CN107722068B - 三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用 - Google Patents

三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用 Download PDF

Info

Publication number
CN107722068B
CN107722068B CN201711099663.3A CN201711099663A CN107722068B CN 107722068 B CN107722068 B CN 107722068B CN 201711099663 A CN201711099663 A CN 201711099663A CN 107722068 B CN107722068 B CN 107722068B
Authority
CN
China
Prior art keywords
ligand
tridentate
complex
isopropanol
phosphine ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711099663.3A
Other languages
English (en)
Other versions
CN107722068A (zh
Inventor
张绪穆
梁志钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaitelisi Shenzhen Technology Co ltd
Original Assignee
Kaitelisi Shenzhen Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaitelisi Shenzhen Technology Co ltd filed Critical Kaitelisi Shenzhen Technology Co ltd
Priority to CN201711099663.3A priority Critical patent/CN107722068B/zh
Publication of CN107722068A publication Critical patent/CN107722068A/zh
Application granted granted Critical
Publication of CN107722068B publication Critical patent/CN107722068B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0225Complexes comprising pentahapto-cyclopentadienyl analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于有机及药物合成化学领域,公开了三齿氮膦配体,具有通式Ⅰ的结构:
Figure DDA0001463095620000011
其中,R1为对甲苯磺酰基或2,4,6‑三异丙基苯磺酰基,R2为芳基或取代芳基。本发明还公开了三齿氮膦配体的配合物,由三齿氮膦配体和过渡金属络合物混合反应制备得到。配合物可以用于酮的不对称催化氢化。本发明的优势主要体现在以下几点:1、合成容易,手性配体只需要2~3步反应即可制得;2、配体稳定,该系列配体对水和氧气均不敏感,方便保存和使用;3、催化效果好,该体系催化剂对绝大多数适用底物均实现100%的转化和99%的立体选择性;4、原子经济性高,该催化体系活性极高,对绝大多数适用底物均能取得10000以上的转化数,最高转化数可达200000。

Description

三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的 应用
技术领域
本发明属于有机及药物合成化学领域,具体涉及三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用。
背景技术
手性醇是一种广泛存在于药物分子和天然产物之中的重要片段,如Ezetimine、Duloxetine、Aprepitant、Crizotinib等。
Figure BDA0001463095610000011
由于手性醇在制药等领域具有巨大的工业价值,人们对合成手性醇的方法学进行了深入的研究。最终,不对称氢化反应被证明是最为直接有效合成手性醇的方法。在过去的数十年,利用钯、铑、钌等金属与手性膦配体络合所得的催化剂对酮进行不对称氢化反应,从而得到手性醇的技术得到了巨大的发展,多种手性膦配体被研发出来。但是,高效不对称氢化酮类化合物得到手性醇仍然有待改进。
发明内容
本发明的目的是发展一类新型的三齿氮膦配体,并将三齿氮膦配体制备成催化剂,用于酮的不对称催化氢化反应。
为达到上述目的,本发明采用以下技术方案:
三齿氮膦配体,具有通式Ⅰ的结构:
Figure BDA0001463095610000021
其中,R1为对甲苯磺酰基或2,4,6-三异丙基苯磺酰基,R2为芳基或取代芳基。
进一步地,三齿氮膦配体具有通式Ⅱ的结构:
Figure BDA0001463095610000022
其中,R1为对甲苯磺酰基或2,4,6-三异丙基苯磺酰基,R2为苯基或取代苯基;当n为1、2或3时,R3、R4各自独立地选自氢和烷基;当n为0时,R3、R4各自独立地选自氢、苯基、取代苯基,或者R3、R4=-(CH2)4-。
进一步地,三齿氮膦配体具有以下结构之一:
Figure BDA0001463095610000023
其中,R1为对甲苯磺酰基或2,4,6-三异丙基苯磺酰基,m为2、3、4或5,R2为苯基或3,5-二叔丁基苯基。
进一步地,三齿氮膦配体具有以下结构之一:
Figure BDA0001463095610000031
三齿氮膦配体的制备方法按照以下合成路线:
Figure BDA0001463095610000032
S1、化合物1与tBuLi、PCl3、R2MgBr反应得到化合物2;
S2、化合物2与醋酸酐反应得到化合物3;
S3、化合物3与
Figure BDA0001463095610000033
反应得到配体Ⅰ。
将三齿氮膦配体和过渡金属络合物混合反应制备得到配合物(催化剂),在优选方案中,过渡金属络合物为[Ir(COD)Cl]2,中文全称为1,5-环辛二烯氯化铱二聚体,英文全称为Chloro(1,5-cyclooctadiene)iridium(I)dimer;在另一个优选方案中,三齿氮膦配体和过渡金属络合物的摩尔比为0.5:1~2,更优选0.5:1.05;在另一个优选方案中,反应以iPrOH为溶剂;在另一个优选方案中,反应温度为室温;在另一个优选方案中,反应时间为0.5~3h。
三齿氮膦配体的配合物应用于酮的不对称催化氢化:
在氢气氛围下,在iPrOH中,由手性三齿氮膦配体f-amphamide与金属铱盐[Ir(COD)Cl]2络合得到配合物(催化剂),加入酮化合物,进行不对称氢化反应,其反应通式如下
Figure BDA0001463095610000034
Ar可以为芳基、取代芳基、杂芳基、取代杂芳基,芳基优选苯基、萘基,杂芳基优选噻吩、呋喃,R可以为烷基,优选甲基、乙基;其中具有代表性的潜手性底物包括Ezetimine、Duloxetine、Aprepitant、Crizotinib。
一种手性醇的制备方法,在上述的三齿氮膦配体的配合物的存在下,用氢供体在碱性条件下对酮类进行加氢还原。反应包括第一步骤和第二步骤:第一步骤中,由手性配体与金属铱盐[Ir(COD)Cl]2iPrOH溶剂中进行反应而得到配合物(催化剂);第二步骤中,在氢气氛围下,在铱/f-amphamide催化剂的存在下,加入酮类化合物和碱,酮类化合物发生不对称氢化反应,反应温度为20~30℃,碱与酮类化合物的摩尔比例为1:100,氢气压力为20~40大气压,反应时间12~48小时,酮类化合物与催化剂的摩尔比为5000~200000∶1。在第一步骤中得到的催化剂不需要单独分离,第一步骤和第二步骤连续地进行。
除非有相反陈述,在说明书和权利要求书中使用的术语具有下述含义。
术语“烷基”指饱和脂肪族烃基团,其为包含1至20个碳原子的直链或支链基团,优选含有1至12个碳原子的烷基,更优选含有1至6个碳原子的烷基。非限制性实例包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基。
术语“芳基”指具有共轭的π电子体系的6至14元全碳单环或稠合多环(也就是共享毗邻碳原子对的环)基团,优选为6至10元,例如苯基和萘基。
取代芳基指至少有一个取代基的芳基,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
取代苯基指至少有一个取代基的苯基,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
术语“杂芳基”指包含1至4个杂原子、5至14个环原子的杂芳族体系,其中杂原子选自氧、硫和氮。杂芳基优选为5至10元,含1至3个杂原子;更优选为5元或6元,含1至2个杂原子;优选例如咪唑基、呋喃基、噻吩基、噻唑基、吡唑基、噁唑基、吡咯基、四唑基、吡啶基、嘧啶基、噻二唑、吡嗪基等,优选为咪唑基、吡唑基或嘧啶基、噻唑基;更有选吡唑基。
取代杂芳基指至少有一个取代基的杂芳基,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
本发明设计了新型三齿氮膦配体f-amphamide,其为C1对称的面手性二茂铁骨架配体,可以通过高效简单的方法合成,并通过使用这种新型三齿氮膦配体f-amphamide对具有潜手性的酮进行不对称氢化反应,制备一系列的手性醇,反应具有高对映选择性、高收率、高转化数(TON)的特点,绝大多数底物在催化剂用量0.01mol%(S/C=10000)的情况下可取得99%以上的转化率和99%以上的ee值,催化剂最低用量为为0.005mol%(S/C=200000),最高转化数达到200000,可以用于如Ezetimine、Duloxetine、Aprepitant、Crizotinib等一系列重要药物的合成,在医药工业生产具有重要的应用价值。
本发明通过以二茂铁为骨架的C1对称面手性配体f-amphamide系列实现了酮类化合物的不对称氢化。本发明的优势主要体现在以下几点:1、合成容易,手性配体f-amphamide只需要2~3步反应即可制得;2、配体稳定,该系列配体对水和氧气均不敏感,方便保存和使用;3、催化效果好,该体系催化剂对绝大多数适用底物均实现100%的转化和99%的立体选择性;4、原子经济性高,该催化体系活性极高,对绝大多数适用底物均能取得10000以上的转化数,最高转化数可达200000。
本发明操作简单、成本低廉、转化率和立体选择性都极高,具有原子经济性高,环境友好等特点,本发明所采用的催化体系具有广阔的工业化前景。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
除非另有说明,化学品均购自商业化产品并且不用经进一步纯化。薄层色谱分析(TLC)使用60F254硅胶板。硅胶柱层析使用青岛海洋硅胶(粒径0.040-0.063mm)。TLC显色采用UV光(254nm)。1H NMR和13C NMR使用Bruker 400MHz或者500MHz核磁共振仪表征,溶剂为氘代氯仿、氘代丙酮或氘代DMSO,以四甲基硅烷(TMS)为内标。化学位移的单位是ppm,耦合常数的单位是Hz。在1H NMR中,δ表示化学位移,s表示单峰,d表示双峰,t表示三重峰,q表示四重峰,p表示五重峰,m表示多重峰,br表示宽峰。在13C NMR中,δ表示化学位移。高分辨质谱(HRMS)使用Q-Exactive(Thermo Scientific)Inc质谱设备。在以下实施例中,mol%表示的是该物质相对于酮类化合物的摩尔百分比。
实施例1
三齿氮膦配体的合成
Figure BDA0001463095610000051
0℃、N2下,搅拌下将7mL tBuLi的正己烷溶液(1.6mol/L,11.2mmol)滴加入化合物1(2.57,g,10mmol)的无水乙醚(20mL)溶液中,滴加完毕后自然升至室温搅拌2h。随后降温到-78℃,慢慢滴加入重蒸的PCl3(11.46mmol,1mL),混合物升温到室温,反应过夜。随后再次降温到-78℃,用恒压漏斗慢慢滴加R2MgBr溶液(由30mmol R2Br和0.8g、33.3mmol镁屑在四氢呋喃中制备得到)。滴加完之后,慢慢升温反应过夜,随后加入20mL饱和NH4Cl溶液。油相有乙醚萃取三次,每次20mL乙醚。油相用无水硫酸钠干燥后,旋干,硅胶住层析,得到目标产物化合物2。
接着,氩气保护下,将化合物2(1mmol)和醋酸酐(1.5mL)的混合物在100℃加热约1~2h。TLC监测,待反应完毕后减压旋干醋酐得桔红色固体化合物3,用少量的iPrOH或者EtOH重结晶纯化,用于下一步反应。
随后,将化合物3(1mmol)和
Figure BDA0001463095610000061
(5mmol)加入5mL甲醇中,在氩气的保护下,回流反应过夜。反应结束后,硅胶住层析,得到目标配体f-Amphamide L1~L6。
Figure BDA0001463095610000062
黄色固体,72%产率。1H NMR(400MHz,Chloroform-d)δ7.65(d,J=8.3Hz,2H),7.57–7.51(m,2H),7.41–7.37(m,3H),7.29(d,J=7.8Hz,2H),7.26–7.14(m,5H),4.42(d,J=2.3Hz,1H),4.30(t,J=2.6Hz,1H),4.02(s,5H),4.02–4.00(m,1H),3.85–3.72(m,1H),2.45(s,3H),2.45–2.42(m,2H),2.29(t,J=5.4Hz,2H),1.34(d,J=6.6Hz,3H)。13C NMR(101MHz,CDCl3)δ143.07,139.95(d,J=9.9Hz),137.27,136.80(d,J=8.4Hz),134.97,134.77,132.90,132.71,129.87,129.60,129.23,128.56,128.45,128.39,128.28,128.21,127.20,97.04(d,J=23.1Hz),75.34(d,J=6.6Hz),71.53(d,J=4.4Hz),69.80,69.27,69.23,69.04,50.91(d,J=8.8Hz),44.55,42.83,21.61,19.18。31P NMR(162MHz,CDCl3)δ-24.97(s)。HRMS(ESI)calcd for C33H36FeN2O2PS[M+H]+:611.1579;Found:611.1577。
Figure BDA0001463095610000063
黄色固体,41%产率。1H NMR(400MHz,Chloroform-d)δ7.72(d,J=8.3Hz,2H),7.52–7.48(m,2H),7.44–7.36(m,3H),7.28(d,J=3.2Hz,2H),7.22–7.15(m,1H),7.12–7.02(m,4H),4.52(s,1H),4.37(t,J=2.6Hz,1H),4.08(s,5H),4.04–4.01(m,1H),3.71(d,J=1.3Hz,1H),2.45(s,3H),2.14–2.09(m,2H),1.97–1.89(m,1H),1.85–1.84(m,1H),1.53–1.43(m,2H),1.36(d,J=6.2Hz,3H),1.08–1.03(m,2H),0.94–0.76(m,2H)。13C NMR(101MHz,CDCl3)δ142.88,140.03(d,J=10.6Hz),137.45,136.80(d,J=9.5Hz),135.20,134.99,132.98,132.79,129.50,129.28,128.48,128.45,128.41,128.34,128.26,127.63,98.16,74.48,71.26(d,J=4.0Hz),70.55,69.82,69.67,69.35,57.92,57.07,46.56,32.25,29.98,24.93,24.10,21.68,20.19。31P NMR(162MHz,CDCl3)δ-24.61(s)。HRMS(ESI)calcdfor C37H42FeN2O2PS[M+H]+:665.2049;Found:665.2037。
Figure BDA0001463095610000071
黄色固体,60%产率。1H NMR(400MHz,Chloroform-d)δ7.43–7.41(m,2H),7.35–7.24(m,8H),7.22–7.16(m,2H),7.05–6.95(m,3H),6.91–6.90(m,3H),6.84(t,J=7.4Hz,2H),6.73–6.66(m,2H),6.62–6.55(m,2H),4.30–4.25(m,1H),4.21(t,J=2.6Hz,1H),3.93(d,J=7.5Hz,1H),3.86(s,5H),3.65–3.57(m,2H),3.55–3.51(m,1H),2.25(s,3H),1.07(d,J=6.4Hz,3H)。13C NMR(101MHz,CDCl3)δ142.45,140.73(d,J=11.0Hz),138.76,137.78(d,J=9.2Hz),135.52,135.31,132.85,132.67,129.18,129.01,128.65,128.58,128.55,128.34,128.21,128.13,127.79,127.76,127.74,127.68,127.45,127.33,127.10,98.77,74.35(d,J=9.5Hz),71.57(d,J=4.0Hz),69.90,69.64,69.53,64.87,63.39,47.75,29.83,21.55,19.83,1.16。31P NMR(162MHz,CDCl3)δ-23.52(s)。HRMS(ESI)calcd forC45H44FeN2O2PS[M+H]+:763.2205;Found:763.2188。
Figure BDA0001463095610000072
黄色固体,64%产率。1H NMR(400MHz,Chloroform-d)δ7.70(d,J=8.2Hz,2H),7.59–7.51(m,2H),7.44–7.36(m,3H),7.31–7.27(m,7H),4.45(s,1H),4.33–4.31(m,1H),4.06(s,5H),3.99–3.93(m,1H),3.79(s,1H),2.80–2.74(m,1H),2.71–2.65(m,1H),2.45(s,3H),2.26–2.16(m,2H),1.40(d,J=6.6Hz,3H),0.97–0.83(m,2H)。13C NMR(101MHz,CDCl3)δ143.00,139.75,137.40,134.95,134.75,133.09,132.89,129.63,129.25,128.77,128.65,128.59,128.34,128.26,127.18,97.07,75.37,71.42,69.84,69.50,69.15,51.68,51.58,45.34,43.24,28.21,21.63,19.41。31P NMR(162MHz,CDCl3)δ-25.40(s)。HRMS(ESI)calcdfor C34H38FeN2O2PS[M+H]+:625.1736;Found:625.1734。
Figure BDA0001463095610000081
黄色固体,47%产率。1H NMR(400MHz,Chloroform-d)δ7.56–7.49(m,2H),7.42–7.36(m,3H),7.26–7.22(m,2H),7.17(s,2H),7.14–7.06(m,3H),4.87(s,1H),4.41(s,1H),4.29(t,J=2.5Hz,1H),4.10–4.01(m,2H),4.06(s,5H),3.77–3.76(m,1H),2.99–2.89(m,1H),2.42(d,J=5.6Hz,1H),2.31(t,J=5.4Hz,2H),2.24(t,J=7.6Hz,1H),1.39(d,J=6.5Hz,3H),1.30(d,J=7.0Hz,6H),1.23(t,J=6.8Hz,12H)。13C NMR(101MHz,CDCl3)δ152.44,150.39,134.85,134.65,133.07,132.88,129.21,128.75,128.50,128.44,128.32,128.25,123.77,100.12,75.49(d,J=6.5Hz),71.36(d,J=4.2Hz),69.85,69.33(d,J=3.7Hz),68.97,50.89,50.80,44.43,42.45,34.30,29.62,25.06(d,J=2.6Hz),23.78(d,J=2.9Hz),19.22。31P NMR(162MHz,CDCl3)δ-25.33(s)。HRMS(ESI)calcd for C41H52FeN2O2PS[M+H]+:723.2831;Found:723.2816。
Figure BDA0001463095610000082
黄色固体,54%产率。1H NMR(400MHz,Chloroform-d)δ7.64(d,J=8.3Hz,2H),7.47–7.38(m,3H),7.28–7.26(m,3H),7.24–7.18(m,2H),4.36(s,1H),4.26(t,J=2.7Hz,1H),4.06(s,5H),3.99–3.92(m,1H),3.70(s,1H),2.43(s,3H),2.41–2.35(m,1H),2.12–2.05(m,3H),1.31(s,18H),1.29(d,J=6.5Hz,3H),1.18(s,18H)。13C NMR(101MHz,CDCl3)δ150.77(d,J=7.3Hz),150.38(d,J=7.3Hz),143.08,138.21,137.57,134.98(d,J=7.0Hz),129.67,129.11,128.90,127.99,127.78,127.15,123.12,122.77,96.16(d,J=23.0Hz),77.37,71.19(d,J=4.1Hz),69.77,69.12(d,J=3.4Hz),68.63,51.10,51.01,44.89,42.80,35.07,34.93,31.62,31.49,21.63,19.26。31P NMR(162MHz,CDCl3)δ-24.42(s)。HRMS(ESI)calcd for C49H68FeN2O2PS[M+H]+:835.4083;Found:835.4067。
实施例2
从苯乙酮制备1-苯乙醇(S/C=10 000)
Figure BDA0001463095610000083
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-苯乙醇,产物经HPLC分析,测得ee值为98%。通过HPLC、Chiralcel OD-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(R)=7.53min(minor),tR(S)=8.56min(major)。
实施例3
从苯丙酮制备1-苯丙醇(S/C=10 000)
Figure BDA0001463095610000091
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到苯丙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-苯丙醇,产物经HPLC分析,测得ee值为99%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=8.68min(major),tR(R)=9.30min(minor)。
实施例4
从对甲基苯乙酮制备1-对甲基苯乙醇(S/C=10000)
Figure BDA0001463095610000092
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到对甲基苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-对甲基苯乙醇,产物经HPLC分析,测得ee值为99%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=10.61min(major),tR(R)=11.94min(minor)。
实施例5
从对甲氧基苯乙酮制备1-对甲氧基苯乙醇(S/C=10000)
Figure BDA0001463095610000101
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到对甲氧基苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-对甲氧基苯乙醇,产物经HPLC分析,测得ee值为97%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在230nm;tR(S)=18.06min(major),tR(R)=19.27min(minor)。
实施例6
从间甲氧基苯乙酮制备1-间甲氧基苯乙醇(S/C=10 000)
Figure BDA0001463095610000102
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到间甲氧基苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-间甲氧基苯乙醇,产物经HPLC分析,测得ee值为99%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=14.13min(major),tR(R)=15.86min(minor)。
实施例7
从邻氟苯乙酮制备1-邻氟苯乙醇(S/C=10000)
Figure BDA0001463095610000103
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到邻氟苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-邻氟苯乙醇,产物经HPLC分析,测得ee值为99%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=6.97min(major),tR(R)=7.72min(minor)。
实施例8
从间氟苯乙酮制备1-间氟苯乙醇(S/C=10000)
Figure BDA0001463095610000111
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到间氟苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-间氟苯乙醇,产物经HPLC分析,测得ee值为99%。通过HPLC、Chiralcel OD-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=6.94min(major),tR(R)=14.2min(minor)。
实施例9
从邻氯苯乙酮制备1-邻氯苯乙醇(S/C=10000)
Figure BDA0001463095610000112
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到邻氯苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-邻氯苯乙醇,产物经HPLC分析,测得ee值为99%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=7.59min(major),tR(R)=8.05min(minor)。
实施例10
从间氯苯乙酮制备1-间氯苯乙醇(S/C=10000)
Figure BDA0001463095610000121
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到间氯苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-间氯苯乙醇,产物经HPLC分析,测得ee值为96%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=8.99min(major),tR(R)=10.17min(minor)。
实施例11
从对氯苯乙酮制备1-对氯苯乙醇(S/C=10000)
Figure BDA0001463095610000122
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到对氯苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-对氯苯乙醇,产物经HPLC分析,测得ee值为97%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=8.99min(major),tR(R)=9.50min(minor)。
实施例12
从邻溴苯乙酮制备1-邻溴苯乙醇(S/C=10000)
Figure BDA0001463095610000131
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到邻溴苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-邻溴苯乙醇,产物经HPLC分析,测得ee值为96%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=7.72min(major),tR(R)=8.19min(minor)。
实施例13
从对溴苯乙酮制备1-对溴苯乙醇(S/C=10000)
Figure BDA0001463095610000132
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到对溴苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-对溴苯乙醇,产物经HPLC分析,测得ee值为96%。通过HPLC、Chiralcel OD-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在230nm;tR(S)=7.45min(major),tR(R)=8.04min(minor)。
实施例14
从对三氟甲基苯乙酮制备1-对三氟甲基苯乙醇(S/C=10000)
Figure BDA0001463095610000133
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到对溴苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-对三氟甲基苯乙醇,产物经HPLC分析,测得ee值为97%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在230nm;tR(S)=6.65min(major),tR(R)=7.14min(minor)。
实施例15
从2-萘基苯乙酮制备1-(2-萘基)苯乙醇(S/C=10 000)
Figure BDA0001463095610000141
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到对溴苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-(2-萘基)苯乙醇,产物经HPLC分析,测得ee值>99%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=27.72min(major),tR(R)=36.55min(minor)。
实施例16
从2-噻吩基苯乙酮制备1-(2-噻吩基)苯乙醇(S/C=10000)
Figure BDA0001463095610000142
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到2-噻吩基苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-(2-噻吩基)苯乙醇,产物经HPLC分析,测得ee值为96%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在250nm;tR(S)=9.99min(major),tR(R)=12.21min(minor)。
实施例17
从2-呋喃基苯乙酮制备1-(2-呋喃基)苯乙醇(S/C=10000)
Figure BDA0001463095610000151
在高纯氩气氛围下,将[Ir(COD)Cl]2(3.4mg,0.005mmol)和手性配体L6(9.2mg,0.011mmol)溶于异丙醇(1mL)中,在室温条件下搅拌3小时,得到橙色澄清溶液。以微量注射器取该橙色溶液20μL(0.001mol%),加入到2-呋喃基苯乙酮(2mmol)、异丙醇(2mL)和叔丁醇锂(1mol%)的混合体系中。将反应体系置于高压釜中,在室温和H2(20atm)条件下搅拌12小时。减压除去溶剂,柱层析分离(采取硅胶柱,洗脱剂:乙酸乙酯),得纯品1-(2-呋喃基)苯乙醇,产物经HPLC分析,测得ee值为92%。通过HPLC、Chiralcel OJ-H柱测定对映体过量,正己烷:异丙醇=95:5;流速=1.0mL/min;UV检测在210nm;tR(S)=8.62min(major),tR(R)=9.51min(minor)。
实施例18
溶剂的适应性
Figure BDA0001463095610000152
Figure BDA0001463095610000153
反应条件:2.0mmol底物,S/C=5000,0.010mol%[Ir(COD)Cl]2,0.021mol%配体,1mol%tBuOLi,2.0mL溶剂,室温(25-30℃);b:通过1H NMR光谱测定;c:由HPLC分析确定。
还原反应可以再多种溶剂中进行。
实施例19
三齿氮膦配体的适应性
Figure BDA0001463095610000161
Figure BDA0001463095610000162
反应条件:2.0mmol底物,S/C=5000,0.010mol%[Ir(COD)Cl]2,0.021mol%配体,1mol%tBuOLi,2.0mL iPrOH,室温(25-30℃);b:通过1H NMR光谱测定;c:由HPLC分析确定;d:S/C=10000。
实施例1的配体L1~L6均能高效催化酮的氢化还原反应。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (8)

1.三齿氮膦配体,其特征在于,具有以下结构之一:
Figure FDA0002383700960000011
其中,R1为对甲苯磺酰基或2,4,6-三异丙基苯磺酰基,m为2、3、4或5,R2为苯基或3,5-二叔丁基苯基。
2.根据权利要求1所述的三齿氮膦配体,其特征在于,具有以下结构之一:
Figure FDA0002383700960000012
3.权利要求1或2所述的三齿氮膦配体的制备方法,其特征在于,按照以下合成路线:
Figure FDA0002383700960000013
S1、化合物1与tBuLi、PCl3、R2MgBr反应得到化合物2;
S2、化合物2与醋酸酐反应得到化合物3;
S3、化合物3与
Figure FDA0002383700960000014
反应得到三齿氮膦配体。
4.三齿氮膦配体的配合物,其特征在于,所述的配合物由权利要求1或2所述的三齿氮膦配体和过渡金属络合物混合反应制备得到。
5.根据权利要求4所述的三齿氮膦配体的配合物,其特征在于,所述过渡金属络合物为[Ir(COD)Cl]2
6.根据权利要求4或5所述的三齿氮膦配体的配合物,其特征在于,所述三齿氮膦配体和过渡金属络合物的摩尔比为0.5:1~2。
7.权利要求4或5所述的三齿氮膦配体的配合物在酮的不对称催化氢化中的应用。
8.一种手性醇的制备方法,其特征在于,在权利要求4或5所述的三齿氮膦配体的配合物的存在下,用氢供体在碱性条件下对酮类化合物进行加氢还原。
CN201711099663.3A 2017-11-09 2017-11-09 三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用 Active CN107722068B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711099663.3A CN107722068B (zh) 2017-11-09 2017-11-09 三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711099663.3A CN107722068B (zh) 2017-11-09 2017-11-09 三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用

Publications (2)

Publication Number Publication Date
CN107722068A CN107722068A (zh) 2018-02-23
CN107722068B true CN107722068B (zh) 2020-05-22

Family

ID=61214905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711099663.3A Active CN107722068B (zh) 2017-11-09 2017-11-09 三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用

Country Status (1)

Country Link
CN (1) CN107722068B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546238B (zh) * 2018-05-23 2020-11-24 凯特立斯(深圳)科技有限公司 α-酮酰胺类化合物的不对称氢化方法
CN108864210A (zh) * 2018-07-09 2018-11-23 浙江工业大学上虞研究院有限公司 多氢键二茂铁催化剂的合成方法
CN109824579B (zh) * 2019-03-11 2020-08-11 浙江工业大学 一种(s)-苯基(吡啶-2-基)甲醇衍生物的制备方法
CN112390738B (zh) * 2019-08-16 2023-03-31 凯特立斯(深圳)科技有限公司 依折麦布中间体化合物及依折麦布的合成方法
CN114426564B (zh) * 2020-10-29 2023-09-08 中国科学院大连化学物理研究所 一类手性二茂铁膦-1,2-二苯基乙二胺配体及其制备方法和应用
CN114702474B (zh) * 2021-04-21 2023-03-28 黄冈中有生物科技有限公司 一种左旋烟碱的制备方法
CN113354554B (zh) * 2021-07-07 2022-10-11 浙江工业大学 一种(2R,3S)-β′-羟基-β-氨基酸酯类衍生物及其制备方法
CN114644662A (zh) * 2021-08-18 2022-06-21 广东工业大学 一种基于二茂铁结构的手性膦氮氮三齿配体及其应用
CN114644663A (zh) * 2021-08-18 2022-06-21 广东工业大学 一种手性三齿氮氮膦配体及其在酮的不对称氢化反应中的应用
CN114560892A (zh) * 2021-08-18 2022-05-31 广东工业大学 一种基于二茂铁骨架合成的手性三齿氮氮膦配体及其应用
CN114874134B (zh) * 2022-04-26 2024-01-12 凯特立斯(深圳)科技有限公司 一种无保护不对称制备尼古丁的工艺
CN116102524A (zh) * 2023-02-28 2023-05-12 华东理工大学 一种β-氨基醇类化合物的不对称合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105188926A (zh) * 2013-03-11 2015-12-23 新泽西鲁特格斯州立大学 用于不对称转化的金属有机催化
CN105732725A (zh) * 2016-01-30 2016-07-06 武汉凯特立斯科技有限公司 一种手性三齿氮膦氧配体及其相关配体在不对称催化反应中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105188926A (zh) * 2013-03-11 2015-12-23 新泽西鲁特格斯州立大学 用于不对称转化的金属有机催化
CN105732725A (zh) * 2016-01-30 2016-07-06 武汉凯特立斯科技有限公司 一种手性三齿氮膦氧配体及其相关配体在不对称催化反应中的应用

Also Published As

Publication number Publication date
CN107722068A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN107722068B (zh) 三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用
Lu et al. Enantioselective alkynylation of aromatic aldehydes catalyzed by new chiral amino alcohol-based ligands
Kasák et al. A chiral phosphepine–olefin rhodium complex as an efficient catalyst for the asymmetric conjugate addition
Lötscher et al. Enantioselective catalytic cyclopropanation of styrenes by copper complexes with chiral pinene-[5, 6]-bipyridine ligands
US8558017B2 (en) Ruthenium (II) catalysts for use in stereoselective cyclopropanations
Coll et al. A Modular Furanoside Thioether‐Phosphite/Phosphinite/Phosphine Ligand Library for Asymmetric Iridium‐Catalyzed Hydrogenation of Minimally Functionalized Olefins: Scope and Limitations
CN108546238B (zh) α-酮酰胺类化合物的不对称氢化方法
Collomb et al. Synthesis of new chiral catalysts, pyridyl-and bipyridylalcohols, for the enantioselective addition of diethylzinc to benzaldehyde
Wang et al. Enantiopure N-ferrocenylmethylaziridin-2-ylmethanols from l-serine: Synthesis, crystal structure and applications
CN103570600B (zh) 一种手性α‑亚甲基β‑内酰胺类化合物及其制备方法和应用
Shi et al. Chiral diphenylthiophosphoramides: a new class of chiral ligands for the silver (I)-promoted enantioselective allylation of aldehydes
Tato et al. Rhodium-catalyzed conjugate addition of arylindium reagents to α, β-unsaturated carbonyl compounds
CN110128341B (zh) 一种手性2,2’-联吡啶配体及其制备方法和在制备手性环丙烷衍生物中的应用
Sierra et al. Novel ferrocenylphosphino sulfonates: Synthesis, crystal structure and preliminary application as ligands in aqueous catalysis
Sheeba et al. Asymmetric hydrogenation of pro-chiral ketones catalyzed by chiral Ru (II)-benzene organometallic compounds containing amino acid based aroylthiourea ligands
Cheow et al. Asymmetric hydroarsination reactions toward synthesis of alcohol functionalised C-chiral As–P ligands promoted by chiral cyclometallated complexes
Hiroi et al. N-Phosphano nitrogen-containing five-membered aromatic chiral α-sulfoxides as new chiral ligands in asymmetric palladium-catalyzed allylic alkylation: stereoelectronic effects of the substituents on the aromatic rings
WO2003074169A2 (en) Metalorganic catalysts for chemo-, regio- and stereoselective reactions, and corresponding precursors
Niu et al. Enantioselective addition of alkynylzinc to arylaldehydes catalyzed by azetidino amino alcohols bearing an additional stereogenic center
Wilklow-Marnell et al. A POCO type pincer complex of iridium: Synthesis, characterization, and catalysis
Abadie et al. Development of chiral C 2-symmetric N-heterocyclic carbene Rh (I) catalysts through control of their steric properties
Wang et al. The effect of direct steric interaction between substrate substituents and ligand substituents on enantioselectivities in asymmetric addition of diethylzinc to aldehydes catalyzed by sterically congested ferrocenyl aziridino alcohols
Marozsán et al. Catalytic racemization of secondary alcohols with new (arene) Ru (II)-NHC and (arene) Ru (II)-NHC-tertiary phosphine complexes
Bienewald et al. A new ligand containing a unique combination of backbone-and P-centered chirality: synthesis, resolution and asymmetric catalysis using a chiral enantiopure 2, 2′-biphospholene
CN114907404A (zh) 5-(2-(二取代膦基)苯基)-1-烷基-1h-吡唑膦配体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant