CN107723708A - 一种多孔金属材料的制备方法 - Google Patents

一种多孔金属材料的制备方法 Download PDF

Info

Publication number
CN107723708A
CN107723708A CN201710903094.7A CN201710903094A CN107723708A CN 107723708 A CN107723708 A CN 107723708A CN 201710903094 A CN201710903094 A CN 201710903094A CN 107723708 A CN107723708 A CN 107723708A
Authority
CN
China
Prior art keywords
metal material
polyurethane sponge
porous metal
sponge substrate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710903094.7A
Other languages
English (en)
Inventor
许成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jhy Titanium Industry Co Ltd
Original Assignee
Jhy Titanium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jhy Titanium Industry Co Ltd filed Critical Jhy Titanium Industry Co Ltd
Priority to CN201710903094.7A priority Critical patent/CN107723708A/zh
Publication of CN107723708A publication Critical patent/CN107723708A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种多孔金属材料的制备方法,将聚胺酯海绵基材依次经过物理气相沉积、纵横双向拉伸、电化学沉积和还原处理制得多孔金属材料,其中纵横双向拉伸的恒拉力为10~150N,纵横双向的拉伸值均为10~25%。本发明通过纵横双向拉伸操作,有效改善了多孔金属材料面密度的均匀性,增强了多孔金属材料内部孔连接结构的致密性和强度。此外,本发明的多孔金属材料制备工艺简单,与现有生产工艺匹配,易实现规模化生产。

Description

一种多孔金属材料的制备方法
技术领域
本发明属于材料制备技术领域,涉及一种多孔金属材料的制备方法。
背景技术
多孔金属材料的内部弥散分布着大量的孔洞,具有比重小、比表面积大和导热率低的特点,多用于制作电池电极、过滤器和催化剂载体。现有的多孔金属材料多采用聚胺酯海绵为基体材料,但因原始发泡聚胺酯海绵具有三维不规则的孔径,在制备多孔金属材料的过程中会出现电沉积不均匀的情况,导致所制备的多孔金属材料面密度不一致且抗拉强度较低。
中国发明专利CN200510136785.6公开了一种泡沫金属的基材及其制备方法和拉伸定型设备,对聚胺酶海绵进行纵向拉伸后,所制得的多孔金属材料纵向面密度和抗拉性能得到了改善,但此专利仅研究了纵向拉伸对材料性能的影响,未涉及横向拉伸,且采用这种材料制得的电池性能不均一,无法承受较大电流的冲击,电池的使用寿命也较短。
发明内容
本发明的目的是提供一种多孔金属材料的制备方法,解决了现有技术中存在的多孔金属材料面密度不均匀,抗拉强度低,无法承受较大电流冲击的问题。
本发明所采用的技术方案是,一种多孔金属材料的制备方法,具体按照以下步骤实施:
步骤1、以聚胺酯海绵为基材,采用物理气相沉积法,在聚胺酯海绵基材上沉积一层镍层,得到聚胺酯海绵基材A;
步骤2、采用恒拉力将经步骤1得到的聚胺酯海绵基材A同时进行纵横双向拉伸,得到聚胺酯海绵基材B。
步骤3、将经步骤2得到的聚胺酯海绵基材B作为电镀阴极,在普通的瓦特电镀体系下进行电化学沉积金属镍,得到聚胺酯海绵基材C;
步骤4、将经步骤3得到的聚胺酯海绵基材C在400~600℃下焚烧后,在800~1000℃以及含70%氢气与30%氮气的保护气氛中进行还原处理,制得所述多孔金属材料。
本发明的特点还在于:
物理气相沉积具体采用电子束蒸发方式,具体方法如下:将纯金属镍放入电子束物理气相沉积坩埚中,用高能电子束使金属镍熔化,熔化后的金属镍蒸发并沉积到置于其上方的聚胺酯海绵基材表面,形成镍层。
镍层的厚度为0.4g/m2
恒拉力为10~150N。
纵横双向拉伸的拉伸值均为10~25%。
电化学沉积的温度为20~30℃,电流密度为3~8mA/cm2
本发明的有益效果是:
1.通过纵横双向拉伸操作,有效改善了多孔金属材料面密度的均匀性,增强了多孔金属材料内部孔连接结构的致密性和强度;
2.本发明的多孔金属材料制备工艺简单,与现有生产工艺匹配,易实现规模化生产。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明一种多孔金属材料的制备方法,具体按照以下步骤实施:
步骤1、以聚胺酯海绵为基材,采用物理气相沉积法,在聚胺酯海绵基材上沉积一层镍层,得到聚胺酯海绵基材A;
物理气相沉积具体采用电子束蒸发方式,将纯金属镍放入电子束物理气相沉积坩埚中,用高能电子束使金属镍熔化,熔化后的金属镍蒸发并沉积到置于其上方的聚胺酯海绵基材表面,形成镍层;
步骤2、采用10~150N的恒拉力将经步骤1得到的聚胺酯海绵基材A同时进行纵横双向拉伸,且纵横双向的拉伸值均为10~25%,得到聚胺酯海绵基材B;
步骤3、将经步骤2得到的聚胺酯海绵基材B作为电镀阴极,在普通的瓦特电镀体系下进行电化学沉积金属镍,得到聚胺酯海绵基材C;
其中,电化学沉积的温度为20~30℃,电流密度为3~8mA/cm2
步骤4、将经步骤3得到的聚胺酯海绵基材C于400~600℃焚烧后,再在800~1000℃以及含70%氢气与30%氮气的保护气氛中进行还原处理,制得多孔金属材料。
实施例1
采用厚度为2.0mm的聚胺酯海绵为基材,按照以下步骤实施:
步骤1、采用物理气相沉积法,在聚胺酯海绵基材上沉积一层镍层,镍沉积量为0.4g/m2,得到聚胺酯海绵基材A;
步骤2、采用10N的恒拉力将聚胺酯海绵基材A同时进行纵向和横向双向拉伸,纵横双向的拉伸值均为10%,得到聚胺酯海绵基材B;
步骤3、将聚胺酯海绵基材B作为电镀阴极,在普通的瓦特电镀体系下进行电化学沉积金属镍,得到聚胺酯海绵基材C;
步骤4、将聚胺酯海绵基材C经600℃焚烧后,在800℃以及含70%氢气与30%氮气的保护气氛中进行还原处理,制得多孔金属材料。
实施例2
采用厚度为2.0mm的聚胺酯海绵为基材,按照以下步骤实施:
步骤1、采用物理气相沉积法,在聚胺酯海绵基材上沉积一层镍层,镍沉积量为0.4g/m2,得到聚胺酯海绵基材A;
步骤2、采用40N的恒拉力将聚胺酯海绵基材A同时进行纵向和横向双向拉伸,纵横双向的拉伸值均为20%,得到聚胺酯海绵基材B;
步骤3、将聚胺酯海绵基材B作为电镀阴极,在普通的瓦特电镀体系下进行电化学沉积金属镍,得到聚胺酯海绵基材C;
步骤4、将聚胺酯海绵基材C经550℃焚烧后,在850℃以及含70%氢气与30%氮气的保护气氛中进行还原处理,制得多孔金属材料。
实施例3
采用厚度为5.0mm的聚胺酯海绵为基材,按照以下步骤实施:
步骤1、采用物理气相沉积法,在聚胺酯海绵基材上沉积一层镍层,镍沉积量为0.4g/m2,得到聚胺酯海绵基材A;
步骤2、采用70N的恒拉力将聚胺酯海绵基材A同时进行纵向和横向双向拉伸,纵横双向的拉伸值均为10%,得到聚胺酯海绵基材B;
步骤3、将聚胺酯海绵基材B作为电镀阴极,在普通的瓦特电镀体系下进行电化学沉积金属镍,得到聚胺酯海绵基材C;
步骤4、将聚胺酯海绵基材C经500℃焚烧后,在900℃以及含70%氢气与30%氮气的保护气氛中进行还原处理,制得多孔金属材料。
实施例4
采用厚度为5.0mm的聚胺酯海绵为基材,按照以下步骤实施:
步骤1、采用物理气相沉积法,在聚胺酯海绵基材上沉积一层镍层,镍沉积量为0.4g/m2,得到聚胺酯海绵基材A;
步骤2、采用100N的恒拉力将聚胺酯海绵基材A同时进行纵向和横向双向拉伸,纵横双向的拉伸值均为15%,得到聚胺酯海绵基材B;
步骤3、将聚胺酯海绵基材B作为电镀阴极,在普通的瓦特电镀体系下进行电化学沉积金属镍,得到聚胺酯海绵基材C;
步骤4、将聚胺酯海绵基材C经450℃焚烧后,在950℃以及含70%氢气与30%氮气的保护气氛中进行还原处理,制得多孔金属材料。
实施例5
采用厚度为5.0mm的聚胺酯海绵为基材,按照以下步骤实施:
步骤1、采用物理气相沉积法,在聚胺酯海绵上沉积一层镍层,镍沉积量为0.4g/m2,得到聚胺酯海绵基材A;
步骤2、采用150N的恒拉力将聚胺酯海绵基材A同时进行纵向和横向双向拉伸,纵横双向的拉伸值均为25%,得到聚胺酯海绵基材B;
步骤3、将聚胺酯海绵基材B作为电镀阴极,在普通的瓦特电镀体系下进行电化学沉积金属镍,得到聚胺酯海绵基材C;
步骤4、将聚胺酯海绵基材C经400℃焚烧后,在1000℃以及含70%氢气与30%氮气的保护气氛中进行还原处理,制得多孔金属材料。
利用本发明的制备方法能制备出多孔金属材料,该多孔金属材料面密度均匀,抗拉强度高且能承受较大电流冲击。

Claims (6)

1.一种多孔金属材料的制备方法,其特征在于,具体按照以下步骤实施:
步骤1、以聚胺酯海绵为基材,采用物理气相沉积法,在聚胺酯海绵基材上沉积一层镍层,得到聚胺酯海绵基材A;
步骤2、采用恒拉力将经步骤1得到的聚胺酯海绵基材A同时进行纵横双向拉伸,得到聚胺酯海绵基材B。
步骤3、将经步骤2得到的聚胺酯海绵基材B作为电镀阴极,在普通的瓦特电镀体系下进行电化学沉积金属镍,得到聚胺酯海绵基材C;
步骤4、将经步骤3得到的聚胺酯海绵基材C在400~600℃下焚烧后,在800~1000℃以及含70%氢气与30%氮气的保护气氛中进行还原处理,制得所述多孔金属材料。
2.根据权利要求1所述的一种多孔金属材料的制备方法,其特征在于,所述物理气相沉积具体采用电子束蒸发方式,具体方法如下:将纯金属镍放入电子束物理气相沉积坩埚中,用高能电子束使金属镍熔化,熔化后的金属镍蒸发并沉积到置于其上方的聚胺酯海绵基材表面,形成镍层。
3.根据权利要求1或2所述的一种多孔金属材料的制备方法,其特征在于,所述镍层的厚度为0.4g/m2
4.根据权利要求1所述的一种多孔金属材料的制备方法,其特征在于,所述恒拉力为10~150N。
5.根据权利要求1所述的一种多孔金属材料的制备方法,其特征在于,所述纵横双向拉伸的拉伸值均为10~25%。
6.根据权利要求1所述的一种多孔金属材料的制备方法,其特征在于,所述电化学沉积的温度为20~30℃,电流密度为3~8mA/cm2
CN201710903094.7A 2017-09-29 2017-09-29 一种多孔金属材料的制备方法 Pending CN107723708A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710903094.7A CN107723708A (zh) 2017-09-29 2017-09-29 一种多孔金属材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710903094.7A CN107723708A (zh) 2017-09-29 2017-09-29 一种多孔金属材料的制备方法

Publications (1)

Publication Number Publication Date
CN107723708A true CN107723708A (zh) 2018-02-23

Family

ID=61208951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710903094.7A Pending CN107723708A (zh) 2017-09-29 2017-09-29 一种多孔金属材料的制备方法

Country Status (1)

Country Link
CN (1) CN107723708A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094224A (zh) * 2011-03-03 2011-06-15 常德力元新材料有限责任公司 多孔金属材料制备方法
CN102094225A (zh) * 2011-03-03 2011-06-15 常德力元新材料有限责任公司 多孔金属材料及制备方法
CN105220114A (zh) * 2015-10-01 2016-01-06 无棣向上机械设计服务有限公司 金属复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094224A (zh) * 2011-03-03 2011-06-15 常德力元新材料有限责任公司 多孔金属材料制备方法
CN102094225A (zh) * 2011-03-03 2011-06-15 常德力元新材料有限责任公司 多孔金属材料及制备方法
CN105220114A (zh) * 2015-10-01 2016-01-06 无棣向上机械设计服务有限公司 金属复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Yang et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes
Liu et al. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition
CN105609783B (zh) 一种碳结构集流体、电池负极、电池正极和锂电池
KR101703516B1 (ko) 탄소 섬유 직물/탄소 나노 튜브 전극의 제조 방법
CN107799736A (zh) 一种三维自支撑亲锂性载体封装的金属锂复合负极及其制备方法
CN110061191A (zh) 一种三维金属锂负极及其制备方法与应用
Wang et al. Amorphous–crystalline-heterostructured niobium oxide as two-in-one host matrix for high-performance lithium–sulfur batteries
CN111613773B (zh) 一种分级结构玻璃纤维与金属锂的复合物及其制备方法
Brown et al. Preparation and characterization of microporous Ni coatings as hydrogen evolving cathodes
CN114883560B (zh) 一种三维集流体/Zn/Zn-E复合负极及其制备和在水系锌离子电池中的应用
TW201207161A (en) Method of manufacturing aluminum structure, and aluminum structure
JP2018190725A (ja) リチウムイオン電池負極及びリチウムイオン電池
Yang et al. In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition
CN101486485A (zh) 一种蜂窝状CuO纳米材料及其制备方法
CN111816881B (zh) 一种类红毛丹壳状3d亲锂复合集流体、锂金属负极及其制备和应用
CN105551909B (zh) 场发射阴极及其制备方法和应用
CN115411232A (zh) 一种三维锂负极及其制备方法和锂电池
Yi et al. An ion-released MgI2-doped separator inducing a LiI-containing solid electrolyte interphase for dendrite-free Li metal anodes
WO2019233053A1 (zh) 多微孔泡沫镍及其制备方法
CN107723708A (zh) 一种多孔金属材料的制备方法
CN104178788B (zh) 用于为钢板涂覆金属层的方法
CN102094224A (zh) 多孔金属材料制备方法
Crousier et al. Electrodeposition of NiP amorphous alloys. A multilayer structure
CN105220114A (zh) 金属复合材料及其制备方法
CN109332719B (zh) 一种铜纳米线及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180223

RJ01 Rejection of invention patent application after publication