CN107774136A - 用于正渗透程序的离子液体与正渗透程序 - Google Patents
用于正渗透程序的离子液体与正渗透程序 Download PDFInfo
- Publication number
- CN107774136A CN107774136A CN201611089665.XA CN201611089665A CN107774136A CN 107774136 A CN107774136 A CN 107774136A CN 201611089665 A CN201611089665 A CN 201611089665A CN 107774136 A CN107774136 A CN 107774136A
- Authority
- CN
- China
- Prior art keywords
- ionic liquid
- extract solution
- osmosis process
- positive osmosis
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002608 ionic liquid Substances 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000008569 process Effects 0.000 title claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 89
- 239000000243 solution Substances 0.000 claims abstract description 80
- 239000000284 extract Substances 0.000 claims abstract description 75
- 230000003204 osmotic effect Effects 0.000 claims abstract description 23
- 239000012266 salt solution Substances 0.000 claims abstract description 20
- 150000001450 anions Chemical class 0.000 claims description 7
- 239000013535 sea water Substances 0.000 claims description 5
- 230000008676 import Effects 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 24
- 238000000605 extraction Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 230000004907 flux Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000008595 infiltration Effects 0.000 description 5
- 238000001764 infiltration Methods 0.000 description 5
- 238000005191 phase separation Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 0 **CCCC(*)N Chemical compound **CCCC(*)N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000013517 stratification Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 206010070834 Sensitisation Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000010148 water-pollination Effects 0.000 description 2
- 238000013316 zoning Methods 0.000 description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- IOASKAUMZNDEQD-ZCFIWIBFSA-N CCCCC([C@@H](C)N)=O Chemical compound CCCCC([C@@H](C)N)=O IOASKAUMZNDEQD-ZCFIWIBFSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- ZPCHCIABIAQKQB-UHFFFAOYSA-M [OH-].C(CCC)[N+](CCCC)(CCCC)CCCC.[P] Chemical compound [OH-].C(CCC)[N+](CCCC)(CCCC)CCCC.[P] ZPCHCIABIAQKQB-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009292 forward osmosis Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/002—Forward osmosis or direct osmosis
- B01D61/005—Osmotic agents; Draw solutions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/445—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/13—Dicarboxylic acids
- C07C57/145—Maleic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/18—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D207/22—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/24—Oxygen or sulfur atoms
- C07D207/26—2-Pyrrolidones
- C07D207/263—2-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
- C07D207/267—2-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
- C07F9/5407—Acyclic saturated phosphonium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/10—Temperature control
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本揭露提供一种用于正渗透程序的离子液体与正渗透程序。所述正渗透程序是以半透膜分隔提取液端与进水端;将离子液体置入提取液端;将盐水置入进水端,且盐水的渗透压低于离子液体的渗透压,盐水中的纯水渗透穿过半透膜,并进入提取液端与离子液体混合成提取液;自提取液端取出提取液;以及于室温下静置提取液,使提取液分层成水层与离子液体层。离子液体包括或本发明的用于正渗透程序的离子液体以及正渗透程序是可有效降低现有正渗透程序在提取液与水相分离的耗能。
Description
技术领域
本揭露关于用于正渗透程序的离子液体,即,正渗透所用的提取液溶质(离子液体),以及正渗透程序。
背景技术
正渗透(forward osmosis,FO)脱盐程序的技术原理是利用半透膜两端溶液或溶质间的渗透压差作为驱动力,即是使低渗透压的进水(feed water)端的水,渗透穿过半透膜至高渗透压的提取液(draw solution)端。而穿过半透膜的水与提取液的混合溶液,可藉由各种分离浓缩的方式,使水与提取液产生分离,达到提取液的回收和产生纯水。正渗透技术应用于水处理上的优点在于低耗能与低薄膜阻塞率,可大幅提升功能稳定性与成本效益。
提取液需具(1)高渗透压(2)亲水性佳和(3)易于分离等特点,其中又以提取液与过膜水的分离,以及提取液的回收是决定正渗透技术能耗的关键因素。目前有一些技术采用离子液体作为提取溶质(draw solute),但其与水混合后的分离方式需加热至35℃至50℃之间,使提取液中的离子液体与水分层。明显地,上述方式存有加热耗能的问题。
综上所述,目前仍需新的提取溶质克服上述问题。
发明内容
本揭露一实施例提供的用于正渗透程序的离子液体,包括:
其中R1是C4-6的烷基;R2是C4-14的烷基;R3是C3-16的烷基;R4是C1-8的烷基;是CF3COO-、Br-、 或上述的组合,是HSO4 -、NO3 -、Cl-、或上述的组合。
本揭露一实施例提供的正渗透程序,以半透膜分隔提取液端与进水端;将离子液体置入提取液端;将盐水置入进水端,且盐水的渗透压低于离子液体的渗透压,盐水中的纯水渗透穿过半透膜,并进入提取液端与离子液体混合成提取液;自提取液端取出提取液;以及于室温下静置提取液,使提取液分层成水层与离子液体层。离子液体包括 R1是C4-6的烷基,R2是C4-14的烷基,R3是C3-16的烷基,R4是C1-8的烷基。是CF3COO-、Br-、 或上述的组合。是HSO4 -、NO3 -、Cl-、或上述的组合。
与现有技术相比,本发明提供的用于正渗透程序的离子液体以及正渗透程序是采用特定结构的离子液体作为正渗透的提取液,其可自盐水提取纯水,且两者的混合液(在特定比例下)静置于室温下即可自动分层而不需加热,可有效降低现有正渗透程序在提取液与水相分离的耗能。
附图说明
图1是本揭露一实施例中,正渗透程序的示意图;
图2是本揭露一实施例中,混合液其离子液体浓度与渗透压的关系图;
图3是本揭露一实施例中,混合液其离子液体浓度与导电度的关系图;
图4是本揭露一实施例中,进水端与提取液端的重量变化(水通量)与提取液端的导电度与时间的关系图;
图5是本揭露一实施例中,采用不同离子液体的混合液其分层温度与浓度的关系图;
其中,符号说明:
11 半透膜 13 进水端
15 提取液端 17 盐水
19 离子液体 21 纯水。
具体实施方式
本揭露一实施例提供的正渗透程序,包括:以半透膜11分隔进水端13与提取液端15,如图1所示。接着将盐水17置入进水端13,并将离子液体19置入提取液端15。由于盐水17的渗透压低于离子液体19的渗透压,使盐水中的纯水21渗透穿过半透膜11,进入提取液端15与离子液体19混合成提取液。
在一实施例中,可进一步搅拌提取液,使提取液端15中的提取液不致分层形成水层与离子液体层,以避免影响提取液端15的渗透压,进而降低水通量。当提取液的含水量到达一定浓度后,再将提取液自提取液端15取出,并于室温下静置。
在一实施例中,可采用管线将提取液导入另一槽中静置。由于提取液端15的离子液体阴/阳离子经调控设计后的结构组成,会因离子液体本身的阴离子或两种离子液体相互混合后的高吸水能力(通过氢键),使阴离子于某一浓度范围时,产生内部结构变化(conformational change),如自身分子氢键(intramolecular hydrogen bonding)或其他方式而降低亲水性,增加与疏水性阳离子间的联聚(aggregation)能力,进而使其在特定的浓度范围内产生聚集。如此一来,静置后的提取液将分层形成水层与离子液体层,不需额外供给能量而即达到与水分离纯化离子液体19的目的。
在一实施例中,在提取液分层形成水层与离子液体层后,可将离子液体层再置入提取液端15进行回用。举例来说,可采用管线将另一槽中的离子液体层导回提取液端15,以达重复使用离子液体的效果。在一实施例中,将盐水置入进水端的步骤可为连续地导入海水,以维持进水端13中的盐水渗透压浓度维持恒定。如此一来,自盐水提取的纯水21渗透至提取液端15不会导致进水端13中盐水17的浓度与渗透压增加,避免降低纯水21渗透至提取液端15的通量。在其他实施例中,盐水可为废水,其来源可为工厂、住家、或实验室。
在一实施例中,提取液分层成该水层与该离子液体层的步骤中,该离子液体层与该水层的重量比介于10:90至50:50之间。若提取液中的离子液体的重量比例过低或过高,则提取液无法在室温分层成离子液体层与水层。在一实施例中,上述室温介于15℃至30℃之间。若具相变分离特性的提取液(含离子液体)分层所需的温度过高(比如高于室温),则需额外加热提取液使其分层,额外加热步骤即是能耗损失的主要缺点。
上述离子液体包括 上述R1是C4-6的烷基,R2是C4-14的烷基,R3是C3-16的烷基,且R4是C1-8的烷基。是CF3COO-、Br-、 或上述的组合。是HSO4 -、NO3 -、Cl-、或上述的组合。
在一实施例中,是 与中两者的组合,且两种阴离子的一者与另一者的摩尔比例介于1:0.2至1:1之间。
在一实施例中,离子液体是在此实施例中,提取液分层成水层与离子液体层的步骤中,离子液体层与水层的重量比介于30:70至50:50之间。
在另一实施例中,离子液体是在此实施例中,提取液分层成水层与离子液体层的步骤中,离子液体层与水层的重量比介于10:90至40:60之间。
由上述可知,本揭露采用特定结构的离子液体作为正渗透的提取溶质,其可自盐水提取纯水,且的离子液体与纯水混合液(在特定比例下)静置于室温下即可自动分层而不需加热,可有效降低现有正渗透程序在分离提取溶质的耗能。
为了让本揭露的上述和其他目的、特征、和优点能更明显易懂,下文特举数实施例配合所附附图,作详细说明如下:
实施例
实施例1
取1摩尔份的四丁基氢氧化磷与1摩尔份的马来酸混合后,于常温下搅拌24小时。接着以二氯甲烷萃取有机层,浓缩后再以减压蒸馏法去除残留水份,即得离子液体[P4444][Mal]。上述反应如下式所示:
取不同重量比的离子液体[P4444][Mal]与水混合后,静置于室温下一段时间,观察是否产生相分离,如表1所示。离子液体[P4444][Mal]与水具备浓度敏化相分离的特性。离子液体[P4444][Mal]浓度介于60-70wt%时属于均相溶液,随水含量增加而浓度逐渐稀释至30-50%时产生相分离,属于自发性相变行为,不需额外供给热能。若离子液体浓度降低至20wt%(或更低)时,离子液体与水将混合而非相分离。
表1(不同浓度的离子液体[P4444][Mal]的相分离)
使用渗透压仪器(OSMOMAT 030,GONOTEC)量测离子液体[P4444][Mal]的渗透压,采用冰点下降法进行分析,原理为使用急速降温冷冻法测定凝固点温度。当摩尔溶质(如离子液体)可使1斤水的凝固点下降1.86℃,则此溶质的渗透压定义为1Osmol/kg。
实验结果显示离子液体[P4444][Mal]浓度范围在5-25wt%时,水与离子液体[P4444][Mal]的混合液的渗透压呈线性关系,如图2所示。当混合液中的离子液体[P4444][Mal]浓度为25wt%时,渗透压为1.0Osmol/kg,与海水的渗透压(1.2Osmol/kg)相近。
此外,含有高浓度的离子液体[P4444][Mal]的混合液其渗透压已超出仪器可侦测范围,因此以含有5-25wt%的离子液体[P4444][Mal]的混合液的渗透压的实测值所得关系式,进一步推估含有30-70wt%的离子液体[P4444][Mal]的混合液其渗透压,如表2所示。实验结果显示含有30-70wt%离子液体[P4444][Mal]的混合液的渗透压为海水的渗透压的2-5倍,具高渗透压的特性。
表2
离子液体[P4444][Mal]浓度 | 30wt% | 40wt% | 50wt% | 60wt% | 70wt% |
混合液渗透压(osmol/Kg) | 1.3 | 1.9 | 2.8 | 4.1 | 6.3 |
*海水渗透压(0.6M NaCl)为1.2Osmol/kg
含有不同浓度的离子液体[P4444][Mal]的混合液,其离子液体浓度与导电度的关系如图3所示。含高浓度离子液体的混合液其初始导电度约为4mS/cm,然而随着水含量增加而导电度上升。这是因为离子液体富集相(ionic liquid-rich)属于离子对(ion pair)形式存在,随着水含量增加会降低自身聚集现象,形成独立存在的阴/阳离子。藉由离子液体这样的特性,可稳定操作并有效提升正渗透的水通量,其优于无机盐类作为正渗透提取溶质的表现。
使用自组装式实验室级设备,正渗透模块为平板式,流道设计为双通道内循环式,使用Dow-filmtec公司生产的薄膜(TW30-1812),薄膜有效面积为64cm2,使用泵浦输送进水端及提取液端溶液,扫流速率为25cm/s,记录不同时间点的进水端与提取液端重量,再藉由重量变化、薄膜面积与实验时间求出水通量,如图4所示。将离子液体[P4444][Mal]输送至提取液端,将纯水(DI water)输送至进水端。在实验初期,导电度与水通量随时间增加。稳定操作8小时后,水通量与导电度仍维持一定,证明离子液体[P4444][Mal]作为正渗透的提取溶质具稳定操作的优势。
