CN107746717B - 浒苔水热液化制备生物炭的方法及制备的生物炭的应用 - Google Patents

浒苔水热液化制备生物炭的方法及制备的生物炭的应用 Download PDF

Info

Publication number
CN107746717B
CN107746717B CN201711129469.5A CN201711129469A CN107746717B CN 107746717 B CN107746717 B CN 107746717B CN 201711129469 A CN201711129469 A CN 201711129469A CN 107746717 B CN107746717 B CN 107746717B
Authority
CN
China
Prior art keywords
enteromorpha
biochar
hydrothermal
seawater
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711129469.5A
Other languages
English (en)
Other versions
CN107746717A (zh
Inventor
王召伟
郑美
孟响
司梦月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201711129469.5A priority Critical patent/CN107746717B/zh
Publication of CN107746717A publication Critical patent/CN107746717A/zh
Application granted granted Critical
Publication of CN107746717B publication Critical patent/CN107746717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于生物质综合利用和海洋环境污染治理领域,具体涉及一种以浒苔为原料,采用水热液化制备生物炭的方法及制备的生物炭的应用。浒苔水热液化制备生物炭的方法,以浒苔为原料,烘干后粉碎的浒苔粉末与去离子水在无氧条件下进行水热反应制成浒苔水热生物炭。制备的浒苔水热生物炭,其颗粒粒径不大于0.3mm,元素分析结果显示C含量高于60%,O含量低于20%;可用于吸附脱除污染海水中的重金属。本发明实现了浒苔资源化利用,变废为宝,制备的生物炭结构稳定,且能在介质复杂的海水环境中使用,既可以有效的吸附去除海水中的重金属铜及铅,亦可添加到重金属超标的土壤及沉积物中进行污染修复,具有良好的应用价值。

