,干燥产物在氩气中500~600℃反应后,得到镍纳米粒子表面修饰石墨烯纳米片;
S2.把S1得到的镍纳米粒子表面修饰石墨烯纳米片与铜粉搅拌混合后置于石墨模具中,经加热加压烧结后,得到石墨烯/铜基复合材料;
S3.以S2制得的石墨烯/铜基复合材料为阳极,石墨电极为阴极,两极置于电解抛光液中,并在两极间施加恒定电压,部分溶解石墨烯/铜基复合材料表面铜成分,得到自支撑石墨烯纳米片表面修饰铜基复合材料。
优选地,步骤S1中所述氧化石墨烯、氨水和Ni(NO3)2水溶液的浓度分别为0.5~1mg/mL,0.2~0.6mol/L,10~30mmol/L。
优选地,步骤S1中所述室温反应的时间为1~4h,所述反应的时间为1~2h。
优选地,步骤S2中所述镍纳米粒子表面修饰石墨烯纳米片与铜粉的质量比为(1~3):200,所述烧结的温度为700~850℃,所述烧结的压力为30~50MPa,所述烧结的时间为1~2h。
优选地,步骤S3中所述电解抛光液包括正磷酸和无水乙醇。
更为优选地,所述正磷酸和无水乙醇的体积比为1:(1~2)。
优选地,步骤S3中所述电压为1.2~2V,所述施加的时间为30~300s。
一种自支撑石墨烯纳米片表面修饰铜基复合材料是由上述方法制备得到。
所述自支撑石墨烯纳米片表面修饰铜基复合材料包括石墨烯纳米片和铜基体。
所述自支撑石墨烯纳米片表面修饰铜基复合材料在自润滑材料领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用镍纳米粒子表面修饰石墨烯纳米片作为自支撑石墨烯纳米片表面修饰铜基复合材料中石墨烯的前驱体。镍纳米粒子表面修饰石墨烯纳米片中镍纳米粒子不仅有效抑制石墨烯纳米片的自发团聚,而且明显改善石墨烯纳米片与铜基体的润湿性,提高了镍纳米粒子和石墨烯纳米片两者之间的界面结合强度。
2.本发明采用原位法制备镍纳米粒子表面修饰石墨烯纳米片,与常用的化学镀方法相比,本方法简易,成本低廉,镍纳米粒子更均匀和牢固地分布于石墨烯纳米片上。
3.本发明的自支撑石墨烯纳米片表面修饰铜基复合材料所需石墨烯纳米片含量较少,且兼具优异的力学性能和自润滑性能。其中,石墨烯纳米片一部分均匀分散于铜基体内部,形成石墨烯/铜基复合材料,充分发挥强化复合材料力学性能的作用。另一部分自支撑于复合材料表面,促使在对磨件表面快速形成致密的石墨烯转移膜,从而使其具有优异的自润滑性能。
4.本发明的自支撑石墨烯纳米片表面修饰铜基复合材料作为自润滑滑动材料具有摩擦系数低,比磨损率量少和承载力高等的优点。
附图说明
图1为自支撑石墨烯纳米片表面修饰铜基复合材料的结构示意图。
图2为实施例2所得镍纳米粒子表面修饰石墨烯纳米片显微组织TEM照片。
图3为实施例5所得自支撑石墨烯纳米片表面修饰铜基复合材料表面显微组织SEM照片。
图4为实施例5-7所得自支撑石墨烯纳米片表面修饰铜基复合材料的摩擦系数随滑动循环次数变化曲线。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
图1为自支撑石墨烯纳米片表面修饰铜基复合材料的结构示意图。其中1为石墨烯纳米片,2为铜基体,3为石墨烯/铜复合材料,4为自支撑石墨烯纳米片,5为自支撑石墨烯纳米片表面修饰铜基复合材料。本发明的自支撑石墨烯纳米片表面修饰铜基复合材料5由石墨烯纳米片1和铜基体2组成,石墨烯纳米片一部分均匀分散于铜基体内部,形成石墨烯/铜基复合材料3,一部分均匀分散于材料表面,且这些石墨烯纳米片的平面一部分嵌于石墨烯/铜基复合材料内部,一部分露于石墨烯/铜基复合材料表面,形成自支撑石墨烯纳米片4。
实施例2
把氧化石墨烯粉末(购自南京先丰纳米材料科技有限公司)超声分散于去离子水中形成浓度为0.83mg/mL的分散液600ml,加入浓度为0.55mol/L稀氨水15ml,充分搅拌后,滴加50ml浓度为27mmol/L的Ni(NO3)2水溶液。室温反应1小时后过滤、去离子水冲洗并干燥产物,随后干燥产物在氩气保护气氛下500℃反应1小时后,得到镍纳米粒子表面修饰石墨烯纳米片。
图2为本实施例所得镍纳米粒子表面修饰石墨烯纳米片显微组织TEM照片。从图2中可知,镍纳米粒子的尺寸为10~20nm,其均匀钉扎于石墨烯纳米片的平面。通过热重分析表明镍纳米粒子表面修饰石墨烯纳米片的镍的质量分数为36.5%。
实施例3
与实施例2的不同在于:所述氧化石墨烯、氨水和Ni(NO3)2水溶液的浓度分别为1mg/mL,0.6mol/L,30mmol/L,室温反应的时间为4小时,高温反应温度为600℃,时间为2小时,得到镍质量分数为22.8%的镍纳米粒子表面修饰石墨烯纳米片。
实施例4
与实施例2的不同在于:氧化石墨烯、氨水和Ni(NO3)2水溶液的浓度分别为0.5mg/mL,0.2mol/L,10mmol/L,室温反应的时间为1小时,高温反应温度为500℃,时间为1.5小时,得到镍质量分数为16.5%的镍纳米粒子表面修饰石墨烯纳米片。
实施例5
称取0.1g实施例2得到的镍纳米粒子表面修饰石墨烯纳米片与10g铜粉搅拌混合后置于石墨模具中,在750℃和施加35MPa压力下烧结1小时,得到石墨烯/铜基复合材料,继而以制得的石墨烯/铜基复合材料为阳极,石墨电极为阴极,两极置于由体积比为1:2的正磷酸和无水乙醇组成的电解抛光液中,并在两极间施加1.35V恒定电压,施加时间为120s,得到自支撑石墨烯纳米片表面修饰铜基复合材料。