实施例2
取1摩尔份的N-辛基吡咯烷酮(NOP)与1摩尔份的硫酸混合后置入冰浴中,反应24小时后即得离子液体[HNOP][HSO4]。
取不同重量比的离子液体[HNOP][HSO4]与水混合后,静置于室温下一段时间,观察是否产生相分离,如表3所示。离子液体[HNOP][HSO4]与水具备浓度敏化相分离的特性。离子液体[HNOP][HSO4]浓度介于50-70wt%时属于均相溶液,随水含量增加而浓度逐渐稀释至40%以下时产生相分离,属于自发性相变行为,不需额外供给热能。
表3(不同浓度的离子液体[HNOP][HSO4]的相分离)
比较例1
取实施例1的离子液体[P4444][Mal]与水于低温(接近10℃)下分别混合成10wt%、30wt%、50wt%、与70wt%的均相溶液后,慢慢升温并观查不同浓度的均相溶液分层的温度,如图5所示。
接着取市售的离子液体[P4444][TSO](86933,购自ALDRICH)与水于低温(接近10℃)下分别混合成10wt%、30wt%、与50wt%的均相溶液后,慢慢升温并观查不同浓度的均相溶液分层的温度,如图5所示。
由图5可知,离子液体[P4444][Mal]与水的混合溶液(30wt%至50wt%)在室温下即可分层,而市售离子液体[P4444][TSO]与水的混合溶液的分层温度均高于室温。与离子液体[P4444][TSO]相较,离子液体[P4444][Mal]与水的混合液在正渗透程序中不需加热即可产生分层,可进一步节省正渗透程序中分离提取溶质与水的热能损失。
虽然本揭露已以数个实施例揭露如上,然其并非用以限定本揭露,任何本技术领域中具有通常知识者,在不脱离本揭露的精神和范围内,当可作任意的更动与润饰,因此本揭露的保护范围当视后附的申请专利范围所界定者为准。
Claims (15)
1.一种用于正渗透程序的离子液体,包括:
其中R1是C4-6的烷基;
R2是C4-14的烷基;
R3是C3-16的烷基;
R4是C1-8的烷基;
A1 是CF3COO-、Br-、 或上述的组合;
A2 是HSO4 -、NO3 -、Cl-、或上述的组合。
2.如权利要求1所述的用于正渗透程序的离子液体,是
3.如权利要求1所述的用于正渗透程序的离子液体,是
4.如权利要求1所述的用于正渗透程序的离子液体,其中A1 是 与中两者的组合,且两种阴离子的一者与另一者的摩尔比例介于1:0.2至1:1之间。
5.一种正渗透程序,包括:
以半透膜分隔提取液端与进水端;
将离子液体置入所述提取液端;
将盐水置入所述进水端,且所述盐水的渗透压低于所述离子液体的渗透压,
所述盐水中的纯水渗透穿过所述半透膜,并进入所述提取液端与所述离子液体混合成提取液;
自所述提取液端取出所述提取液;以及
于室温下静置所述提取液,使所述提取液分层成水层与离子液体层,其中
所述离子液体包括
其中R1是C4-6的烷基;
R2是C4-14的烷基;
R3是C3-16的烷基;
R4是C1-8的烷基;
A1 是是CF3COO-、Br-、 或上述的组合;
A2 是HSO4 -、NO3 -、Cl-、或上述的组合。
6.如权利要求5所述的正渗透程序,其中所述提取液分层成水层与离子液体层的步骤中,所述离子液体层与所述水层的重量比介于10:90至50:50之间。
7.如权利要求5所述的正渗透程序,其中所述室温介于15℃至30℃之间。
8.如权利要求5所述的正渗透程序,其中所述离子液体是
9.如权利要求8所述的正渗透程序,其中所述提取液分层成水层与离子液体层的步骤中,所述离子液体层与所述水层的重量比介于30:70至50:50之间。
10.如权利要求5所述的正渗透程序,其中所述离子液体是
11.如权利要求10所述的正渗透程序,其中所述提取液分层成水层与离子液体层的步骤中,所述离子液体层与所述水层的重量比介于10:90至40:60之间
12.如权利要求5所述的用于正渗透程序,其中A1 是 与中两者的组合,且两种阴离子的一者与另一者的摩尔比例介于1:0.2至1:1之间。
13.如权利要求5所述的正渗透程序,更包括在所述提取液分层成水层与离子液体层后,将所述离子液体层置入所述提取液端进行回用。
14.如权利要求5所述的正渗透程序,其中将所述盐水置入所述进水端的步骤是连续地导入海水。
15.如权利要求5所述的正渗透程序,更包括搅拌所述提取液端中提取液,以使得其中的纯水与离子液体不至分层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662381187P | 2016-08-30 | 2016-08-30 | |
US62/381,187 | 2016-08-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107774136A true CN107774136A (zh) | 2018-03-09 |
CN107774136B CN107774136B (zh) | 2020-10-27 |
Family
ID=59688276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611089665.XA Active CN107774136B (zh) | 2016-08-30 | 2016-12-01 | 用于正渗透程序的离子液体与正渗透程序 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10016725B2 (zh) |
JP (1) | JP2018034149A (zh) |
CN (1) | CN107774136B (zh) |
TW (1) | TWI586681B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109316965A (zh) * | 2018-10-22 | 2019-02-12 | 华中科技大学 | 有机膦酸盐作为正渗透汲取溶质的应用以及正渗透装置 |
CN113117523A (zh) * | 2019-12-31 | 2021-07-16 | 财团法人工业技术研究院 | 正渗透提取材料、其制备方法及使用其的正渗透水淡化系统 |
CN113117529A (zh) * | 2019-12-31 | 2021-07-16 | 财团法人工业技术研究院 | 薄膜的清洗方法 |
CN113121371A (zh) * | 2019-12-30 | 2021-07-16 | 财团法人工业技术研究院 | 离子液体与利用其的正渗透程序 |
US11738310B2 (en) | 2019-12-31 | 2023-08-29 | Industrial Technology Research Institute | Method for cleaning membrane |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11235283B2 (en) | 2019-12-30 | 2022-02-01 | Industrial Technology Research Institute | Ionic liquid and forward osmosis process employing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1880303A (zh) * | 2005-06-17 | 2006-12-20 | 广东工业大学 | 一种取代吡咯烷酮合成的离子液体及合成方法 |
WO2014178655A1 (ko) * | 2013-04-30 | 2014-11-06 | 한국화학연구원 | 유도물질 내재형 정삼투 분리막, 이의 제조방법 및 이를 포함하는 정삼투 장치 |
CN104729878A (zh) * | 2013-12-24 | 2015-06-24 | 南开大学 | 一种基于固定化离子液体的新型水体被动采样技术 |
WO2015147749A1 (en) * | 2014-03-25 | 2015-10-01 | Nanyang Technological University | A draw solute for a forward osmosis process |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3341580A (en) * | 1965-06-21 | 1967-09-12 | Carlisle Chemical Works | Tetrahydrocarbyl phosphonium acid carboxylates |
US5294644A (en) * | 1986-06-27 | 1994-03-15 | Isp Investments Inc. | Surface active lactams |
EP1380569B1 (en) * | 2001-03-26 | 2013-02-20 | Nisshinbo Industries, Inc. | Ionic liquid of dimethylethyl(methoxyethyl)ammonium for an electric double layer capacitor and a secondary battery |
NO20016012L (no) * | 2001-12-07 | 2003-06-10 | Statkraft Sf | Hydrofil semipermeabel membran |
CN1772739A (zh) * | 2004-11-12 | 2006-05-17 | 中国科学院兰州化学物理研究所 | 以n-质子化内酰胺为阳离子基团的布朗斯特酸性室温离子液体及其制备方法 |
US8083942B2 (en) * | 2004-12-06 | 2011-12-27 | Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno | Systems and methods for purification of liquids |
CN101153018A (zh) * | 2006-09-29 | 2008-04-02 | 武汉大学 | 含N-烷基吡咯烷酮基团的Brφnsted酸性离子液体及其制备方法和用途 |
CN101284913A (zh) * | 2008-05-22 | 2008-10-15 | 高小山 | 以离子液体为溶剂的纤维素膜的制备方法 |
JP5378841B2 (ja) * | 2009-03-18 | 2013-12-25 | 一般財団法人石油エネルギー技術センター | 炭酸ガス分離膜 |
BR112012014356B1 (pt) * | 2009-12-15 | 2023-11-14 | Cytec Technology Corp | Método de remoção de impurezas |
CN102892713B (zh) | 2010-02-10 | 2016-05-04 | 金斯顿女王大学 | 具有可转换的离子强度的水 |