Description

浒苔水热液化制备生物炭的方法及制备的生物炭的应用
技术领域
本发明属于生物质综合利用和海洋环境污染治理领域,具体涉及一种浒苔水热液化生物炭,即由浒苔通过水热方法制备的炭,以及该水热生物炭用于脱除污染海水中的重金属。
背景技术
随着经济的快速发展,采矿、机械制造、工业废水大量排放等过程导致近岸海域重金属污染日益严重。重金属污染与其他有机化合物的污染不同,重金属具有富集性,很难在环境中降解,并可通过食物链在生物体内蓄积。海洋重金属污染已成为全球性的环境污染问题,是海洋环境重要的监测项目之一,污染海域重金属的治理是关注的热点。但是海水的盐度较高,Na+、Mg2+、K+和Ca2+等离子的浓度可能高于污染海域中的重金属离子浓度,传统的治理水体重金属污染方法难以奏效。
生物炭是生物有机材料(生物质)在缺氧或绝氧环境中,经高温热裂解后生成的固态产物。生物质的水热液化能获得液态的生物油和高附加值的化学品,同时也能获得含炭量高的固体残渣-水热液化生物炭,其也是一种附加值高的环境修复材料。生物炭目前被广泛应用在农业上,比如被用来土壤改良和土壤修复,因其原料来源广泛,生产成本低。生物炭作为一种优良的吸附剂也可用于吸附脱除水体环境的重金属,但现阶段生物炭在海水中重金属污染治理的应用有限。
近年来,由于气候变化以及水体富营养化等原因,沿海浒苔绿潮爆发频繁,破坏海洋生态系统的平衡。大量繁殖的浒苔同时给养殖业和旅游业带来严重不利影响。本发明选用浒苔作为原料,通过水热液化的方法制备生物油的同时,获得浒苔水热生物炭,可提供一种浒苔爆发后资源化综合利用的方法,制备的生物炭用于吸附去除介质复杂的海水中的重金属,对环境友好,不会造成二次污染,具有良好的应用价值。
发明内容
本发明的目的是提供一种浒苔的资源化利用方法,通过水热液化的方法制备生物油的同时,获得浒苔水热生物炭,并将其用于脱除污染海水中的重金属,有效利用浒苔资源,实现对重金属污染水体的处理。
为达到上述目的,本发明采用如下技术方案:
浒苔水热液化制备生物炭的方法,以浒苔为原料,制备步骤如下:
(1)将浒苔原料80℃下烘干,使其含水率低于5%,然后粉碎,过100目筛子,获得浒苔粉末;
(2)将浒苔粉末放入反应釜中并加入去离子水,去离子水浸没浒苔粉,确保无氧环境,开启加热,温度由室温升高至350℃,升温速率为8℃/min,进行水热反应,350℃下恒温反应2h;
(3)水热反应产物过滤后,利用分析纯二氯甲烷、无水乙醇、去离子水和0.5mol/L盐酸清洗,在80℃下烘干后既制得浒苔水热生物炭。
进一步地,所述的浒苔水热液化制备生物炭的方法中,采用反应釜中通氮气确保水热反应过程中的无氧环境。
进一步地,所述的浒苔水热液化制备生物炭的方法中,水热反应过程中浒苔粉末与去离子水的质量体积比为1:10。
上述方法制备的浒苔水热生物炭,其颗粒粒径不大于0.3mm,元素分析结果显示C含量高于60%,O含量低于20%。
上述的浒苔水热生物炭的用途,用于吸附脱除污染海水中的重金属,如铜和铅。
上述的浒苔水热生物炭脱除污染海水中的重金属的方法,是在污染海水水体中投放浒苔水热生物炭,优选的浒苔水热生物炭的投放量为30g/L。
本发明的有益效果是:以浒苔为原料,充分利用浒苔资源,解决浒苔爆发所带来的环境问题,避免了废弃生物质导致的环境问题,对于“以废治废”具有十分重要意义;本发明原材料易于获得,制备成本低,水热生物炭具有相当的稳定性,吸附后可采用酸洗等办法解吸再生重复使用,对污染海水中重金属离子的吸附效果更好。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为浒苔水热生物炭的扫描电镜图;
图2为实施例2中不同浓度的浒苔水热生物炭对海水中Cu、Pb的去除效果曲线图;
图3为实施例3中浒苔水热生物炭对海水中Cu、Pb的吸附动力学变化曲线;
图4为实施例4中不同盐度对浒苔水热生物炭对海水中Cu、Pb的影响效果图;
图5为实施例5中浒苔水热生物炭对不同初始浓度的海水Cu、Pb溶液的吸附量变化曲线。
具体实施方式
本发明选用浒苔为原材料,通过水热液化的方法制备生物油的同时,获得浒苔水热生物炭,并将其用于脱除污染海水中的重金属。
下面结合实施例和附图说明对本发明做详细描述。
实施例1
浒苔水热液化制备生物炭的方法,以浒苔为原料,收集浒苔,浒苔是在青岛栈桥附近采集的新鲜浒苔,制备步骤如下:
(1)洗净后80℃下烘干24h,使其含水率低于5%,然后粉碎过100目筛子,获得浒苔粉末;
(2)将8g浒苔粉末放入反应釜中并加入80ml去离子水,反应釜密封后通N2 5min,确保釜内无氧环境,开启加热,温度从室温升高至350℃,升温速率为8℃/min,350℃下恒温保持2h;
(3)冷却后打开反应釜,反应产物过滤,利用分析纯二氯甲烷、无水乙醇、去离子水和0.5mol/L盐酸清洗,在80℃下烘干后既制得浒苔水热生物炭,保存备用。
如图1所示,采用电子扫描显微镜(SEM)和元素分析仪对上述制备的浒苔水热生物炭进行表征分析,以说明浒苔水热生物炭的性状。
表1浒苔水热生物炭的元素组成