实施例6
与实施例5的不同在于:所述镍纳米粒子表面修饰石墨烯纳米片的质量为0.05g,所述两极间施加恒定电压的时间为300s。
实施例7
与实施例5的不同在于:所述镍纳米粒子表面修饰石墨烯纳米片的质量为0.15g,所述两极间施加恒定电压的时间为90s。
实施例8
与实施例5的不同在于:所述加热温度为700℃,加压为50MPa,烧结2小时。所述电解抛光液为体积比为1:1的正磷酸和无水乙醇,恒定电压为2V,施加时间为30s。
实施例9
与实施例5的不同在于:加热温度为850℃,加压为30MPa,烧结1.5小时。所述电解抛光液为体积比为1:1的正磷酸和无水乙醇,恒定电压为1.2V,施加时间为300s。
实施例10
将实施例5-7所得自支撑石墨烯纳米片表面修饰石墨烯/铜基复合材料与直径为6mm的GCr15不锈钢球组成摩擦副,在大气环境下(相对湿度30%~60RH%),测试载何为在4N的摩擦测试条件下所得的摩擦系数。图4为实施例5~7所得自支撑石墨烯纳米片表面修饰石墨烯/铜基复合材料的摩擦系数随滑动循环次数变化曲线。其中,5代表实施例5,6代表实施例6,7代表实施例7。由图4可知,自支撑石墨烯纳米片表面修饰铜基复合材料的平均摩擦系数为0.19~0.23,与纯铜相比,平均摩擦系数减少80%~84%。同时,比磨损率为10- 5mm3N-1m-1数量级,比纯铜减少至少1个数量级。因此,本发明的自支撑石墨烯纳米片表面修饰铜基复合材料具有优异的减摩耐磨特性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法,其特征在于,包括以下具体步骤:
S1.将Ni(NO3)2水溶液滴加到由氧化石墨烯和稀氨水组成的分散水溶液中,室温反应后,过滤、去离子水冲洗并干燥产物,干燥产物在氩气中500~600℃反应后,得到镍纳米粒子表面修饰石墨烯纳米片;
S2.把S1得到的镍纳米粒子表面修饰石墨烯纳米片与铜粉搅拌混合后置于石墨模具中,经加热加压烧结后,得到石墨烯/铜基复合材料;
S3.以S2制得的石墨烯/铜基复合材料为阳极,石墨电极为阴极,两极置于电解抛光液中,并在两极间施加恒定电压,部分溶解石墨烯/铜基复合材料表面铜成分,得到自支撑石墨烯纳米片表面修饰铜基复合材料。
2.根据权利要求1所述自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法,其特征在于,步骤S1中所述氧化石墨烯、氨水和Ni(NO3)2水溶液的浓度分别为0.5~1mg/mL,0.2~0.6mol/L,10~30mmol/L。
3.根据权利要求1所述自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法,其特征在于,步骤S1中所述室温反应的时间为1~4h,所述反应的时间为1~2h。
4.根据权利要求1所述自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法,其特征在于,步骤S2中所述镍纳米粒子表面修饰石墨烯纳米片与铜粉的质量比为(1~3):200,所述烧结的温度为700~850℃,所述烧结的压力为30~50MPa,所述烧结的时间为1~2h。
5.根据权利要求1所述自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法,其特征在于,步骤S3中所述电解抛光液包括正磷酸和无水乙醇。
6.根据权利要求5所述自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法,其特征在于,所述正磷酸和无水乙醇的体积比为1:(1~2)。
7.根据权利要求1所述自支撑石墨烯纳米片表面修饰铜基复合材料的制备方法,其特征在于,步骤S3中所述电压为1.2~2V,所述施加恒定电压的时间为30~300s。
8.一种自支撑石墨烯纳米片表面修饰铜基复合材料,其特征在于,所述自支撑石墨烯纳米片表面修饰铜基复合材料是由权利要求1-7任一项所述方法制备得到。
9.权利要求8所述自支撑石墨烯纳米片表面修饰铜基复合材料在自润滑材料领域中的应用。
CN201710831884.9A 2017-09-15 2017-09-15 自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用 Active CN107805730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710831884.9A CN107805730B (zh) 2017-09-15 2017-09-15 自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710831884.9A CN107805730B (zh) 2017-09-15 2017-09-15 自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107805730A CN107805730A (zh) 2018-03-16
CN107805730B true CN107805730B (zh) 2019-08-27

Family

ID=61583973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710831884.9A Active CN107805730B (zh) 2017-09-15 2017-09-15 自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107805730B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440145B (zh) * 2018-12-30 2020-02-14 苏州碳素集电新材料有限公司 一种石墨烯/铜复合导电材料及其制备方法
CN110117807B (zh) * 2019-03-09 2021-04-27 深圳市中科墨磷科技有限公司 一种二维材料-过渡金属异质结薄片的制备方法
CN112139512B (zh) * 2020-08-25 2021-12-21 湖南大学 一种铜基复合材料前驱体粉末的制备方法
CN113430408A (zh) * 2021-06-24 2021-09-24 山东科技大学 一种高导电镍修饰石墨烯/铜复合材料及其制备方法
CN113512662A (zh) * 2021-07-16 2021-10-19 陕西科技大学 一种负载银的石墨烯/铜自润滑材料及其制备方法
CN113695572B (zh) * 2021-08-30 2022-03-11 广东工业大学 一种石墨烯基高熵合金材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116011A (en) * 1978-03-02 1979-09-10 Inoue Japax Res Metallcarbon composite body
RU2009101570A (ru) * 2008-08-25 2010-07-27 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" Композиционный спеченный порошковый материал
CN102583348A (zh) * 2012-02-20 2012-07-18 北京航空航天大学 一种表面纳米镍粒子改性石墨烯纳米材料及其制备方法
CN104479804A (zh) * 2014-11-25 2015-04-01 华南理工大学 一种纳米铜/石墨烯复合材料及其制备方法与应用
CN105602194A (zh) * 2015-12-24 2016-05-25 北京航空航天大学 一种Ni纳米粒子改性石墨烯及其吸波材料的制备方法
CN106735299A (zh) * 2016-12-20 2017-05-31 哈尔滨工业大学(威海) 一种石墨烯微片负载纳米镍复合粉体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116011A (en) * 1978-03-02 1979-09-10 Inoue Japax Res Metallcarbon composite body
RU2009101570A (ru) * 2008-08-25 2010-07-27 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" Композиционный спеченный порошковый материал
CN102583348A (zh) * 2012-02-20 2012-07-18 北京航空航天大学 一种表面纳米镍粒子改性石墨烯纳米材料及其制备方法
CN104479804A (zh) * 2014-11-25 2015-04-01 华南理工大学 一种纳米铜/石墨烯复合材料及其制备方法与应用
CN105602194A (zh) * 2015-12-24 2016-05-25 北京航空航天大学 一种Ni纳米粒子改性石墨烯及其吸波材料的制备方法
CN106735299A (zh) * 2016-12-20 2017-05-31 哈尔滨工业大学(威海) 一种石墨烯微片负载纳米镍复合粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids;Yanxia Tang et al.;《Materials Science & Engineering A》;20140129;第599卷;第247-254页 *

Also Published As

Publication number Publication date
CN107805730A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
CN107805730B (zh) 自支撑石墨烯纳米片表面修饰铜基复合材料及其制备方法和应用
Hu et al. Palladium nanocrystals supported on helical carbon nanofibers for highly efficient electro-oxidation of formic acid, methanol and ethanol in alkaline electrolytes
Wang et al. Biomass-derived activated carbon as high-performance non-precious electrocatalyst for oxygen reduction
Sun et al. Preparation of highly dispersed palladium–phosphorus nanoparticles and its electrocatalytic performance for formic acid electrooxidation
Schweiss et al. Enhancement of proton exchange membrane fuel cell performance by doping microporous layers of gas diffusion layers with multiwall carbon nanotubes
Bae et al. The role of nitrogen in a carbon support on the increased activity and stability of a Pt catalyst in electrochemical hydrogen oxidation
Hafez et al. Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell electrocatalysts
KR101264969B1 (ko) 연료 전지
CN107393725A (zh) 一种多孔导电的碳材料负载NiCo2O4复合材料及其制法和应用
CN105990573B (zh) 一种氮掺杂多孔碳/硫复合材料及其制备方法和用途
Wang et al. Up-shifting the desalination rate limit of capacitive deionization via integrating chloride-capturing Bi nanocluster with flow-through cell architecture
Ma et al. Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries
Ojani et al. Pt–Co nanostructures electrodeposited on graphene nanosheets for methanol electrooxidation
Wang et al. Tree-like NiS 2/MoS 2-RGO nanocomposites as pH universal electrocatalysts for hydrogen evolution reaction
Kaushal et al. Multiwall carbon nanotubes tailored porous carbon fiber paper-based gas diffusion layer performance in polymer electrolyte membrane fuel cell
CN101519783B (zh) 一种钛合金表面自润滑层及其制备方法
Tesfu-Zeru et al. Investigation of mesoporous carbon hollow spheres as catalyst support in DMFC cathode
Engel et al. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells
Chauhan et al. Fabrication of a nano-structured Pt-loaded cerium oxide nanowire and its anode performance in the methanol electro-oxidation reaction
Yoon et al. Ionic liquid derived nitrogen-doped graphite felt electrodes for vanadium redox flow batteries
CN105119007A (zh) 一种耐腐蚀燃料电池气体扩散层的制备方法
Dinesh et al. Hafnium sulphide-carbon nanotube composite as Pt support and active site-enriched catalyst for high performance methanol and ethanol oxidations in alkaline electrolytes
JP2016192399A (ja) 燃料電池用ペースト組成物、及び燃料電池
CN109622949A (zh) 一种石墨烯微片及三氧化铝混杂增强铝基复合材料及其制备方法
Zheng et al. Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant