CN107793564A - 低Tg聚醚类全固态单离子导电聚合物及其制备方法 - Google Patents

低Tg聚醚类全固态单离子导电聚合物及其制备方法 Download PDF

Info

Publication number
CN107793564A
CN107793564A CN201710983776.3A CN201710983776A CN107793564A CN 107793564 A CN107793564 A CN 107793564A CN 201710983776 A CN201710983776 A CN 201710983776A CN 107793564 A CN107793564 A CN 107793564A
Authority
CN
China
Prior art keywords
solid state
low
conducting polymer
polyethers
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710983776.3A
Other languages
English (en)
Other versions
CN107793564B (zh
Inventor
程寒松
孙玉宝
陈亚洲
潘其云
李万清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salfa (Wuhan) New Energy Technology Co., Ltd
Original Assignee
Wuhan Hydrogen Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Hydrogen Energy Co Ltd filed Critical Wuhan Hydrogen Energy Co Ltd
Priority to CN201710983776.3A priority Critical patent/CN107793564B/zh
Publication of CN107793564A publication Critical patent/CN107793564A/zh
Application granted granted Critical
Publication of CN107793564B publication Critical patent/CN107793564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种低Tg聚醚类全固态单离子导电聚合物,所述聚合物的通式为

Description

低Tg聚醚类全固态单离子导电聚合物及其制备方法
技术领域
本发明属于聚合物领域,特别涉及一种低Tg聚醚类全固态单离子导电聚合物及其制备方法。
背景技术
实现全固态锂电池的电解质目前有两种,一种是无机陶瓷电解质,另一种是聚合物全固态电解质。聚合物全固态电解质有分为两种,一种是双离子传导的聚合物全固态电解质,另一种是单离子型的聚合物全固态电解质。无机陶瓷电解质的存在“固-固”界面不稳定的问题,再加上工艺复杂,所以至今未能大规模应用。双离子传导的聚合物全固态电解质目前已经实现了室温下工作,但是是通过牺牲机械强度为代价的,故仍存在“枝晶”的隐患。单离子传导的聚合物全固态电解质目前报道的最低工作温度是50摄氏度。
发明目的
本发明的目的是针对现有技术的缺陷,提供一种低Tg聚醚类全固态单离子导电聚合物,并提供上述导电聚合物的制备方法。
为了实现上述目的,本发明采用以下技术方案:一种低Tg聚醚类全固态单离子导电聚合物,所述聚合物的通式为其中A为离子导体链段,B为低Tg链段。
进一步的,A为式1:
其中Y为Li、Na或K。
进一步的,A为式2:
其中Y为Li、Na或K;R’为烷基。
进一步的,B为-O-R-O-,其中R-为烷氧链、全氟烷氧链或硅氧链。
一种低Tg聚醚类全固态单离子导电聚合物的制备方法,采用A单体和B单体为原料溶解在溶剂中,先在室温~90℃下反应3小时,然后在120~160℃下反应10小时,冷却后,减压蒸馏除去溶剂,对得到的聚合物放入透析袋中用去离子水透析3天,除去小分子,除水并干燥,得到导电聚合物。
进一步的,A单体为式3:
其中X为F、Cl、Br或I;Y为Li、Na或K。
进一步的,A单体为式4:
其中X为F、Cl、Br或I;Y为Li、Na或K;R’为烷基官能团
进一步的,B单体为HO-R-OH,其中R-为烷氧链、全氟烷氧链或硅氧链。
进一步的,溶剂为DMAC、DMSO、DMF或NMP。
本发明公开的单离子传导全固态聚合物电解质可于全固态锂离子二次电池。无机全固态锂离子二次电池存在两大问题:第一,无机电解质与电极(特别是金属Li负极)之间存在界面稳定性不稳定;第二,无机陶瓷隔膜是刚性的,不能进行大规模roll-to-roll生产。针对第一个问题,本申请在无机陶瓷隔膜的表面修饰这种低Tg的聚醚类全固态单离子导电聚合物,避免电极与陶瓷电解质的直接接触,同时又保证离子的传导,从而改善界面稳定性。针对第二个问题,本申请将无机陶瓷电解质粉末与这种低Tg的聚醚类全固态单离子导电聚合物共混,无机粉末一方面可以传导离子,另一方面降低聚合物的结晶度。除此之外,这种低Tg的聚醚类全固态单离子导电聚合物可以引入其它骨架支撑用于全固态聚合物金属锂二次电池的隔膜兼电解质。因为是单离子传导,所以电池在充放电过程中避免了双离子传导引起的浓差极化,而浓差极化是导致锂枝晶的一个主要原因。综上,本发明将有助于实现具有高比能量和高安全性的全固态金属锂二次电池。
附图说明
图1是实施例所制备导电聚合物的DSC图。
图2是实施例所制备导电聚合物的离子电导率图。
图3是实施例所制备导电聚合物的电化学循环伏安图。
图4是实施例所制备ABCE-5在30℃下测得的拉伸(a),循环伏安(b),离子电导率(c)和离子迁移数(d)关系图。
图5是实施例所制备ABCE-5与玻璃纤维复合的电镜照片。
图6是实施例所制备ABCE-5的电池测试结果图(电池结构“LFP|ABCE-5&玻璃纤维|Li”)。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
以PEG200、PEG400、PEG600、PEG800和PEG1000分别作为B单体,通式为R(OH)2,简称PEG。以式1或2作为A单体,
反应方程式分别如下:
反应过程:氩气保护,0℃下,0.096g(12mmol)的LiH和5mL干燥的DMAC加入到50mL的二颈烧瓶中,搅拌状态下缓慢加入1.0g(5mmol)的PEG,持续3小时。然后,加入1.7g(5mmol)的4,4’-二氟双苯磺酰亚胺锂。先在60℃下反应3小时,然后在150℃下反应10小时。冷却后,减压蒸馏除去溶剂。对得到的聚合物放入透析袋中用去离子水透析(1g聚合物对应4L水)3天,除去小分子。除水并干燥,得到共聚物,分别命名为ABCE-1,ABCE-2,ABCE-3,ABCE-4和ABCE-5。
测试条件:核磁氢谱的测试是以D6MSO作为溶剂,在400MHz核磁仪上进行的(AVANCE III HD 400MHz,Swiss BRUKER)。分子量和多分散度(PDI)是用凝胶色谱仪(Breeze1525,Waters)测量,以含有LiBr的DMF溶液作为流出物,PMMA作为校正标准物。热重稳定性是通过热重分析仪(STA 409PC,Germany NETZSCH)测试的,氮气气流,10℃min-1的升温速率从室温升至600℃。玻璃态转换温度是通过示差量热仪(METTLER TOLEDO DSC3)测量,具体是以10℃min-1的速率从-50℃升温至200℃然后以10℃min-1的速率降温,循环三次。采用扫描电镜(FE-SEM,SU8010,HITACHI)分析样品表面形貌。膜的拉伸性能通过电子拉力机(XLW(PC),Labthink,China)测量,拉伸速率是25mm min-1
实验结果:
1、样品的基本参数
2、DSC测试结果,见图1。
3、离子电导率(ABCE-1没有,是因为电导率值太小以至于测不出来),见图2。
4、电化学循环伏安,见图3。
5、ABCE-5在30℃下测得的拉伸(a),循环伏安(b),离子电导率(c)和离子迁移数(d),见图4。
6、复合隔膜(ABCE-5与玻璃纤维复合),电镜照片见图5。
7、ABCE-5的电池测试结果(电池结构“LFP|ABCE-5&玻璃纤维|Li”),见图6。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种低Tg聚醚类全固态单离子导电聚合物,其特征在于:所述聚合物的通式为其中A为离子导体链段,B为低Tg链段。
2.根据权利要求1所述的低Tg聚醚类全固态单离子导电聚合物,其特征在于:所述A为式1:
其中Y为Li、Na或K。
3.根据权利要求1所述的低Tg聚醚类全固态单离子导电聚合物,其特征在于:所述A为式2:
其中Y为Li、Na或K;R’为烷基。
4.根据权利要求1所述的Tg聚醚类全固态单离子导电聚合物,其特征在于:所述B为-O-R-O-,其中R-为烷氧链、全氟烷氧链或硅氧链。
5.一种根据权利要求1至4任一所述低Tg聚醚类全固态单离子导电聚合物的制备方法,其特征在于:采用A单体和B单体为原料溶解在溶剂中,先在室温~90℃下反应3小时,然后在120~160℃下反应10小时,冷却后,减压蒸馏除去溶剂,对得到的聚合物放入透析袋中用去离子水透析3天,除去小分子,除水并干燥,得到导电聚合物。
6.根据权利要求5所述的制备方法,其特征在于:所述A单体为式3:
其中X为F、Cl、Br或I;Y为Li、Na或K。
7.根据权利要求5所述制备方法,其特征在于:所述A单体为式4:
其中X为F、Cl、Br或I;Y为Li、Na或K;R’为烷基官能团。
8.根据权利要求5所述的制备方法,其特征在于:所述B单体为HO-R-OH,其中R-为烷氧链、全氟烷氧链或硅氧链。
9.根据权利要求5所述的制备方法,其特征在于:所述溶剂为DMAC、DMSO、DMF或NMP。
CN201710983776.3A 2017-10-20 2017-10-20 低Tg聚醚类全固态单离子导电聚合物及其制备方法 Active CN107793564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710983776.3A CN107793564B (zh) 2017-10-20 2017-10-20 低Tg聚醚类全固态单离子导电聚合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710983776.3A CN107793564B (zh) 2017-10-20 2017-10-20 低Tg聚醚类全固态单离子导电聚合物及其制备方法

Publications (2)

Publication Number Publication Date
CN107793564A true CN107793564A (zh) 2018-03-13
CN107793564B CN107793564B (zh) 2020-07-10

Family

ID=61532675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710983776.3A Active CN107793564B (zh) 2017-10-20 2017-10-20 低Tg聚醚类全固态单离子导电聚合物及其制备方法

Country Status (1)

Country Link
CN (1) CN107793564B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615937A (zh) * 2018-05-25 2018-10-02 北京新能源汽车股份有限公司 聚合物电解质、固态电解质膜及锂离子电池
CN109546205A (zh) * 2018-06-13 2019-03-29 上海大学 采用有机无机复合凝胶聚合物电解质的锂离子电池的制备方法
CN115458868A (zh) * 2022-10-26 2022-12-09 浙江大象新能源科技有限公司 复合隔膜及制备方法、锂电池
CN115458868B (zh) * 2022-10-26 2024-10-25 浙江大象新能源科技有限公司 复合隔膜及制备方法、锂电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190306B1 (en) * 1984-08-21 1990-05-23 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Polymeric electrolytes
WO2016187448A1 (en) * 2015-05-21 2016-11-24 The University Of North Carolina At Chapel Hill Hybrid solid single-ion-conducting electrolytes for alkali batteries
CN107001622A (zh) * 2014-07-23 2017-08-01 Cdp创新公司 含有接枝的双(磺酰基)亚胺钠或锂盐的新型聚合物、其制备方法及其作为电池电解质的用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190306B1 (en) * 1984-08-21 1990-05-23 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Polymeric electrolytes
CN107001622A (zh) * 2014-07-23 2017-08-01 Cdp创新公司 含有接枝的双(磺酰基)亚胺钠或锂盐的新型聚合物、其制备方法及其作为电池电解质的用途
WO2016187448A1 (en) * 2015-05-21 2016-11-24 The University Of North Carolina At Chapel Hill Hybrid solid single-ion-conducting electrolytes for alkali batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN Y Z, ET AL.: "《Journal of Power Sources》", 28 September 2017 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615937A (zh) * 2018-05-25 2018-10-02 北京新能源汽车股份有限公司 聚合物电解质、固态电解质膜及锂离子电池
CN108615937B (zh) * 2018-05-25 2020-01-14 北京新能源汽车股份有限公司 聚合物电解质、固态电解质膜及锂离子电池
CN109546205A (zh) * 2018-06-13 2019-03-29 上海大学 采用有机无机复合凝胶聚合物电解质的锂离子电池的制备方法
CN115458868A (zh) * 2022-10-26 2022-12-09 浙江大象新能源科技有限公司 复合隔膜及制备方法、锂电池
CN115458868B (zh) * 2022-10-26 2024-10-25 浙江大象新能源科技有限公司 复合隔膜及制备方法、锂电池

Also Published As

Publication number Publication date
CN107793564B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
Huo et al. Challenges of polymer electrolyte with wide electrochemical window for high energy solid‐state lithium batteries
Xu et al. Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery
Wang et al. In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries
CN103509153B (zh) 一种聚合物单离子电解质及其制备方法
Zhao et al. Gel polymer electrolyte based on polymethyl methacrylate matrix composited with methacrylisobutyl-polyhedral oligomeric silsesquioxane by phase inversion method
Zhong et al. Ultrahigh Li-ion conductive single-ion polymer electrolyte containing fluorinated polysulfonamide for quasi-solid-state Li-ion batteries
CN109103488B (zh) 一种聚合物钠电池及其制备方法和应用
CN105914397B (zh) 含氟聚合物电解质及其制备方法和应用
Zhang et al. A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability
CN105622949B (zh) 一种聚苯并咪唑-聚乙二醇接枝共聚物及其制备与应用
Zhang et al. Developing lithiated polyvinyl formal based single-ion conductor membrane with a significantly improved ionic conductivity as solid-state electrolyte for batteries
Chen et al. An AB alternating diblock single ion conducting polymer electrolyte membrane for all-solid-state lithium metal secondary batteries
Wang et al. A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries
CN106887622B (zh) 含氟单离子导体聚合物电解质及其制备方法与应用
CN104031193A (zh) 一种聚合物离子液体电解质及其制备方法
CN111786018B (zh) 一种高压聚合物电解质、高压聚合物锂金属电池及此电池的制备方法
CN106898813A (zh) 一种固态电解质、固态电解质膜及其制造方法、以及锂二次电池
Wang et al. A poly (1, 3-dioxolane) based deep-eutectic polymer electrolyte for high performance ambient polymer lithium battery
CN110054792A (zh) 一种基于sbs的阴离子交换膜及其制备方法
CN107793564A (zh) 低Tg聚醚类全固态单离子导电聚合物及其制备方法
CN109456484B (zh) 一种新型共轭结构含氟磺酰亚胺单离子导体聚合物及其制备方法和应用
CN108832178B (zh) 单离子聚合物电解质及其制备方法和应用
CN111525187B (zh) 一种锂电池用磺化聚乙烯醇固态聚合物电解质膜及其制备方法
CN103456981B (zh) 一种含有机锂的聚合物固体电解质薄膜的制造方法
CN111320753B (zh) 聚合物、聚合物电解质、聚合物电解质膜、非水电解液及锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200609

Address after: 430040, No. 31, Wuhuan Avenue, Dongxihu District, Hubei, Wuhan

Applicant after: Salfa (Wuhan) New Energy Technology Co., Ltd

Address before: 430040 Hubei province Dongxihu District of Wuhan City Grand Avenue Industrial Park Jin Tan Lu Shi Wu Jianji office building on the third floor

Applicant before: HYNERTECH Co.,Ltd.

GR01 Patent grant
GR01 Patent grant