Figure BDA0001469142100000041
从如表1可以看出,浒苔水热生物炭的C元素含量超过60%,O元素含量低于20%。
实施例2
测试不同浓度的浒苔水热生物炭对海水中Cu、Pb的去除效果。
称取实施例1制备的浒苔水热生物炭0.15g、0.3g、0.6g、0.9g、1.2g,分别加入到Cu和Pb离子浓度为1mg/L的海水溶液中(30ml,盐度为35),于室温(25℃)利用振荡器进行吸附反应,振荡时间为30min,震荡完毕后溶液经0.45μm滤膜过滤,采用ICP-OES测定溶液中金属离子浓度。采用差减法计算浒苔水热生物炭的吸附量,进而计算去除率。
表2不同浓度的浒苔水热生物炭对海水中Cu、Pb的去除效果对比表
Figure BDA0001469142100000051
结果如表2和图2所示,随着水热生物炭用量的增加,重金属的去除率不断升高,炭用量为30g/L时,Cu和Pb的去除率分别达到92%和46%。
实施例3
测试浒苔水热生物炭对海水中Cu、Pb的吸附动力学变化。
称取实施例1制备的浒苔水热生物炭0.9g,加入到Cu和Pb离子浓度为1mg/L的150ml海水溶液中,海水溶液的盐度为35,于室温(25℃)利用振荡器进行吸附反应,分别振荡0、5、10、15、30、60min后过滤取样,采用ICP-OES测定溶液中金属离子浓度。
表3浒苔水热生物炭对海水中Cu、Pb的吸附动力学变化对比表
Figure BDA0001469142100000052
由表3和图3可见,浒苔水热生物炭对重金属的吸附速率先增加后减缓,大约20min后达到吸附平衡。
实施例4
测试不同盐度对浒苔水热生物炭对海水中Cu、Pb的影响。
称取实施例1制备的浒苔水热生物炭0.9g,分别加入到Cu和Pb离子浓度为1mg/L的盐度为0、10、20、35的30ml海水溶液中,于室温(25℃)利用振荡器进行吸附反应,振荡30min后过滤取样,采用ICP-OES测定溶液中金属离子浓度。
表4不同盐度对浒苔水热生物炭对海水中Cu、Pb的影响对比表
Figure BDA0001469142100000061
由表4和图4可见,浒苔水热生物炭对重金属的去除率随盐度的增加不断升高,由此可见,浒苔水热生物炭更适合用在海洋环境中。
实施例5
测试浒苔水热生物炭对不同初始浓度的海水Cu、Pb溶液的吸附量变化。
称取实施例1制备的浒苔水热生物炭0.9g,分别加入到盛有30ml Cu和Pb离子浓度分别为0.2mg/L、0.5mg/L、0.8mg/L、1mg/L、2mg/L、3mg/L、5mg/L、8mg/L的海水溶液中(盐度为35),于室温(25℃)利用振荡器进行吸附反应,振荡30min后过滤取样,采用ICP-OES测定溶液中金属离子浓度。
表5浒苔水热生物炭对不同初始浓度的海水Cu、Pb溶液的吸附量变化对比表
Figure BDA0001469142100000071
由表5和图5可见,随着重金属浓度的增加,水热生物炭的吸附量也不断增加。利用等温吸附方程计算出,当浒苔水热生物炭的用量为30g/L时,对Cu和Pb的最大吸附量分别为200μg/g和70μg/g。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种吸附脱除污染海水中重金属的方法,其特征在于,以浒苔为原料,通过水热液化法制备,
制备步骤如下:(1)将浒苔原料80℃下烘干,使其含水率低于5%,然后粉碎,过100目筛子,获得浒苔粉末;
(2)将浒苔粉末放入反应釜中并加入去离子水,去离子水浸没浒苔粉,确保无氧环境,开启加热,温度由室温升高至350℃,升温速率为8℃/min,进行水热反应,350℃恒温反应2h;
(3)水热反应产物过滤后,利用分析纯二氯甲烷、无水乙醇、去离子水和0.5mol/L盐酸清洗,在80℃下烘干后即制得浒苔水热生物炭;其颗粒粒径不大于0.3mm,元素分析结果显示C含量高于60%,O含量低于20%;
使用步骤如下:(4)在污染海水水体中投放浒苔水热生物炭,投放量为30g/L,20min后达到污染海水中的铜和铅的吸附平衡。
2.如权利要求1所述的吸附脱除污染海水中重金属的方法,其特征在于,所述的浒苔水热液化制备生物炭的方法中,采用反应釜中通氮气确保水热反应过程中的无氧环境。
CN201711129469.5A 2017-11-15 2017-11-15 浒苔水热液化制备生物炭的方法及制备的生物炭的应用 Active CN107746717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711129469.5A CN107746717B (zh) 2017-11-15 2017-11-15 浒苔水热液化制备生物炭的方法及制备的生物炭的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711129469.5A CN107746717B (zh) 2017-11-15 2017-11-15 浒苔水热液化制备生物炭的方法及制备的生物炭的应用

Publications (2)

Publication Number Publication Date
CN107746717A CN107746717A (zh) 2018-03-02
CN107746717B true CN107746717B (zh) 2020-08-07

Family

ID=61251189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711129469.5A Active CN107746717B (zh) 2017-11-15 2017-11-15 浒苔水热液化制备生物炭的方法及制备的生物炭的应用

Country Status (1)

Country Link
CN (1) CN107746717B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227414A (zh) * 2018-03-06 2019-09-13 华南农业大学 一种生物炭微孔的活化方法及在去除水体氨氮中的应用
CN109331781B (zh) * 2018-12-03 2021-10-26 江苏省农业科学院 一种重金属废水高效吸附净化炭基材料的制备及应用方法
CN112029522A (zh) * 2020-09-23 2020-12-04 天津大学 一种除氮浮萍水热液化制备生物炭的方法
CN112479204A (zh) * 2020-12-09 2021-03-12 青岛理工大学 一种浒苔与市政污泥水热共碳化制备活性炭工艺及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732319A (zh) * 2011-04-08 2014-04-16 萨里大学 吸油组合物
CN105800588A (zh) * 2016-03-22 2016-07-27 中国科学院上海高等研究院 用于重金属离子吸附的微藻基生物炭材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591573A (zh) * 2009-07-02 2009-12-02 复旦大学 一种将藻类水热液化制备液体燃料的方法
CN106622138A (zh) * 2017-01-06 2017-05-10 中国海洋大学 一种浒苔生物炭

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732319A (zh) * 2011-04-08 2014-04-16 萨里大学 吸油组合物
CN105800588A (zh) * 2016-03-22 2016-07-27 中国科学院上海高等研究院 用于重金属离子吸附的微藻基生物炭材料的制备方法

Also Published As

Publication number Publication date
CN107746717A (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
CN107746717B (zh) 浒苔水热液化制备生物炭的方法及制备的生物炭的应用
Santos et al. Application of orange peel waste in the production of solid biofuels and biosorbents
Yadav et al. Adsorption characteristics of modified sand for the removal of hexavalent chromium ions from aqueous solutions: Kinetic, thermodynamic and equilibrium studies
Shi et al. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: fate and environmental risk of heavy metals
Li et al. Comparison of adsorption properties for cadmium removal from aqueous solution by Enteromorpha prolifera biochar modified with different chemical reagents
Yakkala et al. Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system
Boutsika et al. Aqueous mercury sorption by biochar from malt spent rootlets
CN113786804B (zh) 一种用于吸附重金属的磁性多孔复合材料的制备方法及应用
Elias et al. Modified oil palm industry solid waste as a potential adsorbent for lead removal
CN109759017A (zh) 一种改性核桃壳生物炭的制备方法
CN102671627B (zh) 一种湖底污泥制备吸附材料的方法
CN109173999A (zh) 一种生物炭微球的制备方法及其应用
Chen et al. Adsorption of cadmium by magnesium-modified biochar at different pyrolysis temperatures
Adil et al. Heavy metal removal efficiency of paper mulberry biochar and commercially available silica powder from simulated industrial wastewater
Song et al. Surface modification of coconut-based activated carbon by SDS and its effects on Pb2+ adsorption
NABIZADEH et al. Kinetic and equilibrium studies of Lead and Cadmium biosorption from aqueous solutions by SARGASSUM SPP. BIOMASS
Fan et al. Adsorption of Heavy Metals by Adsorbents from Food Waste Residue.
Antxustegi et al. Production of Activated Bio-chars for Wastewater Treatment: Characterization, Activation and Evaluation of the Adsorption Capacity
Al-Tarawneh Biochar as a cadmium scavenger in the aquatic environment remediation: date seeds as raw material
Walanda et al. The Utilization of Corn Stalks as Biochar to Adsorb BOD and COD in Hospital Wastewater
Deng et al. The mechanism of Pb (II) and Cd (II) removal by coffee grounds biochar: Role of KOH modification
Kumar et al. Biosorption of heavy metal ions from the aqueous solutions using groundnut shell activated carbon: batch adsorption, kinetic and thermodynamic studies
Peng et al. Removal of arsenic from wastewater by using pretreating orange peel
Abbas et al. Elimination of trace element ions Co2+ and toxic Pb2+ from wastewater on a food waste (apricot kernel shell treated with acid)
CN115818639B (zh) 一种生物质体相炭材料及其制备和在环境修复领域的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant