CN107737950B - 八面体结构的均匀分布式FeNi纳米晶体的制备方法 - Google Patents
八面体结构的均匀分布式FeNi纳米晶体的制备方法 Download PDFInfo
- Publication number
- CN107737950B CN107737950B CN201711005665.1A CN201711005665A CN107737950B CN 107737950 B CN107737950 B CN 107737950B CN 201711005665 A CN201711005665 A CN 201711005665A CN 107737950 B CN107737950 B CN 107737950B
- Authority
- CN
- China
- Prior art keywords
- feni
- uniformly distributed
- octahedral structure
- nanocrystal
- nanocrystals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910002555 FeNi Inorganic materials 0.000 title claims abstract description 36
- 239000002159 nanocrystal Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 10
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims abstract description 8
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 claims abstract 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims 1
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 10
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 239000003638 chemical reducing agent Substances 0.000 abstract description 6
- 238000006722 reduction reaction Methods 0.000 abstract description 5
- 239000004094 surface-active agent Substances 0.000 abstract description 4
- 239000002114 nanocomposite Substances 0.000 abstract description 2
- 239000002243 precursor Substances 0.000 abstract 1
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002086 nanomaterial Substances 0.000 description 7
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 229910003271 Ni-Fe Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229960000935 dehydrated alcohol Drugs 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0553—Complex form nanoparticles, e.g. prism, pyramid, octahedron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种八面体结构的均匀分布式FeNi双金属纳米晶体的制备方法。本发明采用一步化学还原法,以十七酸作为表面活性剂,以Ni(acac)2和FeCl2为前驱体,并以Tl(i‑Bu)3和BTM作为双还原剂体系成功合成出了八面体结构的FeNi双金属纳米晶体(6.3±0.5 nm),呈现窄尺寸分布,同时Fe和Ni原子在合金中是均匀分布的。该均匀分布式材料是基于其作为纳米复合材料有着广阔的应用前景。
Description
技术领域
本发明涉及八面体结构的均匀分布式FeNi纳米晶体纳米材料技术领域,尤其涉及到八面体结构的均匀分布式FeNi纳米晶体的制备方法。
背景技术
众所周知,纳米技术是通过操纵分子、原子以及原子团、分子团来改变物质的微观结构,从而使其具有与体相材料不同的物理、化学性能。自纳米技术的概念提出以来,其发展大致经历了三个阶段:开始阶段主要是在实验室探索纳米颗粒粉体的制备,其研究主要集中在单一材料和单相材料;其次阶段便是探索并利用纳米材料独特的物理、化学性质并设计复合纳米材料;最后一个阶段便是将研究重点放在了纳米组装体系以及人工组装合成纳米结构材料,这一阶段的特点便是人们按照自己的意愿设计和创造新的体系。正是由于纳米级别的材料和相关技术具有其独特的性质,因此被誉为21世纪的新科技。
由于纳米材料的特殊性,国内外均对其进行了广泛深入的研究。但毫无疑问,纳米技术领域的研究、开发以及相关应用的关键便是纳米颗粒的制备技术。特别是具有特殊结构并呈现出窄尺寸分布的形貌可控纳米复合材料的制备技术更是重点。
本研究利用一步化学还原法合成出了一种八面体结构的均匀分布式FeNi双金属纳米晶体。这种具有特殊结构及形貌的FeNi纳米材料在功能型复合材料方面具有很大的应用价值。
发明内容
本发明采用一步化学还原法,以十七酸作为表面活性剂,以Ni(acac)2和FeCl2为前驱体,并以Tl(i-Bu)3和BTM作为双还原剂体系成功合成出了八面体结构的FeNi双金属纳米晶体(6.3 ± 0.5 nm),呈现窄尺寸分布,同时Fe和Ni原子在合金中是均匀分布的。
本发明采用如下的技术方案:
本发明的八面体结构的均匀分布式FeNi双金属纳米晶体的制备方法的具体步骤如下:
(1)将30.0g的十七酸加入到三颈烧瓶中,搅拌的条件下加热到70℃并通入氩气流。
(2)加入0.20g Ni(acac)2和0.010g FeCl2,同(1)中相同条件进行加热。
(3)在(2)中加入0.030g Tl(i-Bu)3和0.13g BTM,然后不断地搅拌。升温到180℃并保持60min,随后将溶液冷却至室温,加入30.0ml的无水乙醇,再利用离心的方法将产物分离出来,并用无水己烷将产物洗涤几次。
(4)将八面体结构的均匀分布式FeNi纳米晶体重新分散在正己烷当中,形成稳定的胶体状悬浮液。
步骤(1)中十七酸的量为30.0g。
步骤(1)中加热温度为70℃。
步骤(2)中Ni(acac)2量为0.2g。
步骤(2)中FeCl2的量为0.010g。
步骤(3)中Tl(i-Bu)3的量为0.030g。
步骤(3)中BTM的量为0.13g。
步骤(3)中反应温度为180℃。
步骤(3)中反应时间为60min
本发明的积极效果如下:
1)本发明采用一步化学还原法,以十七酸作为表面活性剂,以Ni(acac)2和FeCl2为前驱体,并以Tl(i-Bu)3和BTM作为双还原剂体系成功合成出了八面体结构的FeNi双金属纳米晶体(6.3 ± 0.5 nm),呈现窄尺寸分布,同时Fe和Ni原子在合金中是均匀分布的。
2)与其它纳米材料相比,本发明合成的八面体结构的均匀分布式FeNi双金属纳米晶体不仅尺寸小(仅为6.3 ± 0.5 nm)并且其形貌可控,同时呈现出窄尺寸分布。
3)本发明合成的八面体结构的均匀分布式FeNi双金属纳米晶体对于其它形貌以及尺寸可控纳米复合材料的制备具有重要的意义。
附图说明
图1是实施例1制备八面体结构的均匀分布式FeNi纳米晶体的STEM图,其中图1(b)-图1(d)是实施例1制备八面体结构的均匀分布式FeNi纳米晶体的Fe、Ni和重叠部分的元素图;图1 (e)是实施例1制备八面体结构的均匀分布式FeNi纳米晶体的HR-STEM照片;图1(f)是实施例1制备八面体结构的均匀分布式FeNi纳米晶体的尺寸分布图;图1(g)是实施例1制备八面体结构的均匀分布式FeNi纳米晶体的FFT图。
图2是实施例1制备八面体结构的均匀分布式FeNi纳米晶体的XRD谱图。
图3是实施例1制备八面体结构的均匀分布式FeNi纳米晶体的XPS谱图。
具体实施方式
下面的实施例是对本发明的进一步详细描述。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
为实现上述目的,具体八面体结构的均匀分布式FeNi纳米晶体的制备步骤为:
1)将30.0g的十七酸加入到三颈烧瓶中,搅拌的条件下加热到70℃并通入氩气流。
2)加入0.20g Ni(acac)2和0.010g FeCl2,同(1)中相同条件进行加热。
3)在(2)中加入0.030g Tl(i-Bu)3和0.13g BTM,然后不断地搅拌。升温到180℃并保持60min,随后将溶液冷却至室温,加入30.0ml的无水乙醇,再利用离心的方法将产物分离出来,并用无水己烷将产物洗涤几次。
4)将八面体结构的均匀分布式FeNi纳米晶体重新分散在正己烷当中,形成稳定的胶体状悬浮液。
本发明的八面体结构的均匀分布式FeNi纳米晶体的性能:
图1表明成功制备出了八面体结构的均匀分布式FeNi纳米晶体。FeNi纳米晶体的平均粒径为6.3±0.5nm(图1a)。选择的单个纳米晶体的高分辨率扫描电子显微镜(HR-STEM)和快速傅里叶变换(FFT)图像证实了它的单晶性质(图1e和图1f)。HR-STEM图像显示出八面体结构的均匀分布式FeNi纳米晶体的晶格间距为0.203nm,对应于其相应的{111}晶面(图1所示) 。ICP-MS的分析结果表明,八面体结构的FeNi纳米晶体中Fe与Ni的原子比为1:1。同时,元素的面分布的结果也表明Fe和Ni原子在合金中是均匀分布的(图1b-图1d)。
从八面体结构的均匀分布式FeNi纳米晶体的XRD图可以看出,位于Fe(JCPDF -06- 0696)和Ni(JCPDF - 04-0850)标准峰之间的衍射表明形成了Ni-Fe合金。通过XPS的测量也能证实Ni-Fe合金的形成(图2)。
从XPS图中我们可以看出金属Ni和金属Fe共存于FeNi纳米晶体。Fe和Ni的结合能(BE)分别为706.6 (Fe2p3/2)、 720.0 (Fe2p1/2)、852.6(Ni2p3/2)、 870.1 (Ni2p1/2) eV。没有观察到金属Fe或Ni的氧化。与标准的Fe和Ni金属相比较,FeNi纳米晶体中的Fe2p3/2的结合能降低了0.2eV,而其中的Ni2p3/2的结合能升高了0.3eV(图3),这是因为八面体结构的均匀分布式FeNi纳米晶体中形成了Ni–Fe键。
合成八面体结构的均匀分布式FeNi双金属纳米晶体这种合成方法,将有助于广大科研工作者对于其他结构和尺寸可控的纳米材料的开发以及研究,无疑该方法在纳米复合材料方面具有重要的应用价值。
本发明采用一步化学还原法,以十七酸作为表面活性剂,以Ni(acac)2和FeCl2为前驱体,并以Tl(i-Bu)3和BTM作为双还原剂体系成功合成出了八面体结构的FeNi双金属纳米晶体(6.3 ± 0.5 nm)。同时Fe和Ni原子在合金中是均匀分布的。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (1)
1.一种八面体结构的均匀分布式FeNi纳米晶体的制备方法
其特征在于:
所制备方法的具体步骤如下:
(1)将30.0g十七酸加入到三颈烧瓶中,搅拌的条件下加热到70℃并通入氩气流;
(2)加入0.2g Ni(acac)2和0.010g FeCl2,搅拌的条件下加热到70℃并通入氩气流;
(3)在步骤(2)所制备的溶液中加入0.030g Tl(i-Bu)3和0.13gBTM,然后不断地搅拌,升温到180℃并保持60min,随后将溶液冷却至室温,加入30.0ml的无水乙醇,再利用离心的方法将产物分离出来,并用无水己烷将产物洗涤几次;(4)将八面体结构的均匀分布式FeNi纳米晶体重新分散在正己烷当中,形成稳定的胶体状悬浮液。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711005665.1A CN107737950B (zh) | 2017-10-25 | 2017-10-25 | 八面体结构的均匀分布式FeNi纳米晶体的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711005665.1A CN107737950B (zh) | 2017-10-25 | 2017-10-25 | 八面体结构的均匀分布式FeNi纳米晶体的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107737950A CN107737950A (zh) | 2018-02-27 |
CN107737950B true CN107737950B (zh) | 2019-05-10 |
Family
ID=61236994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711005665.1A Expired - Fee Related CN107737950B (zh) | 2017-10-25 | 2017-10-25 | 八面体结构的均匀分布式FeNi纳米晶体的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107737950B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003241424A (ja) * | 2002-02-14 | 2003-08-27 | Canon Inc | 磁性トナー、画像形成装置及びプロセスカートリッジ |
CN101786171A (zh) * | 2010-01-22 | 2010-07-28 | 浙江师范大学 | 八面体镍纳微材料的制备方法 |
CN104289724A (zh) * | 2014-09-15 | 2015-01-21 | 童东革 | 一种海胆状无定形Ni-B合金纳米材料的制备方法 |
CN106435739A (zh) * | 2016-02-03 | 2017-02-22 | 苏州星烁纳米科技有限公司 | 一种纳米晶体的制备方法 |
CN107051370A (zh) * | 2017-05-24 | 2017-08-18 | 成都理工大学 | 非晶态o掺杂的bn纳米片的制备方法 |
-
2017
- 2017-10-25 CN CN201711005665.1A patent/CN107737950B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003241424A (ja) * | 2002-02-14 | 2003-08-27 | Canon Inc | 磁性トナー、画像形成装置及びプロセスカートリッジ |
CN101786171A (zh) * | 2010-01-22 | 2010-07-28 | 浙江师范大学 | 八面体镍纳微材料的制备方法 |
CN104289724A (zh) * | 2014-09-15 | 2015-01-21 | 童东革 | 一种海胆状无定形Ni-B合金纳米材料的制备方法 |
CN106435739A (zh) * | 2016-02-03 | 2017-02-22 | 苏州星烁纳米科技有限公司 | 一种纳米晶体的制备方法 |
CN107051370A (zh) * | 2017-05-24 | 2017-08-18 | 成都理工大学 | 非晶态o掺杂的bn纳米片的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107737950A (zh) | 2018-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials | |
He et al. | Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres | |
Xian et al. | Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route | |
Luo et al. | Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method | |
Chen et al. | Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route | |
Farhadi et al. | Co3O4 nanoplates: Synthesis, characterization and study of optical and magnetic properties | |
Kant et al. | High coercivity α-Fe 2 O 3 nanoparticles prepared by continuous spray pyrolysis | |
Lei et al. | A general strategy for synthesizing high-coercivity L1 0-FePt nanoparticles | |
Farhadi et al. | Synthesis and characterization of Co3O4 nanoplates by simple thermolysis of the [Co (NH3) 6] 2 (C2O4) 3· 4H2O complex | |
Zhu et al. | MOF-derived multicore-shell Fe3O4@ Fe@ C composite: an ultrastrong electromagnetic wave absorber | |
JP7008373B2 (ja) | 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法 | |
Meng et al. | Preparation of FeCo-, FeNi-and NiCo-alloy coated cenosphere composites by heterogeneous precipitation | |
Zhong et al. | Synthesis of nanocrystalline Ni–Zn ferrite powders by refluxing method | |
Ganga et al. | Facile synthesis of porous copper oxide nanostructure using copper hydroxide acetate precursor | |
Park et al. | Synthesis of spherical and cubic magnetic iron oxide nanocrystals at low temperature in air | |
Zhao et al. | One-pot synthesis of magnetite nanopowder and their magnetic properties | |
Zamanpour et al. | Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method | |
Ali | Sol–gel synthesis of NiFe 2 O 4 with PVA matrices and their catalytic activities for one-step hydroxylation of benzene into phenol | |
Moghim et al. | Fabrication and structural characterization of multi-walled carbon nanotube/Fe 3 O 4 nanocomposite | |
Khansari et al. | Synthesis and characterization of Co 3 O 4 nanoparticles by thermal treatment process | |
CN107737950B (zh) | 八面体结构的均匀分布式FeNi纳米晶体的制备方法 | |
Cao et al. | Ordered mesoporous CoFe 2 O 4 nanoparticles: molten-salt-assisted rapid nanocasting synthesis and the effects of calcining heating rate | |
Tan et al. | Facial fabrication of hierarchical 3D Sisal-like CuO/ZnO nanocomposite and its catalytic properties | |
Chen et al. | Preparation of NiO and CoO nanoparticles using M2+-oleate (M= Ni, Co) as precursor | |
Raj et al. | Compositional, microstructural, and vibrational characteristics of synthesized V2O5 microspheres with nanorod formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190510 Termination date: 20211025 |