US10363336B2 (en) | 2011-08-26 | 2019-07-30 | Battelle Energy Alliance, Llc | Methods and systems for treating liquids using switchable solvents |
NL2007353C2 (en) * | 2011-09-05 | 2013-03-07 | Kwr Water B V | Solution comprising an osmotic agent and method of extracting water using said solution. |
US9447239B2 (en) | 2012-03-19 | 2016-09-20 | Samsung Electronics Co., Ltd. | Thermosensitive copolymers, forward osmosis water treatment devices including the same, and methods of producing and using the same |
US20130256228A1 (en) | 2012-03-30 | 2013-10-03 | Hydration Systems, Llc | Use of novel draw solutes and combinations thereof to improve performance of a forward osmosis system and process |
KR20140099695A (ko) | 2013-02-04 | 2014-08-13 | 삼성전자주식회사 | 정삼투용 유도 용질, 이를 이용한 정삼투 수처리 장치, 및 정삼투 수처리 방법 |
US10532319B2 (en) | 2013-04-26 | 2020-01-14 | Nanyang Technological University | Draw solute for forward osmosis |
US11007482B2 (en) * | 2013-04-26 | 2021-05-18 | Nanyang Technological University | Draw solute and an improved forward osmosis method |
JP6149627B2 (ja) * | 2013-09-12 | 2017-06-21 | Jfeエンジニアリング株式会社 | 半透膜による水処理方法 |
KR20150068829A (ko) | 2013-12-12 | 2015-06-22 | 삼성전자주식회사 | 알킬 암모늄염 화합물을 포함하는 유도 용질 |
US9416071B2 (en) * | 2014-05-06 | 2016-08-16 | Uop Llc | Hydrocarbon conversion processes using lactamium-based ionic liquids |
WO2016027280A2 (en) | 2014-08-20 | 2016-02-25 | Council Of Scientific & Industrial Research | Dewatering process through forward osmosis using deep eutectic solvents with or without dispersed magnetic nanopartscles as novel draw solutions |
US20170259210A1 (en) * | 2014-08-21 | 2017-09-14 | Asahi Kasei Kabushiki Kaisha | Solvent Separation System and Method |
-
2016
- 2016-12-01 CN CN201611089665.XA patent/CN107774136B/zh active Active
- 2016-12-01 TW TW105139655A patent/TWI586681B/zh active
- 2016-12-28 US US15/392,281 patent/US10016725B2/en active Active
-
2017
- 2017-06-02 JP JP2017110084A patent/JP2018034149A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1880303A (zh) * | 2005-06-17 | 2006-12-20 | 广东工业大学 | 一种取代吡咯烷酮合成的离子液体及合成方法 |
WO2014178655A1 (ko) * | 2013-04-30 | 2014-11-06 | 한국화학연구원 | 유도물질 내재형 정삼투 분리막, 이의 제조방법 및 이를 포함하는 정삼투 장치 |
CN104729878A (zh) * | 2013-12-24 | 2015-06-24 | 南开大学 | 一种基于固定化离子液体的新型水体被动采样技术 |
WO2015147749A1 (en) * | 2014-03-25 | 2015-10-01 | Nanyang Technological University | A draw solute for a forward osmosis process |
Non-Patent Citations (1)
Title |
---|
YUKINOBU FUKAYA ET AL.: "Miscibility and phase behavior of water-dicarboxylic acid type ionic liquid mixed systems", 《CHEMICAL COMMUNICATIONS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109316965A (zh) * | 2018-10-22 | 2019-02-12 | 华中科技大学 | 有机膦酸盐作为正渗透汲取溶质的应用以及正渗透装置 |
CN113121371A (zh) * | 2019-12-30 | 2021-07-16 | 财团法人工业技术研究院 | 离子液体与利用其的正渗透程序 |
CN113121371B (zh) * | 2019-12-30 | 2023-07-07 | 财团法人工业技术研究院 | 离子液体与利用其的正渗透程序 |
CN113117523A (zh) * | 2019-12-31 | 2021-07-16 | 财团法人工业技术研究院 | 正渗透提取材料、其制备方法及使用其的正渗透水淡化系统 |
CN113117529A (zh) * | 2019-12-31 | 2021-07-16 | 财团法人工业技术研究院 | 薄膜的清洗方法 |
CN113117523B (zh) * | 2019-12-31 | 2023-02-03 | 财团法人工业技术研究院 | 正渗透提取材料、其制备方法及使用其的正渗透水淡化系统 |
CN113117529B (zh) * | 2019-12-31 | 2023-03-28 | 财团法人工业技术研究院 | 薄膜的清洗方法 |
US11738310B2 (en) | 2019-12-31 | 2023-08-29 | Industrial Technology Research Institute | Method for cleaning membrane |
Also Published As
Publication number | Publication date |
---|---|
CN107774136B (zh) | 2020-10-27 |
US10016725B2 (en) | 2018-07-10 |
JP2018034149A (ja) | 2018-03-08 |
US20180056241A1 (en) | 2018-03-01 |
TW201808974A (zh) | 2018-03-16 |
TWI586681B (zh) | 2017-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107774136A (zh) | 用于正渗透程序的离子液体与正渗透程序 | |
CN101973604B (zh) | 一种正渗透海水淡化装置 | |
CN101659451B (zh) | 一种气提式膜蒸馏高盐水处理方法 | |
CN107427736A (zh) | 加湿‑除湿与压力延迟渗透的杂合化 | |
CN104326615B (zh) | 一种节能高盐废水处理系统及其处理方法 | |
CN102173526B (zh) | 海水淡化浓盐水用于电站冷却塔循环冷却水的方法 | |
KR101140423B1 (ko) | 정삼투식 해수 담수화 장치 및 방법 | |
CN104190260A (zh) | 减压组合气隙膜蒸馏方法及其装置 | |
CN107106984A (zh) | 用于运行渗透能发电厂的方法和渗透能发电厂 | |
US20180148633A1 (en) | Water Treatment Schemes for Injection Water Flooding Recovery Processes in Carbonate Reservoirs | |
CN104879264B (zh) | 循环型渗透压发电系统和方法、工作介质及其相控制方法 | |
CN111252975A (zh) | 基于超临界水氧化的高盐有机废水资源化处理工艺与系统 | |
CN105597540B (zh) | 一种正渗透汲取液及其应用、以及一种用于正渗透汲取液的有机膦化合物及其制备方法 | |
CN205099398U (zh) | 海水淡化装置 | |
CN107344785A (zh) | 一种膜法、热法组合工艺处理煤化工高浓盐水的盐硝分离方法 | |
CN204661347U (zh) | 一种低能耗正渗透海水淡化系统 | |
CN102942282A (zh) | 一种油田注水和注聚用水的制备方法 | |
CN103182191A (zh) | 浓缩含碘溶液的方法与装置 | |
CN205740416U (zh) | 鼓泡蒸发式渔船尾气海水淡化装置 | |
CN104695921B (zh) | 利用采油废水制备高干度蒸汽用于蒸汽驱油的系统 | |
CN107162108A (zh) | 一种用于正渗透过程的离子液体汲取液及其循环再生方法和系统 | |
TWI776116B (zh) | 離子液體與利用其之正滲透程序 | |
KR100781897B1 (ko) | 하이브리드 담수화 장치 및 방법 | |
CN203640707U (zh) | 利用采油废水制备高干度蒸汽用于蒸汽驱油的装置 | |
CN202808440U (zh) | 一种正渗透中空纤维膜组件水处理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |