CN107727338B - 一种基于车桥耦合系统的桥梁损伤诊断方法 - Google Patents

一种基于车桥耦合系统的桥梁损伤诊断方法 Download PDF

Info

Publication number
CN107727338B
CN107727338B CN201710403379.4A CN201710403379A CN107727338B CN 107727338 B CN107727338 B CN 107727338B CN 201710403379 A CN201710403379 A CN 201710403379A CN 107727338 B CN107727338 B CN 107727338B
Authority
CN
China
Prior art keywords
bridge
trolley
vehicle
vertical
acceleration responsive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710403379.4A
Other languages
English (en)
Other versions
CN107727338A (zh
Inventor
阳洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
PowerChina Chongqing Engineering Corp Ltd
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201710403379.4A priority Critical patent/CN107727338B/zh
Publication of CN107727338A publication Critical patent/CN107727338A/zh
Application granted granted Critical
Publication of CN107727338B publication Critical patent/CN107727338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明属于桥梁工程检测技术领域,具体涉及一种基于车桥耦合系统的桥梁损伤诊断方法,包括以下具体步骤:a.两辆检测车从桥梁梁端位置出发向1#桥台方向通过桥梁,信号采集子系统同步采集小车各次通过桥梁过程中的竖向加速度响应;b.两辆检测车从桥梁另一梁端出发向向0#桥台方向通过桥梁,信号采集子系统同步采集小车各次通过桥梁过程中的竖向加速度响应;c.两车可分别在桥梁上通过牵引车拖动通过桥梁,也可并联或串联通过牵引车同时拖动通过桥梁;d.利用步骤a与(或)步骤b所测得小车竖向加速度响应,获得对应小车竖向位移响应。本发明作为桥梁常规检测方法,具有安全经济、方便便捷等特点,能够简便、高效且高精度地检测桥梁损伤。

Description

一种基于车桥耦合系统的桥梁损伤诊断方法
技术领域
本发明属于桥梁工程检测技术领域,具体涉及一种基于车桥耦合系统的桥梁损伤诊断方法。
背景技术
随着国民经济的快速发展和城市化进程的不断加深,国家对交通基础设施的建设越来越重视。桥梁结构作为连接交通工程的“咽喉”,其重要性不言而喻。桥梁结构作为“生命线”工程中的重要一环,对正常的交通运输以及防灾救灾至关重要,因此对其安全性、耐久性与正常使用功能的要求也越来越高。但一方面,在桥梁结构的施工过程中,由于材料的不均匀性和施工精度等问题,会使得实际结构的动力特性和设计预想存在偏差;另一方面,在桥梁的运营过程中,会受到地震、强风、车辆超载等因素的影响,加上材料自身性能的不断退化、老化,结构构件会出现不同程度的损伤,如果这些损伤未被及时发现并修复,那么随着损伤积累,结构的正常使用就会受到影响,严重时甚至会引起结构的断裂、倒塌,对人民群众的生命财产安全造成威胁。所以,在桥梁结构等工程项目中,无论施工阶段,还是运营服役阶段,都需要对其定期检测,了解结构的性态,并以此为基础,进一步实现结构的健康监测。
近些年来,国内外发生的一些工程事故,更进一步说明了对结构进行损伤检测的必要性。除去可能存在的设计不当、施工质量问题外,有很大部分的原因在于其桥梁在服役阶段,并无及时的检测发现可能存在的安全隐患,进而采取相应的维护措施。但现行的检测工作往往需要监测人员定期对桥梁进行检测,且这种人工检测工作往往具有盲目性,工作量巨大;或者在桥梁结构上安装传感器,通过采集信号对桥梁状态进行评定,这样需要大量传感器布置,且面临着海量的数据处理工作,极大地耗费了人力物力。所以急需一种可以快速、有效、经济的方法对桥梁的动力特性进行测定,同时也可以在一定程度上对桥梁是否损伤、哪里损伤、损伤多少进行评定,来指导、协助桥梁的检测维护人员尽早发现桥梁病害,制定养护方案。
间接量测法是利用采集通过桥面的测试车辆的振动响应,再通过适当的数学转换程序,即可分析出桥梁的动态特性的方法,相对于传统的直接量测法,间接量测法具有更安全、更便捷、更经济等优势。但间接量测法在实际工程的应用中,许多因素如路面粗糙度、车桥阻尼等的影响都难以解决,严重制约了间接量测法在实际工程中的应用。
发明内容
本发明目的是:旨在提供一种基于车桥耦合系统的桥梁损伤诊断方法,作为桥梁常规检测方法,具有安全经济、方便便捷等特点,能够简便、高效且高精度地检测桥梁损伤。
为实现上述技术目的,本发明采用的技术方案如下:
一种基于车桥耦合系统的桥梁损伤诊断方法,包括以下步骤:
a.两辆检测车从桥梁梁端位置出发向1#桥台方向通过桥梁,信号采集子系统同步采集小车各次通过桥梁过程中的竖向加速度响应或者竖向速度响应或者竖向位移响应;
b.两辆检测车从桥梁另一梁端位置出发向0#桥台方向通过桥梁,信号采集子系统同步采集小车各次通过桥梁过程中的竖向加速度响应或者竖向速度响应或者竖向位移响应,用于提高采集信号的准确度;
c.两车分别在桥梁上通过牵引车拖动通过桥梁;
d.利用步骤a与步骤b所测得小车的竖向加速度响应或者竖向速度响应或者竖向位移响应,处理后获得对应小车竖向位移响应;
e.利用步骤d所获得小车竖向位移响应,将两辆检测车对应位移信号相减,获得处理后小车竖向位移响应,消除了路面粗糙度的影响;
f.利用步骤e所获得处理后小车竖向位移响应,对时间t作二次微分处理,获得对应处理后小车竖向加速度响应;
g.利用已提前得知的待测桥梁模态阻尼比,分别按检测车采集信号的采样频率计算每一采样时间桥梁阻尼比影响下信号衰减系数;
h.利用步骤f所获得处理后小车竖向加速度响应除以步骤g计算所得每一时间对应的信号衰减系数其中ξn为桥梁模态阻尼比,wn为桥梁频率,t为时间,进行信号还原处理,获得处理后小车竖向加速度响应,消除了桥梁阻尼比的影响;
i.利用步骤h所获得处理后小车竖向加速度响应,通过Matlab带通滤波器滤去除所需桥梁频率信号外其余干扰信号,获得滤波后小车竖向加速度响应,仅包含所需桥梁频段信号;
j.利用步骤i所获得处理后小车竖向加速度响应,计算所需桥梁各阶模态;
k.利用步骤j所获得桥梁各位置点各阶模态及对应的频率,利用改进的直接刚度法,计算出桥梁各位置点刚度,进一步获取任意荷载下的桥梁截面挠度,综合评估桥梁的损伤情况。
经推导,路面粗糙度对车辆竖向位移信号的影响部分qv,r(t)具体可表示如下:
其中,wv为检测车车频,kv为检测车竖向刚度,Cv为车辆阻尼,v为检测车匀速通过桥梁的速度。当车辆的车体质量、竖向刚度以及车辆阻尼等比值变化时,路面粗糙度对车辆竖向位移的影响部分qv,r(t)不发生改变,因此通过对两车竖向位移信号相减,可以有效消除路面粗糙度影响。
通过理论分析可知,桥梁的模态信息包含在小车动力反应的瞬态项中,经推导,考虑桥梁阻尼比影响的车辆竖向位移信号中与本方法提取的频率与模态相关部分的qv,c(t)具体可以表达如下:
其中mv为检测车质量,ξn为桥梁模态阻尼比,L为桥梁跨径长度,wn为桥梁频率,wv为车辆频率。与不考虑桥梁阻尼比影响的车辆竖向位移信号的瞬态项部分相比,仅多了信号衰减项通过信号还原处理,可以有效消除桥梁模态阻尼比的影响。
进一步,所述的两辆检测车车辆频率相同,但检测车质量不同,需保证两车车体质量,车体竖向刚度以及车辆阻尼的比值相同。
进一步,检测车从桥梁梁端向1#桥台方向通过桥梁,再从桥梁另一梁端向0#桥台方向通过桥梁。
进一步,对步骤d中小车竖向加速度响应分别对时间t作二次积分处理。
进一步,对步骤j中的小车竖向加速度响应加窗作短时傅里叶变化,变时域信号为频域信号,提取每一窗频域信号中桥梁频率对应幅值开根号作比,计算所需桥梁各阶模态。
进一步,对步骤j中的小车竖向加速度响应作希尔伯特转换作瞬时振幅,提取瞬时振幅包络线求得所需桥梁各阶模态。
进一步,对步骤k中的桥梁各位置点刚度作数据延拓,利用延拓所得数值重新计算边单元对应节点的曲率,重新计算对应节点刚度,可有效提高刚度反演精度。
与现有技术相比,本发明至少具有以下优点:
1、具有严格的理论基础,其在待测桥梁上通过检测车辆即可获得检测信号,并可根据检测信号经过相应的处理转换得到桥梁的损伤信息,不需要预先知道桥梁损伤的大致位置,操作简单易行,效率高,可方便快捷地掌握桥梁损伤情况,从而及时发现桥梁隐患,避免桥梁事故的发生;
2、采用具有明确物理意义的损伤刚度识别,对损伤位置识别的同时也可以对损伤程度进行识别;
3、解决了实际工程中路面粗糙度以及桥梁阻尼比的影响,为间接量测法在实际工程中的应用具有很大的指导意义;
4、检测时无需在桥上架设任何辅助设备,不受天气及时间限制,且对桥梁正常交通运营影响极低;
5、检测车通过桥梁即能实施对桥梁的损伤检测,使检测一座桥梁的时间大大缩短,可增加桥梁检测的频次,实现桥梁的相对高频检测,以此达到安全监测的目的,提高桥梁安全预警能力;
6、检测数据的处理已在Matlab上编程,实现了自动化的处理过程,不仅降低了传统检测方法要求检测人员素质比较高的缺点,降低了人力成本,还能最大化的避免人为的主观因素对桥梁安全性判断的影响;
7、灵敏度很高,检测时间短且不需要特殊的检测条件,检测精度高,成本低廉,与现有的桥梁检测方法相比,集合了各种现有检测方法的优点,且避免了其缺陷。
附图说明
本发明可以通过附图给出的非限定性实施例进一步说明;
图1为本发明的一种基于车桥耦合系统的桥梁损伤诊断方法实施流程图;
图2为本发明的一种基于车桥耦合系统的桥梁损伤诊断方法车桥系统简化模型示意图;
图3为本发明实施例桥梁模型选用的台湾大武仑桥示意图;其中,(a)为立面图,(b)为剖面图,(c)为梁剖面图;
图4为本发明实施例桥梁模型单元节点编号示意图;
图5为本发明实施例ABCD四级粗糙度下无损工况节点刚度对比图;
图6为本发明实施例ABCD四级粗糙度下4、7单元30%损伤工况节点刚度对比图;
图7为本发明实施例ABCD四级粗糙度下5、6单元30%损伤工况节点刚度对比图;
图8为本发明实施例ABCD四级粗糙度下6单元30%损伤工况节点刚度对比图;
图9为本发明实施例ABCD四级粗糙度下2单元30%损伤工况节点刚度对比图;
图10为本发明实施例D级粗糙度下4、7单元不同损伤程度工况节点刚度对比图;
图11为本发明实施例D级粗糙度下5、6单元不同损伤程度工况节点刚度对比图;
图12为本发明实施例D级粗糙度下6单元不同损伤程度工况节点刚度对比图;
图13为本发明实施例D级粗糙度下2单元不同损伤程度工况节点刚度对比图。
具体实施方式
为了使本领域的技术人员可以更好地理解本发明,下面结合附图和实施例对本发明技术方案进一步说明。
如图1和图2所示,本发明的一种基于车桥耦合系统的桥梁损伤诊断方法,包括以下步骤:
a.两辆检测车从桥梁梁端位置出发向1#桥台方向通过桥梁,信号采集子系统同步采集小车各次通过桥梁过程中的竖向加速度响应或者竖向速度响应或者竖向位移响应;
b.两辆检测车从桥梁另一梁端位置出发向0#桥台方向通过桥梁,信号采集子系统同步采集小车各次通过桥梁过程中的竖向加速度响应或者竖向速度响应或者竖向位移响应,用于提高采集信号的准确度;
c.两车分别在桥梁上通过牵引车拖动通过桥梁;
d.利用步骤a与步骤b所测得小车的竖向加速度响应或者竖向速度响应或者竖向位移响应,处理后获得对应小车竖向位移响应;
e.利用步骤d所获得小车竖向位移响应,将两辆检测车对应位移信号相减,获得处理后小车竖向位移响应,消除了路面粗糙度的影响;
f.利用步骤e所获得处理后小车竖向位移响应,对时间t作二次微分处理,获得对应处理后小车竖向加速度响应;
g.利用已提前得知的待测桥梁模态阻尼比,分别按检测车采集信号的采样频率计算每一采样时间桥梁阻尼比影响下信号衰减系数;
h.利用步骤f所获得处理后小车竖向加速度响应除以步骤g计算所得每一时间对应的信号衰减系数其中ξn为桥梁阻尼比,wn为桥梁频率,t为时间,进行信号还原处理,获得处理后小车竖向加速度响应,消除了桥梁阻尼比的影响;
i.利用步骤h所获得处理后小车竖向加速度响应,通过Matlab带通滤波器滤去除所需桥梁频率信号外其余干扰信号,获得滤波后小车竖向加速度响应,仅包含所需桥梁频段信号;
j.利用步骤i所获得处理后小车竖向加速度响应,计算所需桥梁各阶模态;
k.利用步骤j所获得桥梁各位置点各阶模态及对应的频率,利用改进的直接刚度法,计算出桥梁各位置点刚度,进一步获取任意荷载下的桥梁截面挠度,综合评估桥梁的损伤情况。
作为优选,所述的两辆检测车车辆频率相同,但检测车质量不同,需保证两车车体质量,车体竖向刚度以及车辆阻尼的比值相同。
作为优选,检测车从桥梁梁端向1#桥台方向通过桥梁,再从桥梁另一梁端向0#桥台方向通过桥梁。
作为优选,对步骤d中小车竖向加速度响应分别对时间t作二次积分处理。
作为优选,对步骤j中的小车竖向加速度响应加窗作短时傅里叶变化,变时域信号为频域信号,提取每一窗频域信号中桥梁频率对应幅值开根号作比,计算所需桥梁各阶模态。
作为优选,对步骤j中的小车竖向加速度响应作希尔伯特转换作瞬时振幅,提取瞬时振幅包络线求得所需桥梁各阶模态。
作为优选,对步骤k中的桥梁各位置点刚度作数据延拓,利用延拓所得数值重新计算边单元对应节点的曲率,重新计算对应节点刚度,可有效提高刚度反演精度。
经推导,路面粗糙度对车辆竖向位移信号的影响部分qv,r(t)具体可表示如下:
其中,wv为检测车车频,kv为检测车竖向刚度,Cv为车辆阻尼,v为检测车匀速通过桥梁的速度。当车辆的车体质量、竖向刚度以及车辆阻尼等比值变化时,路面粗糙度对车辆竖向位移的影响部分qv,r(t)不发生改变,因此通过对两车竖向位移信号相减,可以有效消除路面粗糙度影响。
通过理论分析可知,桥梁的模态信息包含在小车动力反应的瞬态项中,经推导,考虑桥梁阻尼比影响的车辆竖向位移信号中与本方法提取的频率与模态相关部分的qv,c(t)具体可以表达如下:
其中为检测车质量,ξn为桥梁模态阻尼比,L为桥梁跨径长度,wn为桥梁频率,wv为车辆频率。与不考虑桥梁阻尼比影响的车辆竖向位移信号的瞬态项部分相比,仅多了信号衰减项通过信号还原处理,可以有效消除桥梁模态阻尼比的影响。
下面以一简支梁桥为例,结合附图对本发明的损伤诊断方法做进一步的详细描述。
本实施例使用的简支梁桥模型模拟对象为台湾大武仑桥,桥梁示意图如图3所示,程序截取桥梁中一跨作为测试跨。桥梁长度L=30m,截面面积A=7.965m2,截面惯性矩I=2.9597m4,桥梁弹性模量E=2.9×1010N/m2,无损桥梁节点刚度理论值为8.58×1010N.m2
将该跨分为10个单元,模型示意图如图4所示,其中圆圈中数字为单元编号,无圆圈数字为节点编号,本方法识别的刚度结果即为各节点的刚度反演值。
本实施案例粗糙度采用国际标准化组织(ISO)标准建议的功能密度函数(PSD)模拟,各级位移功能密度函数值Gd(n0)取值分别为:A级4×10-6m3、B级8×10-6m3、C级16×10- 6m3、D级32×10-6m3
为保证该方法对不同损伤位置均具有损伤诊断效果,在考虑各级路面粗糙度及车辆阻尼cv=1000与桥梁模态阻尼比ξn=0.01影响时,在模型不同位置加入损伤,模拟工况如下:
工况1:结构未发生损伤;
工况2:设置结构第4、7单元存在损伤;
工况3:设置结构第5、6单元存在损伤;
工况4:设置结构第6单元存在损伤;
工况5:设置结构第2单元存在损伤。
1.各级粗糙度影响数值分析:
为验证本发明方法对损伤位置的敏感性,分别进行ABCD四级粗糙度影响下各工况的数值模拟,并对所得车辆加速度响应按本发明方法进行处理。限于篇幅,各损伤工况均采用30%大小损伤,弯曲刚度(EI)识别结果如图5~图9所示。
从图5~图9中可看出,A、B、C、D级粗糙度下损伤工况与无损工况相比,损伤单元节点刚度反演结果均明显降低,可以较为精确判定损伤位置。综合而言,采用本发明所提出方法进行桥梁结构损伤诊断工作,可以较好解决路面粗糙度对识别工作的影响,包括边单元在内的所有节点识别精度均在工程允许范围以内,达到了准确识别损伤位置的目的。
2.粗糙度影响下损伤程度数值分析:
为验证本发明方法对损伤程度的敏感性,对各损伤工况损伤程度分别调整为15%、30%、50%三种后进行数值模拟,并对所得车辆加速度响应按上述步骤进行桥梁结构损伤刚度识别工作。限于篇幅,各工况均选用D级粗糙度情况,刚度识别结果如图10~图13所示。
从图10~图13中可看出,模型定义的损伤程度越大,则各损伤工况的损伤单元节点刚度反演结果越小,且损伤单元节点识别刚度与实际损伤相比,误差在5%以内,可以较为准确确定桥梁损伤大小。
综上所述,采用本发明方法进行桥梁结构损伤诊断工作,可以有效解决路面粗糙度的影响,在能精确确定损伤位置的同时,也可以有效识别损伤程度,对间接量测法在实际工程中损伤诊断的应用具有一定促进作用。
上述实施例仅示例性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (5)

1.一种基于车桥耦合系统的桥梁损伤诊断方法,其特征在于,包括以下步骤:
a.两辆检测车从桥梁梁端位置出发向1#桥台方向通过桥梁,信号采集子系统同步采集小车各次通过桥梁过程中的竖向加速度响应或者竖向速度响应或者竖向位移响应;
b.两辆检测车从桥梁另一梁端位置出发向0#桥台方向通过桥梁,信号采集子系统同步采集小车各次通过桥梁过程中的竖向加速度响应或者竖向速度响应或者竖向位移响应,用于提高采集信号的准确度;
c.两车分别在桥梁上通过牵引车拖动通过桥梁;
d.利用步骤a与步骤b所测得小车的竖向加速度响应或者竖向速度响应或者竖向位移响应,处理后获得对应小车竖向位移响应;
e.利用步骤d所获得小车竖向位移响应,将两辆检测车对应位移信号相减,获得处理后小车竖向位移响应,消除了路面粗糙度的影响;
f.利用步骤e所获得处理后小车竖向位移响应,对时间t作二次微分处理,获得对应处理后小车竖向加速度响应;
g.利用已提前得知的待测桥梁模态阻尼比,分别按检测车采集信号的采样频率计算每一采样时间桥梁阻尼比影响下信号衰减系数;
h.利用步骤f所获得处理后小车竖向加速度响应除以步骤g计算所得每一时间对应的信号衰减系数其中ξn为桥梁模态阻尼比,wn为桥梁频率,t为时间,进行信号还原处理,获得处理后小车竖向加速度响应,消除了桥梁阻尼比的影响;
i.利用步骤h所获得处理后小车竖向加速度响应,通过Matlab带通滤波器滤去除所需桥梁频率信号外其余干扰信号,获得滤波后小车竖向加速度响应,仅包含所需桥梁频段信号;
j.利用步骤i所获得处理后小车竖向加速度响应,计算所需桥梁各阶模态;
k.利用步骤j所获得桥梁各位置点各阶模态及对应的频率,利用改进的直接刚度法,计算出桥梁各位置点刚度,进一步获取任意荷载下的桥梁截面挠度,综合评估桥梁的损伤情况。
2.根据权利要求1所述的一种基于车桥耦合系统的桥梁损伤诊断方法,其特征在于:所述的两辆检测车车辆频率相同,但检测车质量不同,需保证两车车体质量的比值,车体竖向刚度的比值以及车辆阻尼的比值相同。
3.根据权利要求2所述的一种基于车桥耦合系统的桥梁损伤诊断方法,其特征在于:对步骤j中的小车竖向加速度响应加窗作短时傅里叶变化,变时域信号为频域信号,提取每一窗频域信号中桥梁频率对应幅值开根号作比,计算所需桥梁各阶模态。
4.根据权利要求2所述的一种基于车桥耦合系统的桥梁损伤诊断方法,其特征在于:对步骤j中的小车竖向加速度响应作希尔伯特转换作瞬时振幅,提取瞬时振幅包络线求得所需桥梁各阶模态。
5.根据权利要求3或4所述的一种基于车桥耦合系统的桥梁损伤诊断方法,其特征在于:对步骤k中的桥梁各位置点刚度作数据延拓,利用延拓所得数值重新计算边单元对应节点的曲率,重新计算对应节点刚度,可有效提高刚度反演精度。
CN201710403379.4A 2017-06-01 2017-06-01 一种基于车桥耦合系统的桥梁损伤诊断方法 Active CN107727338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710403379.4A CN107727338B (zh) 2017-06-01 2017-06-01 一种基于车桥耦合系统的桥梁损伤诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710403379.4A CN107727338B (zh) 2017-06-01 2017-06-01 一种基于车桥耦合系统的桥梁损伤诊断方法

Publications (2)

Publication Number Publication Date
CN107727338A CN107727338A (zh) 2018-02-23
CN107727338B true CN107727338B (zh) 2019-08-23

Family

ID=61201267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710403379.4A Active CN107727338B (zh) 2017-06-01 2017-06-01 一种基于车桥耦合系统的桥梁损伤诊断方法

Country Status (1)

Country Link
CN (1) CN107727338B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549847B (zh) * 2018-03-27 2022-04-12 昆明理工大学 一种无基准数据条件下的梁式结构裂缝损伤识别方法
CN109357822B (zh) * 2018-08-13 2021-06-01 东南大学 一种基于车桥耦合系统时变动力特征改变的桥梁快速测试与评估方法
CN109855823B (zh) * 2019-01-25 2020-06-30 重庆大学 一种利用测试车进行桥梁结构损伤识别的方法
CN109839440B (zh) * 2019-03-20 2021-03-30 合肥工业大学 一种基于静置车辆测试的桥梁损伤定位方法
CN110057514A (zh) * 2019-03-22 2019-07-26 天津大学 一种用于桥梁损伤识别试验的车桥耦合系统模型及方法
CN110220594B (zh) * 2019-07-24 2024-07-02 哈尔滨工业大学(深圳) 移动平台及基于分布式同步采集的振动检测系统
CN110567661B (zh) * 2019-09-11 2021-02-09 重庆大学 基于广义模式搜索算法和车桥耦合的桥梁损伤识别方法
CN110954154A (zh) * 2019-11-29 2020-04-03 暨南大学 一种基于移动传感与滤波集成系统的桥梁损伤定位方法
CN111373252B (zh) * 2019-12-16 2023-01-10 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种桥梁损伤快速检测方法及相关装置
CN111581867B (zh) * 2020-05-18 2022-07-15 天津大学 一种桥梁损伤快速检测方法
CN111781001B (zh) * 2020-07-15 2022-07-19 重庆市交通规划和技术发展中心(重庆市交通工程造价站) 基于车桥耦合的桥梁阻尼比识别方法
CN113252260B (zh) * 2021-06-24 2021-09-21 湖南大学 基于间接模态识别的桥梁支座病害检测方法及相关组件
CN114295310B (zh) * 2021-12-21 2023-06-06 重庆大学 用于强化桥梁间接测量功效的“无频”检测车及设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979783A (en) * 1997-10-20 1999-11-09 Learning Curve International, Inc. Toy vehicle track coupling support
CN101713167A (zh) * 2009-10-23 2010-05-26 周劲宇 桥梁结构健康监测车
CN104392148A (zh) * 2014-12-15 2015-03-04 重庆交通大学 大跨度轨道专用斜拉桥预拱度设置方法
CN105067206A (zh) * 2015-07-16 2015-11-18 长安大学 一种桥梁结构挠度线形测量装置和方法
JP6043266B2 (ja) * 2013-10-18 2016-12-14 公益財団法人鉄道総合技術研究所 橋脚の健全性評価方法、橋脚の健全性評価装置
CN106650067A (zh) * 2016-12-12 2017-05-10 贵州理工学院 一种输出中高频响应的车‑轨‑桥耦合振动频域模型

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979783A (en) * 1997-10-20 1999-11-09 Learning Curve International, Inc. Toy vehicle track coupling support
CN101713167A (zh) * 2009-10-23 2010-05-26 周劲宇 桥梁结构健康监测车
JP6043266B2 (ja) * 2013-10-18 2016-12-14 公益財団法人鉄道総合技術研究所 橋脚の健全性評価方法、橋脚の健全性評価装置
CN104392148A (zh) * 2014-12-15 2015-03-04 重庆交通大学 大跨度轨道专用斜拉桥预拱度设置方法
CN105067206A (zh) * 2015-07-16 2015-11-18 长安大学 一种桥梁结构挠度线形测量装置和方法
CN106650067A (zh) * 2016-12-12 2017-05-10 贵州理工学院 一种输出中高频响应的车‑轨‑桥耦合振动频域模型

Also Published As

Publication number Publication date
CN107727338A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN107727338B (zh) 一种基于车桥耦合系统的桥梁损伤诊断方法
CN106802222A (zh) 一种基于车桥耦合系统的桥梁损伤诊断方法
CN106198058B (zh) 一种基于胎压监测的竖向车轮冲击力实时测量方法
US10620085B2 (en) Bridge inspection and evaluation method based on impact vibration
CN107687924B (zh) 一种桥梁的安全预警方法及系统
JP5514152B2 (ja) 構造物安全性の分析方法
CN104568493B (zh) 车辆荷载下基于位移时程面积的结构快速损伤识别方法
CN105241660A (zh) 基于健康监测数据的高铁大型桥梁性能评定方法
CN112765778B (zh) 转向架横向稳定性识别方法、装置以及计算机设备
CN101806668B (zh) 一种基于索力监测的索结构健康监测方法
CN106802221A (zh) 一种基于车桥耦合系统的桥梁损伤诊断方法的检测车装置
CN204142505U (zh) 公路桥梁监测预警系统
CN108444662A (zh) 一种基于日温度效应的桥梁损伤在线监测方法
CN107543581A (zh) 多功能变电构架健康监测和损伤识别方法
CN103913512B (zh) 斜拉索定期检测的损伤定位系统
CN104764622A (zh) 一种桥梁状态的检测装置与检测方法
CN103759868A (zh) 一种基于应力比重的桥梁横向联接实时评估方法
CN111709664A (zh) 一种基于大数据的桥梁结构安全监测管理系统
CN104850678B (zh) 基于行车走行性的公路桥梁伸缩装置走行服役性能评定方法
CN209624252U (zh) 挂篮仿真智能加载系统
Mosleh et al. Approaches for weigh-in-motion and wheel defect detection of railway vehicles
CN109406076A (zh) 一种利用位移传感器列阵输出的移动主成分进行梁桥结构损伤定位的方法
CN103123303B (zh) 一种桥梁安全可靠性的定量、在线监测方法
CN108984866A (zh) 一种试验载荷谱的编制方法
CN109711075B (zh) 一种突发载荷非线性理论的钢梁桥寿命及可靠度分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210720

Address after: 400044 No. 174, positive street, Shapingba District, Chongqing

Patentee after: Chongqing University

Patentee after: POWERCHINA CHONGQING ENGINEERING Corp.,Ltd.

Address before: 400044 No. 174, positive street, Shapingba District, Chongqing

Patentee before: Chongqing University

TR01 Transfer of patent right