CN107740054B - 一种CrAlTiN涂层及其制备方法 - Google Patents

一种CrAlTiN涂层及其制备方法 Download PDF

Info

Publication number
CN107740054B
CN107740054B CN201711168047.9A CN201711168047A CN107740054B CN 107740054 B CN107740054 B CN 107740054B CN 201711168047 A CN201711168047 A CN 201711168047A CN 107740054 B CN107740054 B CN 107740054B
Authority
CN
China
Prior art keywords
coating
craltin
target
transition layer
alcrti
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711168047.9A
Other languages
English (en)
Other versions
CN107740054A (zh
Inventor
王铁钢
郭玉垚
刘艳梅
范其香
林伟
蔡玉俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201711168047.9A priority Critical patent/CN107740054B/zh
Publication of CN107740054A publication Critical patent/CN107740054A/zh
Application granted granted Critical
Publication of CN107740054B publication Critical patent/CN107740054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明公开了一种CrAlTiN涂层结构,其包括基体、AlCrTi合金过渡层和CrAlTiN涂层,AlCrTi合金过渡层与基体结合,CrAlTiN涂层与AlCrTi合金过渡层结合,所述CrAlTiN涂层是由AlN、CrN、Ti9Al23、Al2Ti等纳米晶相构成的纳米晶复合结构涂层。这种含有多种纳米晶相的纳米晶复合结构保证了涂层的高硬度、耐磨性热稳定性和化学稳定性。CrAlTiN涂层厚度均匀且结构致密,与基体具有良好的结合强度。CrAlTiN涂层制备工艺重复性好,与多层膜相比,前者应用范围更广,实用性更强,尤其应用于复杂的零部件表面,具有独特优势。

Description

一种CrAlTiN涂层及其制备方法
技术领域
本发明属于材料表面涂层技术领域,具体涉及一种CrAlTiN涂层及其制备方法。
背景技术
随着现代科学技术的迅速发展,如机械制造、汽车工业、地质钻探、模具工业、纺织工业、航空航天等领域,人们对机械部件要求的综合性能越来越高,往往单一材料的性能无法满足。对于高速切削刀具材料,要求高硬度、高强度、高韧性、耐磨性、高红硬性、化学稳定性和抗热冲击能力。单一材料往往不可能满足上述所有性能要求。常用的Ti N、Ti C、Cr N等单一硬质涂层的硬度、热稳定性、韧性、结合强度等性能在许多情况下已经无法满足需要。因此,一些常规的二元或三元涂层已经逐渐不能满足恶劣的切削条件对刀具保护性涂层提出的更高的要求。为了满足这一需求,人们尝试在三元涂层的基础上添加新的元素,制备出四元复合涂层,由于这类涂层具有高硬度、热稳定性高、低摩擦系数和耐磨耐损等优点,目前已成为涂层研究领域的热点。
近年来,为了进一步提高刀具涂层的高温硬度和抗氧化性能,改善涂层与基体的结合强度,使涂层刀具更适于切削等恶劣的加工条件,研究的重点已集中到纳米结构涂层体系。纳米晶结构涂层的出现使涂层的研究进入了新的领域(纳米领域)。研究表明,与传统的粗晶涂层相比,这类涂层具有优异的力学性能和物理性能。纳米晶硬度较高,细小的纳米晶内无法形成位错,因此,这种刀具涂层具有高的硬度、优异的耐磨性能和高温热稳定性,适合用于高速切削、干加工等工况。
本发明采用电弧离子镀技术在304不锈钢和单晶Si片上制备了CrAlTiN纳米晶结构涂层。该涂层具有较高的硬度、抗高温氧化性能和耐磨性。该涂层特别适合应用于现代高速干切削加工领域,进一步提高刀具的使役寿命,减少切削液的使用,实现绿色制造。
发明内容
本发明的目的在于克服现有技术的不足,提供一种CrAlTiN涂层及其制备方法。
本发明是通过以下技术方案实现的:
一种CrAlTiN涂层结构,其包括基体、AlCrTi合金过渡层和CrAlTiN涂层,AlCrTi合金过渡层与基体结合,CrAlTiN涂层与AlCrTi合金过渡层结合,所述CrAlTiN涂层是由AlN、CrN、Ti9Al23、Al2Ti等纳米晶相构成的纳米晶复合结构涂层。
在上述技术方案中,CrAlTiN涂层的化学组成:49.66%N、36.54%Al、6.51%Ti和7.29%Cr。
在上述技术方案中,所述CrAlTiN涂层结构的制备方法为:
将真空室的本底真空抽至4.0×10-3Pa,并预热至500℃,然后施加-800V直流偏压,向真空室内通入氩气流量为150sccm,对基体表面进行辉光放电清洗,工作压强保持在2.4Pa,放电清洗10min;
调低氩气流量至70sccm,保持-800v的偏压,工作压强降为0.8Pa;开启AlCr靶和AlTi靶电源,AlCr靶中的Cr原子占30%,Al原子占70%,AlTi靶中的Ti原子占30%,Al原子占70%,AlCr靶和AlTi靶的平均输出功率和靶电流均为1.0kW和75A,对基体表面进一步进行离子轰击清洗5min;然后降低偏压至-50V,沉积AlCrTi合金过渡层10min,两靶材表面距离基片均为290mm,沉积温度500℃;
随后通入反应气体N2,将氩气和氮气流量分别调至40sccm和260sccm,并将工作压强上调并保持在1.2Pa,沉积温度仍保持为500℃,开始沉积CrAlTiN涂层,沉积时间根据工件技术要求和涂层沉积速率确定。
本发明的优点和有益效果为:
纳米复合CrAlTiN涂层化学性能稳定,不与常见的化学腐蚀介质反应。
所述CrAlTiN涂层是由AlN、CrN、Ti9Al23、Al2Ti等纳米晶相构成的纳米晶复合结构涂层,这种含有多种纳米晶相的纳米晶复合结构保证了涂层的高硬度、耐磨性热稳定性和化学稳定性。
CrAlTiN涂层厚度均匀且结构致密,与基体具有良好的结合强度。
CrAlTiN涂层制备工艺重复性好,与多层膜相比,前者应用范围更广,实用性更强,尤其应用于复杂的零部件表面,具有独特优势。
附图说明
图1为CrAlTiN涂层的XRD图谱,
图2为CrAlTiN涂层的表面形貌图,
图3为CrAlTiN涂层的截面形貌图,
图4为CrAlTiN涂层与直径为5.99mm的氧化铝陶瓷球对磨后的磨痕形貌图,
图5为CrAlTiN涂层平均摩擦系数图。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
将真空室的本底真空抽至4.0×10-3Pa,并预热至500℃,然后施加-800V直流偏压,向真空室内通入氩气流量为150sccm,对试样表面进行辉光放电清洗,工作压强保持在2.4Pa,放电清洗10min;
调低氩气流量至70sccm,保持-800v的偏压,工作压强降为0.8Pa(因为过渡层时太高的压强使离子会产生反溅射,离子不容易沉积,0.8pa是沉积过渡层时最好的沉积压强);开启AlCr靶和AlTi靶电源(靶材成分分别为Ti30Al70、Cr30Al70,均为原子比,即AlCr靶中的Cr原子占30%,Al原子占70%,AlTi靶中的Ti原子占30%,Al原子占70%),AlCr靶和AlTi靶的平均输出功率和靶电流均为1.0kW和75A,进行离子轰击清洗5min,以进一步的清洗样片;然后降低偏压至-50V,沉积AlCrTi合金过渡层10min,两靶材表面距离基片均为290mm,沉积温度500℃;
随后通入反应气体N2(纯度99.999%),将氩气和氮气流量分别调至40sccm和260sccm,并将工作压强上调并保持在1.2Pa,沉积温度仍保持为500℃,开始沉积CrAlTiN涂层,样品沉积时间为3h。
图1为制得的CrAlTiN涂层的XRD图谱。由图1可见,该涂层由多种晶相组成,以面心立方结构的AlN和CrN相为主,起强化涂层的作用,同时含有Ti9Al23和Al2Ti结晶相。当衍射角2θ=37.5°、43.7°和63.5°时,均检测到了CrN相衍射峰,它们分别对应于(111)、(200)和(220)晶面,其中在2θ=37.5°的衍射峰恰好位于AlN和CrN相(111)晶面特征峰之间,这是由于部分Al原子固溶到CrN晶格中引起晶格畸变,起到固溶强化作用,进一步提高了涂层硬度。而且涂层中氮化物的衍射峰较强,表明其含量较高,有利于涂层硬度的提高。另外,由于涂层中Ti含量相对较低,故未检测到TiN衍射峰,但在Ti9Al23相衍射峰处,出现了明显的衍射峰宽化现象,这是由于发生晶粒细化所致。综上所述,CrAlTiN涂层是由AlN、CrN、Ti9Al23和Al2Ti等纳米晶粒组成的纳米晶涂层,通过固溶强化和晶粒细化双重机制极大增加了CrAlTiN涂层的硬度、耐磨性热稳定性和化学稳定性。
CrAlTiN涂层的断面SEM形貌和表面形貌如图2和图3所示。由图2可以看出,涂层表现为典型电弧离子镀涂层特征,组织结构致密均匀,表面有少量的大颗粒和微孔产生。由图3可以看出,涂层由两部分组成,一个是238nm的AlCrTi过渡层,另一个就是所沉积的CrAlTiN涂层,整个涂层厚度为3.43μm。CrAlTiN涂层的晶粒为沿垂直于基体方向生长,涂层结构组织致密,展现了柱状晶结构,涂层/过渡层/基体间界面结合良好。通过EDX检测CrAlTiN涂层的化学组成:49.66%N、36.54%Al、6.51%Ti和7.29%Cr,其中Al、Ti、Cr三种原子总数与N原子数之比接近于1∶1,结合XRD分析可知:49.66%N中的一部分N与Al和Cr形成纳米晶相(XRD检测到大量AlN和CrN),Ti和Al形成Ti9Al23、Al2Ti纳米晶相。
图4为CrAlTiN涂层与直径为5.99mm的氧化铝陶瓷球对磨后的磨痕形貌图,其法向载荷为2N,采用旋转式运动,滑动速度为10.47cm/s,滑动距离62.83m,磨痕轨道半径为5mm。由图4可见,CrAlTiN涂层的磨痕宽度较宽,由于在摩擦过程中使对摩擦副磨损严重导致其在稳定磨损过程中,涂层与对摩擦副间所发生的磨损在更大的接触面积上进行,使得CrAlTiN涂层磨痕深度较浅,但磨痕表面很宽。此外,CrAlTiN涂层的磨损率很小,图5为CrAlTiN涂层涂层的平均摩擦系数,从图5可以看出,稳定摩擦阶段的平均摩擦系数为0.675,经测算CrAlTiN涂层的平均磨损率为1.25×10-14m3.N-1.m-1,展现出优异的耐磨性。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (1)

1.一种CrAlTiN涂层结构的制备方法,其特征在于:
CrAlTiN涂层结构包括基体、AlCrTi合金过渡层和CrAlTiN涂层,AlCrTi合金过渡层与基体结合,CrAlTiN涂层与AlCrTi合金过渡层结合,所述CrAlTiN涂层是由AlN、CrN、Ti9Al23、Al2Ti纳米晶相构成的纳米晶复合结构涂层;所述CrAlTiN涂层结构的制备方法如下:
将真空室的本底真空抽至4.0×10-3Pa,并预热至500℃,然后施加-800V直流偏压,向真空室内通入氩气流量为150sccm,对基体表面进行辉光放电清洗,工作压强保持在2.4Pa,放电清洗10min;
调低氩气流量至70sccm,保持-800v的偏压,工作压强降为0.8Pa;开启AlCr靶和AlTi靶电源,AlCr靶中的Cr原子占30%,Al原子占70%,AlTi靶中的Ti原子占30%,Al原子占70%,AlCr靶和AlTi靶的平均输出功率和靶电流均为1.0kW和75A,对基体表面进一步进行离子轰击清洗5min;然后降低偏压至-50V,沉积AlCrTi合金过渡层10min,两靶材表面距离基片均为290mm,沉积温度500℃;
随后通入反应气体N2,将氩气和氮气流量分别调至40sccm和260sccm,并将工作压强上调并保持在1.2Pa,沉积温度仍保持为500℃,开始沉积CrAlTiN涂层,沉积时间根据工件技术要求和涂层沉积速率确定。
CN201711168047.9A 2017-11-21 2017-11-21 一种CrAlTiN涂层及其制备方法 Active CN107740054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711168047.9A CN107740054B (zh) 2017-11-21 2017-11-21 一种CrAlTiN涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711168047.9A CN107740054B (zh) 2017-11-21 2017-11-21 一种CrAlTiN涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN107740054A CN107740054A (zh) 2018-02-27
CN107740054B true CN107740054B (zh) 2019-04-02

Family

ID=61238977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711168047.9A Active CN107740054B (zh) 2017-11-21 2017-11-21 一种CrAlTiN涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN107740054B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882386A (zh) * 2014-04-16 2014-06-25 上海金顶涂层科技有限公司 一种具有超高硬度的基体保护涂层及其制备方法
CN105861997B (zh) * 2016-06-15 2018-07-17 济宁学院 TiCrN/MoS2多元减摩润滑涂层刀具及其制备工艺
CN105925941B (zh) * 2016-06-15 2018-09-28 济宁学院 TiAlCrN+MoS2/Ti/Al/Cr组合润滑涂层刀具及其制备工艺
CN106987816B (zh) * 2017-04-06 2019-07-02 天津职业技术师范大学 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺

Also Published As

Publication number Publication date
CN107740054A (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
CN106893986B (zh) 一种高硬度AlCrN纳米复合涂层及其制备工艺
CN107201499B (zh) 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法
CN107916402B (zh) 一种AlCrTiSiCN涂层结构及其制备方法
CN106987816B (zh) 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺
CN100506527C (zh) 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法
CN108642449A (zh) 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法
CN103046001B (zh) 一种非晶碳复合涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN108517487B (zh) 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法
CN103273687A (zh) TiSiN+ZrSiN复合纳米涂层刀具及其制备方法
CN105839054A (zh) 一种CrAlTiSiN刀具保护性涂层及其制备方法
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
CN108251797A (zh) 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法
CN109097743A (zh) 一种超硬W-Cr-Al-Ti-N纳米梯度多层膜及其制备方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
Liu et al. Influences of modulation period on structure and properties of AlTiSiN/AlCrSiN nanocomposite multilayer coatings
CN107190233A (zh) 一种具有超高硬度的Si掺杂纳米复合涂层的制备工艺
CN107604312B (zh) 一种表面为(Ti,Al)N多层隔热耐磨超厚涂层的活塞及其制备方法和应用
CN103305789B (zh) 一种CrAlN/ZrO2纳米涂层及其制备方法
CN100408719C (zh) 一种氧化铬复合涂层的制备方法
CN103938157B (zh) 一种ZrNbAlN超晶格涂层及制备方法
CN113930722A (zh) 高红硬性AlCrN/AlTiN纳米多层涂层及其制备方法
CN107099778B (zh) 一种铝合金干式加工用非晶刀具涂层及其制备方法
CN107130221B (zh) 一种硬质合金多层梯度稀土复合涂层的制备方法
CN107740054B (zh) 一种CrAlTiN涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant