CN107732033A - 一种有利于电池散热的聚多巴胺改性涂层 - Google Patents

一种有利于电池散热的聚多巴胺改性涂层 Download PDF

Info

Publication number
CN107732033A
CN107732033A CN201710572989.7A CN201710572989A CN107732033A CN 107732033 A CN107732033 A CN 107732033A CN 201710572989 A CN201710572989 A CN 201710572989A CN 107732033 A CN107732033 A CN 107732033A
Authority
CN
China
Prior art keywords
dopamine
poly
coating
battery
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710572989.7A
Other languages
English (en)
Inventor
王丹
赵中令
于力娜
张克金
韩建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAW Group Corp
Original Assignee
FAW Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FAW Group Corp filed Critical FAW Group Corp
Priority to CN201710572989.7A priority Critical patent/CN107732033A/zh
Publication of CN107732033A publication Critical patent/CN107732033A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种有利于电池散热的聚多巴胺改性涂层,其特征在于:多巴胺溶解在水性溶液中,且pH值介于7.5~11之间,经自聚合生成;各种主要物质二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺在聚多巴胺涂层中所占的质量分数分别为0~10%:1%~5%:0~20%:0~99.99%。涂层基底为无机粒子、金属材料和有机材料;其中涂层由多巴胺溶液自聚合在基底上产生,或由多巴胺溶液在溶液中自聚合多巴胺后,经离心、静置、过滤、清洗、烘干后,得到聚多巴胺粉体颗粒,然后将粉体颗粒溶解在浆料中,进行涂覆。其利用生成含有二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺的粉末颗粒具有吸热特性,将其制成涂层,涂覆与隔膜、极片及电池外壳的内部,利用聚多巴胺涂层的吸热导热作用,有效散失电池内部的热量,从而达到散热的目的。

Description

一种有利于电池散热的聚多巴胺改性涂层
技术领域
本发明涉及一种有利于电池散热的聚多巴胺改性涂层,主要应用于电池极片、铝塑膜、钢壳、铝壳和塑料壳电池的涂层及电池中所用无机粒子的包覆涂层;属于新能源技术领域。
背景技术
混合动力车、纯电动汽车及燃料电池车等节能及新能源汽车成为比较好的发展途径。然而,安全可靠性、寿命、续驶里程、成本以及公共配套设施等极大限制了新能源汽车的快速发展,这其中尤以动力电池的技术突破及规模化应用最为关键。但是,电池在大电流过充过放电过程中,由于离子在隔膜中穿行的过程中,在隔膜两边分别进行电化学反应,并产生热量。如果电池内部的热量不能得到有效散失的话,电池内部温度进一步升高,温度升高会隔膜的孔径变小,离子传输变慢,且易造成电池内电流传输效率不一致,温度进一步升高。进一步地,当隔膜温度达到135℃后,隔膜闭孔,电池的充放电停止。当电池内部温度达到165℃时,隔膜熔融,正负极直接接触,导致电池燃烧直至爆炸。
为了解决电池内部热失控的问题,人们进行了一系列研究,一方面,对现有隔膜改性,提高隔膜机械性能和耐热性能,例如隔膜表面涂覆无机粒子或者聚合物与无机粒子制成复合材料(例如US 8409746 B2,EP 2528139 A2,EP 2528142 A2,US7691529 B2,US20130065132 A1),经常用的无机粒子有Al2O3、SiO2、BaTiO3、MgO等。另一方面,对现有电池中添加小分子聚合物的添加剂,即STOBA。专利CN 101807724提供了一种具有热动保护作用的锂电池,该电池采用的是双马来酰亚胺寡聚物作为热动保护剂提高电池的安全性。其主要机理是,作为一种添加成分,它并不参与电池反应,但电池达到一定温度后,聚合物会包覆在正负活性物质上,离子传递停止。但是,这些改进措施或者改变材料的耐热性能,或者从根本上停止电池的充放电过程,都没有从根本上导出电池中的热量。
发明内容
本发明的目的在于提供一种有利于电池散热的聚多巴胺改性涂层,针对电池内部产生的热量,由于多巴胺单体在碱性水性溶液中极易发生自聚合反应,利用生成含有二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺的粉末颗粒具有吸热特性,将其制成涂层,涂覆与隔膜、极片及电池外壳的内部,利用聚多巴胺涂层的吸热导热作用,有效散失电池内部的热量,从而达到散热的目的。
本发明的技术方案是这样实现的:一种有利于电池散热的聚多巴胺改性涂层,其特征在于:多巴胺溶解在水性溶液中,且pH值介于7.5~11之间,经自聚合生成;各种主要物质二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺在聚多巴胺涂层中所占的质量分数分别为0~10 %:1 %~5 %:0~20 %:0~99.99 %。涂层基底为无机粒子、金属材料和有机材料;其中涂层由多巴胺溶液自聚合在基底上产生,或由多巴胺溶液在溶液中自聚合多巴胺后,经离心、静置、过滤、清洗、烘干后,得到聚多巴胺粉体颗粒,然后将粉体颗粒溶解在浆料中,进行涂覆。
所述的多巴胺在水性溶液中的含量为1 mmol•L-1~1000 mmol•L-1
所述的水性溶液中包含但不仅限于甲醇,乙醇,异丙醇,丙酮。
所述的聚多巴胺改性涂层可以应用到软包电池的极片、隔膜或者铝塑膜表面含有聚多巴胺改性涂层,即内表面或者外表面或者同时包括内外表面;该软包电池的极片、隔膜或者铝塑膜的一组件上含有聚多巴胺涂层,或在全部组件上均含有聚多巴胺涂层,涂层厚度小于20 um。
本发明的积极效果是:将多巴胺聚合物涂覆在隔膜中,有效提高隔膜的闭孔温度。将聚多巴胺涂层涂覆在极片上,一方面有效的提高活性物质与极片的粘附性,另一方面,降低电池内部温度1℃~5℃。将聚多巴胺涂覆在电池外壳内部,电池外壳温度不会明显升高。
附图说明:
图1 改性PP隔膜的电化学窗口。
图2 隔膜改性前后的TGA曲线
图3 隔膜改性前后的DSC曲线。
图4 聚多巴胺涂层可能的结构式。
图5 聚多巴胺粉体颗粒TG曲线。
图6 聚多巴胺粉体颗粒DSC曲线。
图7 聚多巴胺粉体颗粒TG-质谱曲线。
具体实施方式
下面结合附图对本发明的实施方式进行描述,所述的实施例只是对本发明的权利要求的具体描述,权利要求包括但不限于所述的实施例内容。
实施例1
首先,称取一定量的盐酸多巴胺(189.7 g/mol,Aladdin),并将其溶解于三羟甲基氨基甲烷(化学纯,Aladdin)、盐酸(化学纯,国药沈阳试剂厂)、甲醇(化学纯,国药沈阳试剂厂)和超纯水(电导率小于18 MΩ-1),按一定比例配置成的pH=8.51的弱碱性溶液中,制备浓度为10 mmol/L的多巴胺溶液。然后,将Celgard公司的PP隔膜(Celgard 2500,25 μm)作为被改性有机材料浸渍其中,室温,24 h后取出,去离子水冲洗2 h。最后,在50℃真空环境下,烘干8 h。聚多巴胺改性隔膜的电化学窗口显示(图1),该物质可以在磷酸铁锂电池中使用。从图2、3隔膜改性前后的TGA和DSC数据看,聚多巴胺具有较高的耐热温度,且隔膜的闭口温度增加,改性层中二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺所占的质量分数分别为0:1 %:0:99 %。
实施例2
首先,称取一定量的盐酸多巴胺(189.7 g/mol,Aladdin),并将其溶解于三羟甲基氨基甲烷(化学纯,Aladdin)、盐酸(化学纯,国药沈阳试剂厂)、乙醇(化学纯,国药沈阳试剂厂)和超纯水(电导率小于18 MΩ-1),按一定比例配置成的pH=7.5的弱碱性溶液中,制备浓度为1000 mmol/L的多巴胺溶液。将上述溶液在室温下静置24 h后,离心、静置、过滤、清洗、取滤饼烘干得到聚多巴胺固体颗粒,聚多巴胺粉体颗粒的结构式如图4所示。干燥后粉体的相关测试结果如图5、图6和图7所示,聚多巴胺颗粒中二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺所占的质量分数分别为10 %:5 %:20 %:65%。
实施例3
首先,称取一定量的盐酸多巴胺(189.7 g/mol,Aladdin),并将其溶解于三羟甲基氨基甲烷(化学纯,Aladdin)、盐酸(化学纯,国药沈阳试剂厂)、异丙醇(化学纯,国药沈阳试剂厂)和超纯水(电导率小于18 MΩ-1),按一定比例配置成的pH=11的碱性溶液中,制备浓度为1 mmol/L的多巴胺溶液。然后,将铝塑膜作为被改性有机材料浸渍其中,室温,24 h后取出,去离子水冲洗2 h。最后,在50℃真空环境下,烘干8 h。得到的聚多巴胺改性铝塑膜导热性提高12%,聚多巴胺颗粒中二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺所占的质量分数分别为5%:3 %:12%:80%。
实施例4
首先,称取一定量的盐酸多巴胺(189.7 g/mol,Aladdin),并将其溶解于三羟甲基氨基甲烷(化学纯,Aladdin)、盐酸(化学纯,国药沈阳试剂厂)、丙酮(化学纯,国药沈阳试剂厂)和超纯水(电导率小于18 MΩ-1),按一定比例配置成的pH=11的碱性溶液中,制备浓度为1mmol/L的多巴胺溶液。然后,将钢制电池壳作为被改性金属材料浸渍其中,室温,24 h后取出,去离子水冲洗2 h。最后,在50℃真空环境下,烘干8 h。得到的聚多巴胺改性电池壳导热性提高30%,聚多巴胺颗粒中二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺所占的质量分数分别为8%:2 %:10%:80%。
实施例5
首先,称取一定量的盐酸多巴胺(189.7 g/mol,Aladdin),并将其溶解于三羟甲基氨基甲烷(化学纯,Aladdin)、盐酸(化学纯,国药沈阳试剂厂)、异丙醇(化学纯,国药沈阳试剂厂)和超纯水(电导率小于18 MΩ-1),按一定比例配置成的pH=9的碱性溶液中,制备浓度为50 mmol/L的多巴胺溶液,同时加入中溶液质量5%的氧化铝颗粒,然后,将上述溶液在室温下静置24 h后,离心、静置、过滤、清洗、取滤饼烘干得到聚多巴胺改性无机粒子,最后,将该粒子应用于动力电池隔膜的陶瓷化改性,得到的陶瓷化隔膜的导热系数提高20%,聚多巴胺颗粒中二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺所占的质量分数分别为2%:2%:6 %:90%。
实施例6
首先,称取一定量的盐酸多巴胺(189.7 g/mol,Aladdin),并将其溶解于三羟甲基氨基甲烷(化学纯,Aladdin)、盐酸(化学纯,国药沈阳试剂厂)、乙醇(化学纯,国药沈阳试剂厂)和超纯水(电导率小于18 MΩ-1),按一定比例配置成的pH=8.5的弱碱性溶液中,制备浓度为500 mmol/L的多巴胺溶液。将上述溶液在室温下静置24 h后,离心、静置、过滤、清洗、取滤饼烘干得到聚多巴胺固体颗粒。聚多巴胺颗粒中二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺所占的质量分数分别为7 %:3 %:10 %:80 %。将上述颗粒溶解在50%的PVDF-HFP丙酮溶液中,其中聚多巴胺颗粒浓度为60 %。将浆料喷涂在电池外包装的内外表面。

Claims (4)

1.一种有利于电池散热的聚多巴胺改性涂层,其特征在于:多巴胺溶解在水性溶液中,且pH值介于7.5~11之间,经自聚合生成;各种主要物质二羟吲哚、吲哚二酮、多巴胺单体、聚多巴胺在聚多巴胺涂层中所占的质量分数分别为0~10 %:1 %~5 %:0~20 %:0~99.99 %;涂层基底为无机粒子、金属材料和有机材料;其中涂层由多巴胺溶液自聚合在基底上产生,或由多巴胺溶液在溶液中自聚合多巴胺后,经离心、静置、过滤、清洗、烘干后,得到聚多巴胺粉体颗粒,然后将粉体颗粒溶解在浆料中,进行涂覆。
2.根据权利要求1中所述的一种有利于电池散热的聚多巴胺改性涂层,其特征在于所述的多巴胺在水性溶液中的含量为1 mmol•L-1~1000 mmol•L-1
3.根据权利要求1中所述的一种有利于电池散热的聚多巴胺改性涂层,其特征在于所述的水性溶液中包含但不仅限于甲醇,乙醇,异丙醇,丙酮。
4.根据权利要求1中所述的一种有利于电池散热的聚多巴胺改性涂层,其特征在于所述的聚多巴胺改性涂层可以应用到软包电池的极片、隔膜或者铝塑膜表面含有聚多巴胺改性涂层,即内表面或者外表面或者同时包括内外表面;该软包电池的极片、隔膜或者铝塑膜的一组件上含有聚多巴胺涂层,或在全部组件上均含有聚多巴胺涂层,涂层厚度小于20um。
CN201710572989.7A 2017-07-14 2017-07-14 一种有利于电池散热的聚多巴胺改性涂层 Pending CN107732033A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710572989.7A CN107732033A (zh) 2017-07-14 2017-07-14 一种有利于电池散热的聚多巴胺改性涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710572989.7A CN107732033A (zh) 2017-07-14 2017-07-14 一种有利于电池散热的聚多巴胺改性涂层

Publications (1)

Publication Number Publication Date
CN107732033A true CN107732033A (zh) 2018-02-23

Family

ID=61201660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710572989.7A Pending CN107732033A (zh) 2017-07-14 2017-07-14 一种有利于电池散热的聚多巴胺改性涂层

Country Status (1)

Country Link
CN (1) CN107732033A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600796A (zh) * 2019-10-24 2019-12-20 安徽省聚科石墨烯科技股份公司 一种石墨烯辅助散热的电池
CN111725511A (zh) * 2020-06-29 2020-09-29 东莞市魔方新能源科技有限公司 一种锂离子二次电池极片及锂离子二次电池
CN112387563A (zh) * 2020-11-06 2021-02-23 哈尔滨工业大学 一种在可降解金属表面制备聚多巴胺涂层的方法
TWI752384B (zh) * 2019-12-05 2022-01-11 明基材料股份有限公司 陶瓷隔離膜及其製備方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130127201A (ko) * 2012-05-14 2013-11-22 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
CN104051695A (zh) * 2014-06-20 2014-09-17 江苏大学 锂硫电池用聚合物修饰隔膜、其制备方法及锂硫电池
CN106654125A (zh) * 2017-01-24 2017-05-10 厦门大学 通过多巴胺复合粘结剂制备改性陶瓷隔膜的方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130127201A (ko) * 2012-05-14 2013-11-22 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
CN104051695A (zh) * 2014-06-20 2014-09-17 江苏大学 锂硫电池用聚合物修饰隔膜、其制备方法及锂硫电池
CN106654125A (zh) * 2017-01-24 2017-05-10 厦门大学 通过多巴胺复合粘结剂制备改性陶瓷隔膜的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王丹: "聚烯烃隔膜多巴胺改性及PVDF-HFP陶瓷隔膜制备和性能研究", 《CNKI博士学位论文全文数据库》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600796A (zh) * 2019-10-24 2019-12-20 安徽省聚科石墨烯科技股份公司 一种石墨烯辅助散热的电池
TWI752384B (zh) * 2019-12-05 2022-01-11 明基材料股份有限公司 陶瓷隔離膜及其製備方法
CN111725511A (zh) * 2020-06-29 2020-09-29 东莞市魔方新能源科技有限公司 一种锂离子二次电池极片及锂离子二次电池
CN112387563A (zh) * 2020-11-06 2021-02-23 哈尔滨工业大学 一种在可降解金属表面制备聚多巴胺涂层的方法

Similar Documents

Publication Publication Date Title
Ma et al. Liquid‐free all‐solid‐state zinc batteries and encapsulation‐free flexible batteries enabled by in situ constructed polymer electrolyte
CN107732033A (zh) 一种有利于电池散热的聚多巴胺改性涂层
Kim et al. High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer
EP4050710A1 (en) Diaphragm and high-voltage battery comprising same
Zhai et al. 30 Li+‐Accommodating Covalent Organic Frameworks as Ultralong Cyclable High‐Capacity Li‐Ion Battery Electrodes
CN109980162B (zh) 一种聚磷腈包覆陶瓷颗粒及其在锂离子电池隔膜中的应用
CN105470515B (zh) 一种安全型锂离子动力电池正极及含有该正极的锂离子电池
Sharma et al. Magnesium ion‐conducting gel polymer electrolyte nanocomposites: Effect of active and passive nanofillers
Kang et al. Silicon composite electrodes with dynamic ionic bonding
JP6175565B2 (ja) 電池隔膜及びその製造方法
Hu et al. Janus Electrolyte with Modified Li+ Solvation for High‐Performance Solid‐State Lithium Batteries
TW201603376A (zh) 蓄電裝置電極用黏合劑
TW201014016A (en) Sodium secondary battery
Liao et al. Novel core–shell PS‐co‐PBA@ SiO2 nanoparticles coated on PP separator as “thermal shutdown switch” for high safety lithium‐ion batteries
Zhang et al. Polypropylene separator coated with a thin layer of poly (lithium acrylate‐co‐butyl acrylate) for high‐performance lithium‐ion batteries
Kim et al. Freestanding silicon microparticle and self-healing polymer composite design for effective lithiation stress relaxation
Lee et al. Dopamine‐conjugated Poly (acrylic acid) Blended with an Electrically Conductive Polyaniline Binder for Silicon Anode
Kil et al. Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries
Yu et al. Sponge‐Like Porous‐Conductive Polymer Coating for Ultrastable Silicon Anodes in Lithium‐Ion Batteries
CN105958112A (zh) 一种无隔膜的锂离子电池卷芯及其制备方法
TW201720847A (zh) 蓄電裝置電極用黏合劑
WO2011078356A1 (ja) 非水溶媒二次電池に用いる負極集電体用銅箔、その製造方法及び非水溶媒二次電池負極電極の製造方法
Xu et al. High‐performance Al2O3/PAALi composite separator prepared by water‐based slurry for high‐power density lithium‐based battery
CN111244368A (zh) 一种结合性好的陶瓷隔膜及其制备方法以及包含该陶瓷隔膜的锂离子电池
CN115224438B (zh) 一种复合涂覆锂离子电池聚乙烯隔膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180223

RJ01 Rejection of invention patent application after publication