CN107721858A - 相转移催化β‑酮酸酯不对称α‑苯甲酰化的方法 - Google Patents
相转移催化β‑酮酸酯不对称α‑苯甲酰化的方法 Download PDFInfo
- Publication number
- CN107721858A CN107721858A CN201710960135.6A CN201710960135A CN107721858A CN 107721858 A CN107721858 A CN 107721858A CN 201710960135 A CN201710960135 A CN 201710960135A CN 107721858 A CN107721858 A CN 107721858A
- Authority
- CN
- China
- Prior art keywords
- phase transfer
- beta
- ester type
- ptc
- asymmetry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 CC(CC1C(O**)=O)c2c(*)c(*)c(C)cc2C1=O Chemical compound CC(CC1C(O**)=O)c2c(*)c(*)c(C)cc2C1=O 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N O=C(c1ccccc1)OOC(c1ccccc1)=O Chemical compound O=C(c1ccccc1)OOC(c1ccccc1)=O OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- UAXRSKYOUUJUOK-UHFFFAOYSA-N OC(C(Cc1ccccc11)C1=O)=O Chemical compound OC(C(Cc1ccccc11)C1=O)=O UAXRSKYOUUJUOK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
- C07C67/56—Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/07—Optical isomers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种相转移催化β‑酮酸酯不对称α‑苯甲酰化的方法,属于具有光学活性的α‑氧代‑β‑酮酸酯类化合物的合成技术领域。本发明的技术方案要点为:将β‑酮酸酯类化合物、相转移催化剂、过氧化苯甲酰和碱性溶液在溶剂中于‑78‑60℃搅拌反应制得手性α‑苯甲酰基‑β‑酮酸酯类化合物,制备过程中的反应方程式为:
Description
技术领域
本发明属于具有光学活性的α-氧代-β-酮酸酯类化合物的合成技术领域,具体涉及一种相转移催化β-酮酸酯不对称α-苯甲酰化的方法。
背景技术
具有光学活性的α-氧代-β-酮酸酯类化合物是一类非常重要的结构单元,广泛存在于天然产物、手性医药及农药中间体中。Davis在1981年首次报道了使用Davis试剂获得手性α-氧代-β-酮酸酯类化合物的方法(Tetrahedron Lett.1981,22,4385-4388),但是该方法操作繁琐,反应条件较为苛刻,使用化学剂量的手性氧化剂,成本较高,不适合生产应用。
近些年来,科研工作者们报道了大量的不对称合成手性α-氧代-β-酮酸酯类化合物的方法,这些方法可以分为两大类:a)金属络合物/活性氧体系;b)有机催化剂/活性氧体系。对于金属络合物/活性氧体系,文献(Proc.Natl.Acad.Sci.U.S.A.2004,101,5810–5814)首次报道了酒石酸衍生的手性配体与四价Ti配位的金属络合物,近些年来,冯小明课题组报道的由氨基酸衍生物与Mg配位的金属络合物(Adv.Synth.Catal.2013,355,1924–1930)及Che报道的salen配体与Fe配位的金属络合物(Chem.Commun.2014,50,7870-7873)也能获得较好的效果(最高98%ee)。然而,金属络合催化所用催化剂价格昂贵,氧化剂一般都是结构较为复杂的氮杂氧杂环丙烷等,这些因素都限制了上述方法的应用性。有机催化方面,文献WO 03/040083及J.Org.Chem.2004,69,8165-8167公开了直接用不含金属离子的金鸡纳生物碱及其衍生物为有机催化剂,有机过氧化物为氧化剂,制备手性α-羟基-β-二羰基化合物的方法,其中氧化产物收率一般为80%-90%,对应选择性一般为50%-80%ee。芳氧氨基醇类催化剂(Tetrahedron.2012,38,7973–7977)及二萜类生物碱高乌甲素(Synlett.2009,16,2659–2662)也有较好的催化效果。
值得注意的是,对β-酮酸酯类化合物的α-位进行不对称氧化的方法大多局限于羟基化,对β-酮酸酯类化合物的α-位进行不对称苯甲酰化可以引入一个活性苯甲酰基,具有潜在的应用价值,但目前文献报道较少。2015年,罗三中课题组首次报道了手性伯胺催化的β-酮酸酯的不对称α-苯甲酰化,具有最高98%的ee值,但该方法需要加入三氟甲磺酸以及丁羟基苯作为反应助剂,并且底物多为直链以及非芳香环状β-酮酸酯类化合物,对于茚酮以及四氢萘酮衍生的β-酮酸酯类化合物并未涉及(Organic letters 2015,17,576-579)。使用更为高效的方法实现β-酮酸酯类化合物的不对称α-甲酰化,并且拓展β-酮酸酯类化合物的底物范围,具有十分重要的理论价值和应用前景。
发明内容
本发明解决的技术问题是提供了一种新颖且高效的相转移催化β-酮酸酯不对称α-苯甲酰化的方法。
本发明为解决上述技术问题采用如下技术方案,相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于:将β-酮酸酯类化合物、相转移催化剂、过氧化苯甲酰和碱性溶液在溶剂中于-78-60℃搅拌反应制得手性α-苯甲酰基-β-酮酸酯类化合物,制备过程中的反应方程式为:
其中R7为烷基、环烷基、芳环或苄基,R8为氢、卤素、烷基、烷氧基或环烷基,R9为氢、卤素、烷基、烷氧基或环烷基,R10为氢、卤素、烷基、烷氧基或环烷基,n为1或2;
所述相转移催化剂选自金鸡纳碱衍生物Ia、IIa、Ib或IIb,对应的结构式为:
其中R1为H或OMe,R2为卤素、三氟甲基或甲氧基,R3为卤素、三氟甲基或甲氧基,R4为卤素、三氟甲基或甲氧基,R5为卤素、三氟甲基或甲氧基,R6为卤素、三氟甲基或甲氧基;
所述碱性溶液为有机碱水溶液或无机碱水溶液;
所述溶剂为卤代烃、芳香烃、烷烃或醚。
进一步优选,所述无机碱水溶液为碳酸钠、磷酸氢二钾、碳酸钾、碳酸铯、氢氧化钠、氢氧化钾、氢氧化锂、叔丁醇钠、叔丁醇钾、甲醇钠或乙醇钠中一种或多种水溶液组合。
进一步优选,所述无机碱水溶液优选为质量浓度为30%的碳酸钾水溶液、质量浓度为50%的氢氧化钠水溶液、质量浓度为50%的氢氧化钾水溶液、质量浓度为30%的碳酸铯水溶液、质量浓度为50%的磷酸氢二钾水溶液或质量浓度为50%的乙醇钠水溶液。
进一步优选,所述溶剂优选为甲苯、三氟甲苯、氯仿、乙醚、乙酸乙酯、对二甲苯、均三甲苯、正己烷或体积比为8:2的甲苯与氯仿的混合溶液。
进一步优选,所述相转移催化剂与β-酮酸酯类化合物的投料摩尔比为0.0001-0.5:1,过氧化苯甲酰与β-酮酸酯类化合物的投料摩尔比为1-3:1。
进一步优选,所述相转移催化剂与β-酮酸酯类化合物的投料摩尔比优选为0.01-0.05:1。
进一步优选,反应温度优选为0-20℃。
进一步优选,所述相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于具体步骤为:将β-酮酸酯类化合物、相转移催化剂、过氧化苯甲酰和碱性溶液在溶剂中于0-20℃搅拌反应,薄层色谱跟踪反应,反应结束后混合液分层,相转移催化剂在有机层不溶,悬浮于水层中,收集有机层并旋干溶剂,柱层析分离得到手性α-苯甲酰基-β-酮酸酯类化合物,含有相转移催化剂的水层中加入β-酮酸酯类化合物、过氧化苯甲酰和溶剂后重复循环反应,实现相转移催化剂的重复循环使用。
本发明的有效性体现在通过使用廉价易得的金鸡纳碱季铵盐,并通过相转移催化的方法首次成功实现了β-酮酸酯类化合物与过氧化苯甲酰不对称的α-苯甲酰化,为制备光学活性的α-氧代-β-酮酸酯类化合物的合成提供了新颖且有效的途径。此外,所使用的相转移催化剂极易分离,可以重复循环使用多次并保持较好的催化效果。
具体实施方式
以下通过实施例对本发明的上述内容作进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
(S)-2-苯甲酰基-1-茚酮-2-甲酸甲酯IIIb-1的制备
称取0.1mmol 1-茚酮-2-甲酸金刚酯IIIa-1,加入5mol%相转移催化剂Ia-1,0.15mol过氧化苯甲酰(质量分数70%),放入20mL单口反应管,加入质量浓度为30%的K2CO3水溶液0.5mL,4mL甲苯,于25℃搅拌反应。反应24小时后,混合液用乙酸乙酯萃取3次,水洗3次,无水硫酸钠干燥,过滤,旋干。粗品柱层析分离(石油醚:乙酸乙酯=25:1)得到不对称苯甲酰化产物IIIb-1(31mg,收率72%,43%ee);[α]D 25 110.6(c 0.62,CHCl3)1H NMR(400MHz,Chloroform-d)δ8.21–8.08(m,2H),7.88(d,J=7.6Hz,1H),7.73–7.66(m,1H),7.60(d,J=7.4Hz,1H),7.54–7.42(m,4H),4.14(d,J=17.4Hz,1H),3.47(d,J=17.4Hz,1H),2.17–2.09(m,3H),2.08–1.92(m,6H),1.61(s,6H).13C NMR(101MHz,CDCl3)δ196.08,165.51,165.02,151.73,136.01,133.90,133.60,130.12,129.10,128.46,128.03,126.16,125.11,84.65,83.65,40.89,39.04,35.95,30.83..HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=12.2min,τR(minor)=10.7min.HRMS Calcd.for[C27H26O5+Na]+requires m/z 453.1678,found m/z453.1671。
实施例2-18所施的发明过程与实施例1相同,但使用下表中所列的相转移催化剂代替Ia-1,结果见表1。
表1使用不同相转移催化剂制备2-苯甲酰基-1-茚酮-2-甲酸金刚酯IIIb-1
实施例19-25所实施的发明过程与实施例18相同,但使用下表中所列的碱性溶液代替质量浓度为30%的K2CO3水溶液,结果见表2。
表2使用不同碱性溶液制备2-苯甲酰基-1-茚酮-2-甲酸金刚酯IIIb-1
实施例26-32所实施的发明过程与实施例18相同,但使用下表中所列的溶剂代替甲苯,结果见表3。
表3使用不同溶剂制备2-苯甲酰基-1-茚酮-2-甲酸金刚酯IIIb-1
实施例34-38所实施的发明过程与实施例18相同,但使用下表中所列的温度代替25℃,结果见表4。
表4在不同温度下制备2-苯甲酰基-1-茚酮-2-甲酸金刚酯IIIb-1
实施例39-44所实施的发明过程与实施例34相同,但使用下表中所列的相转移催化剂用量代替原有相转移催化剂用量,结果见表5。
表5使用不同相转移催化剂量的IIb-2制备2-苯甲酰基-1-茚酮-2-甲酸金刚酯IIIb-1
实施例45-65所实施的发明过程与实施例41相同,但使用下表中所列的β-酮酸酯类化合物IIIa-2-IIIa-22代替原底物IIIa-1,结果见表6。
表6使用不同β-酮酸酯类化合物制备光学活性的α-苯甲酰化产物IIIb-2-IIIb-22
IIIb-2;[α]D 25 130.6(c 0.53,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.14(dd,J=8.1,1.4Hz,2H),7.88(d,J=7.7Hz,1H),7.76–7.57(m,2H),7.58–7.38(m,4H),4.16(d,J=17.4Hz,1H),3.46(d,J=17.4Hz,1H),1.40(s,9H).13C NMR(101MHz,CDCl3)δ196.02,165.54,165.41,151.74,136.08,133.82,133.63,130.10,129.06,128.47,128.07,126.19,125.13,84.67,83.65,38.98,27.69.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=9.4min,τR(minor)=7.8min。
IIIb-3;[α]D 25 123.4(c 0.56,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.21–8.09(m,2H),7.88(d,J=7.7Hz,1H),7.68(dd,J=7.5,1.2Hz,1H),7.60(d,J=7.4Hz,1H),7.55–7.41(m,4H),4.14(d,J=17.4Hz,1H),3.48(d,J=17.4Hz,1H),1.70–1.60(m,2H),1.39(d,J=9.6Hz,6H),0.70(t,J=7.5Hz,3H).13C NMR(101MHz,CDCl3)δ196.02,165.50,165.24,151.67,136.04,133.92,133.63,130.12,129.06,128.47,128.08,126.18,125.10,86.09,84.69,39.01,33.78,25.20,24.91,7.76.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=8.9min,τR(minor)=7.2min。
IIIb-4;[α]D 25 87.5(c 0.62,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.23–8.10(m,2H),7.89(d,J=7.7Hz,1H),7.69(d,J=1.2Hz,1H),7.62–7.57(m,1H),7.54–7.42(m,4H),4.13(d,J=17.4Hz,1H),3.51(d,J=17.4Hz,1H),1.87–1.65(m,6H),0.71(t,J=7.5Hz,9H).13C NMR(101MHz,CDCl3)δ196.08,165.45,164.74,151.69,135.99,134.02,133.61,130.15,129.08,128.45,128.08,126.14,125.05,91.94,84.74,39.20,26.92,7.43.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=7.6min,τR(minor)=6.6min。
IIIb-5;[α]D 25 99.3(c 0.61,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.17–8.07(m,2H),7.88(d,J=7.7Hz,1H),7.69(dd,J=7.5,1.3Hz,1H),7.61(td,J=7.1,1.4Hz,1H),7.55–7.42(m,4H),5.19–5.00(m,1H),4.24(d,J=17.5Hz,1H),3.45(d,J=17.5Hz,1H),1.24(dd,J=6.2,1.5Hz,3H),1.16(dd,J=6.2,1.5Hz,3H).13C NMR(101MHz,CDCl3)δ195.64,166.03,165.59,151.78,136.29,133.71,133.54,130.11,128.50,128.19,126.33,125.24,84.42,70.61,38.91,21.51,21.34.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=13.0min,τR(minor)=10.1min。
IIIb-6;[α]D 2575.1(c 0.83,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.21–8.11(m,2H),7.89(d,J=7.7Hz,1H),7.69(dd,J=7.5,1.2Hz,1H),7.62(s,1H),7.58–7.43(m,4H),5.00(s,1H),4.21(d,J=17.4Hz,1H),3.54(d,J=17.3Hz,1H),2.01–1.91(m,2H),1.85–1.61(m,9H),1.53–1.32(m,3H).13C NMR(101MHz,CDCl3)δ195.69,165.61,165.59,151.54,136.12,133.90,133.70,130.15,128.98,128.50,128.16,126.24,125.16,84.71,79.49,39.07,37.19,36.13,36.09,31.70,31.56,31.51,31.38,26.93,26.78.HPLCconditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=15.1min,τR(minor)=11.1min。
IIIb-7;[α]D 2558.2(c 0.64,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.16(d,J=7.0Hz,2H),7.90(d,J=7.7Hz,1H),7.70(td,J=7.5,1.2Hz,1H),7.60(d,J=7.4Hz,1H),7.56–7.42(m,4H),4.65(dd,J=6.5,5.5Hz,1H),4.19(d,J=17.4Hz,1H),3.55(d,J=17.4Hz,1H),1.96–1.64(m,2H),0.89(d,J=6.8Hz,3H),0.88–0.81(m,6H),0.59(d,J=6.8Hz,3H).13C NMR(101MHz,CDCl3)δ195.77,166.34,165.45,151.52,136.13,133.96,133.66,130.17,129.00,128.47,128.18,126.19,125.13,85.69,84.73,39.15,29.60,29.44,19.47,19.43,17.32,16.41.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=7.8min,τR(minor)=6.3min。
IIIb-8;[α]D 2589.3(c 0.78,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.49(s,1H),8.32–8.18(m,2H),8.09–7.93(m,4H),7.83(d,J=7.7Hz,1H),7.59(dt,J=26.1,7.4Hz,3H),7.50–7.34(m,8H),6.25(q,J=12.6Hz,2H),4.07(d,J=17.5Hz,1H),3.39(d,J=17.4Hz,1H).13C NMR(101MHz,CDCl3)δ195.30,166.81,165.44,151.39,136.16,133.62,133.53,131.23,131.02,130.15,129.49,128.95,128.63,128.32,128.13,126.64,126.29,125.27,125.01,123.86,84.52,61.17,38.77.HPLC conditions:Chiralcel AS-H column(250×4.6mm),hexane/i-PrOH=80/20,1mL/min,254nm,τR(major)=9.3min,τR(minor)=10.4min。
IIIb-9;[α]D 2570.0(c 0.55,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.13(dd,J=8.4,1.4Hz,2H),7.95–7.85(m,1H),7.71(td,J=7.5,1.2Hz,1H),7.61(d,J=7.5Hz,1H),7.56–7.43(m,4H),7.33–7.27(m,3H),7.21(dd,J=6.6,3.0Hz,2H),5.24(s,2H),4.25(d,J=17.5Hz,1H),3.50(d,J=17.5Hz,1H).13C NMR(101MHz,CDCl3)δ195.29,166.43,165.58,151.57,136.37,134.99,133.80,133.54,130.19,128.76,128.51,128.47,128.29,128.24,127.65,126.39,125.36,84.46,67.89,38.88.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=27.5min,τR(minor)=21.4min。
IIIb-10;[α]D 2575.3(c 0.45,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.14(d,J=7.8Hz,2H),7.89(d,J=7.7Hz,1H),7.79–7.59(m,2H),7.58–7.40(m,4H),4.27(d,J=17.6Hz,1H),3.79(s,3H),3.46(d,J=17.6Hz,1H).13C NMR(101MHz,CDCl3)δ195.44,167.07,165.59,151.67,136.44,133.84,133.39,130.19,128.52,128.31,126.42,125.38,84.32,53.52,38.91.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=80/20,1mL/min,254nm,τR(major)=13.0min,τR(minor)=9.4min。
IIIb-11;[α]D 25 89.4(c 0.71,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.13(d,J=7.0Hz,2H),7.81(d,J=8.2Hz,1H),7.68–7.56(m,1H),7.54–7.39(m,4H),4.09(d,J=17.5Hz,1H),3.45(d,J=17.5Hz,1H),2.19–2.09(m,3H),2.10–2.01(m,6H),1.64–1.58(m,6H).13C NMR(101MHz,CDCl3)δ194.72,165.44,164.72,152.99,142.52,133.72,132.45,130.13,128.89,128.50,126.42,126.15,84.52,83.96,40.91,38.69,35.92,30.85.HPLCconditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=12.7min,τR(minor)=10.4min。
IIIb-12;[α]D 25 99.2(c 0.67,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.18–8.09(m,2H),7.90(dd,J=8.4,5.3Hz,1H),7.62(t,J=7.5Hz,1H),7.48(t,J=7.8Hz,2H),7.23–7.10(m,2H),4.12(d,J=17.6Hz,1H),3.46(d,J=17.6Hz,1H),2.19–2.11(m,3H),2.03(d,J=2.8Hz,6H),1.62(t,J=3.0Hz,6H).13C NMR(101MHz,CDCl3)δ194.19,169.08,166.51,165.49,164.79,154.70,154.60,133.69,130.35,130.13,128.95,128.49,127.61,84.65,83.91,40.91,38.89,38.87,35.93,30.85.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=12.1min,τR(minor)=10.7min。
IIIb-13;[α]D 25 88.9(c 0.63,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.24–8.04(m,2H),7.79–7.67(m,2H),7.65–7.56(m,2H),7.47(t,J=7.8Hz,2H),4.09(d,J=17.5Hz,1H),3.46(d,J=17.5Hz,1H),2.25–1.92(m,9H),1.62(t,J=3.0Hz,6H).13C NMR(101MHz,CDCl3)δ194.98,165.44,164.69,153.03,133.73,132.85,131.74,131.44,130.14,129.49,128.88,128.50,126.19,84.42,84.02,40.91,38.61,35.93,30.85.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=13.5min,τR(minor)=10.5min。
IIIb-14;[α]D 25 118.0(c 0.58,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.21–8.07(m,2H),7.68(s,1H),7.59(d,J=7.5Hz,1H),7.54–7.38(m,4H),4.10(d,J=17.3Hz,1H),3.41(d,J=17.2Hz,1H),2.45(s,3H),2.08(dd,J=39.3,3.0Hz,9H),1.62(d,J=3.0Hz,6H).13C NMR(101MHz,CDCl3)δ196.11,165.50,165.15,149.17,138.05,137.29,134.01,133.54,130.11,129.18,128.44,125.82,125.01,84.99,83.56,40.90,38.74,35.97,30.85,21.14.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=98/2,1mL/min,254nm,τR(major)=12.3min,τR(minor)=9.8min。
IIIb-15;[α]D 25 92.4(c 0.49,CHCl3);1H NMR(400 MHz,Chloroform-d)δ8.17–8.08(m,2H),7.89–7.78(m,2H),7.61(d,J=7.4 Hz,1H),7.48(t,J=7.8 Hz,2H),7.37(t,J=7.7 Hz,1H),4.06(d,J=17.8 Hz,1H),3.39(d,J=17.8 Hz,1H),2.15–2.07(m,9H),1.62(t,J=3.1 Hz,6H).13C NMR(101MHz,CDCl3)δ195.59,165.39,164.63,151.27,138.59,135.97,133.75,130.15,129.73,128.83,128.51,123.78,121.49,84.30,84.03,40.91,40.02,35.93,30.86.HPLC conditions:Chiralcel AS-H column(250×4.6mm),hexane/i-PrOH=95/5,1mL/min,254nm,τR(major)=7.6min,τR(minor)=6.9min。
IIIb-16;[α]D 25 109.5(c 0.45,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.24–8.09(m,2H),7.82(d,J=8.6 Hz,1H),7.59(d,J=7.4 Hz,1H),7.47(t,J=7.7 Hz,2H),7.02–6.89(m,2H),4.14(d,J=17.4 Hz,1H),3.93(s,3H),3.39(d,J=17.4 Hz,1H),2.21–1.95(m,9H),1.61(t,J=2.9 Hz,6H).13C NMR(101 MHz,CDCl3)δ193.91,166.38,165.67,165.29,155.05,133.52,130.11,129.25,128.43,127.01,126.90,116.20,109.28,84.97,83.51,55.81,40.91,39.11,35.98,30.85.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=70/30,1mL/min,254nm,τR(major)=11.8min,τR(minor)=8.3min。
IIIb-17;[α]D 25 139.3(c 0.62,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.27–8.10(m,2H),7.59(d,J=7.5Hz,1H),7.48(d,J=7.9Hz,2H),7.28(s,1H),6.92(s,1H),4.10(d,J=17.2Hz,1H),3.98(d,J=24.3Hz,6H),3.35(d,J=17.2,1H),2.21–1.97(m,9H),1.68–1.55(m,6H).13C NMR(101 MHz,CDCl3)δ194.38,165.67,165.36,156.64,149.89,147.77,133.52,130.10,129.25,128.43,128.22,126.43,125.29,107.03,105.35,85.04,83.53,56.41,56.17,40.93,38.83,35.99,30.85.HPLC conditions:Chiralcel AS-Hcolumn(250×4.6mm),hexane/i-PrOH=95/5,1mL/min,254nm,τR(major)=7.4min,τR(minor)=6.4min。
IIIb-18;[α]D 25 120.2(c 0.51,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.22–8.05(m,2H),7.90(dd,J=8.4,5.2Hz,1H),7.69–7.55(m,1H),7.48(t,J=7.8Hz,2H),7.24–7.10(m,2H),4.14(d,J=17.6Hz,1H),3.45(d,J=17.6Hz,1H),1.41(s,9H).13C NMR(101MHz,CDCl3)δ194.12,169.12,166.55,165.52,165.19,154.72,133.71,130.11,128.92,128.50,127.64,127.54,116.60,116.37,113.17,112.95,84.67,83.89,38.84,27.69.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=10.5min,τR(minor)=8.3min。
IIIb-19;[α]D 25 108.5(c 0.44,CHCl3);1H NMR(400 MHz,Chloroform-d)δ8.19–8.06(m,2H),7.90(dd,J=8.4,5.3 Hz,1H),7.65–7.56(m,1H),7.47(t,J=7.8 Hz,2H),7.24–7.10(m,2H),4.12(d,J=17.6 Hz,1H),3.46(d,J=17.6 Hz,1H),1.72–1.60(m,2H),1.39(d,J=8.7Hz,6H),0.72(t,J=7.5 Hz,3H).13C NMR(101 MHz,CDCl3)δ194.14,169.09,166.52,165.49,165.02,154.66,133.72,130.35,130.12,128.90,128.50,127.61,116.60,113.17,86.35,84.68,38.87,38.85,33.73,25.21,24.91,7.80.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=10.4min,τR(minor)=7.9min。
IIIb-20;[α]D 25 18.3(c 0.21,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.20–8.02(m,3H),7.65–7.51(m,2H),7.50–7.35(m,3H),7.32–7.25(m,1H),3.82(s,3H),3.23–3.04(m,2H),3.00–2.73(m,2H).13C NMR(101MHz,CDCl3)δ189.46,168.53,165.22,142.34,133.94,133.53,131.77,130.12,128.62,128.43,128.41,127.16,83.19,53.04,31.82,25.69.HPLC conditions:Chiralcel AS-H column(250×4.6mm),hexane/i-PrOH=90/10,0.8mL/min,254nm,τR(major)=18.4min,τR(minor)=17.6min。
IIIb-21;[α]D 25 21.5(c 0.25,CHCl3);1H NMR(400 MHz,Chloroform-d)δ8.22–7.99(m,3H),7.63–7.43(m,4H),7.38(d,J=7.6Hz,1H),7.31–7.25(m,1H),3.29–3.02(m,2H),2.85–2.74(m,2H),2.23–1.94(m,9H),1.62(d,J=3.0Hz,6H).13C NMR(101MHz,CDCl3)δ190.14,166.45,165.14,141.90,133.49,133.26,132.71,130.10,129.50,128.38,128.33,127.94,126.98,83.68,83.56,40.90,35.98,32.32,30.81,25.96.HPLC conditions:Chiralcel AS-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=7.7min,τR(minor)=6.4min。
IIIb-22;[α]D 25 26.3(c 0.23,CHCl3);1H NMR(400MHz,Chloroform-d)δ8.19–8.01(m,3H),7.69–7.53(m,1H),7.45(t,J=7.5Hz,2H),6.89(dd,J=8.8,2.5Hz,1H),6.73(d,J=2.4Hz,1H),3.89(s,3H),3.24–2.97(m,2H),2.93–2.63(m,2H),2.20–2.02(m,9H),1.69–1.58(m,6H).13C NMR(101MHz,CDCl3)δ188.67,166.55,165.16,163.74,144.61,133.20,130.51,130.08,129.63,128.30,125.88,113.51,112.44,83.57,55.50,40.95,36.01,32.05,30.83,26.23.HPLC conditions:Chiralcel AD-H column(250×4.6mm),hexane/i-PrOH=90/10,1mL/min,254nm,τR(major)=17.8min,τR(minor)=19.0min。
实施例66
制备(S)-2-苯甲酰基-1-茚酮-2-甲酸甲酯IIIb-1(相转移催化剂循环使用)
称取2.5mmol 1-茚酮-2-甲酸金刚酯IIIa-1,加入2.5mol%相转移催化剂II-b,3.8mmol过氧化苯甲酰(质量分数70%),放入500mL反应瓶,加入质量浓度为30%的K2CO3水溶液25mL,250mL甲苯,于15℃搅拌反应,反应24小时后,混合液分层,相转移催化剂在有机层不溶,悬浮于水层中,收集有机层并旋干有机溶剂,柱层析分离(石油醚:乙酸乙酯=25:1)得到不对称苯甲酰化产物IIIb-1。再次向含有相转移催化剂的水层补加2.5mmol1-茚酮-2-甲酸金刚酯IIIa-1,3.8mmol过氧化苯甲酰(质量分数70%),250mL甲苯,继续搅拌反应,反应结束后与第一次处理方式相同,共循环反应五次,相转移催化剂循环使用催化效果见7。
表7相转移催化剂循环使用催化效果
以上显示和描述了本发明的基本原理,主要特征和优点,在不脱离本发明精神和范围的前提下,本发明还有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围。
Claims (8)
1.相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于:将β-酮酸酯类化合物、相转移催化剂、过氧化苯甲酰和碱性溶液在溶剂中于-78-60℃搅拌反应制得手性α-苯甲酰基-β-酮酸酯类化合物,制备过程中的反应方程式为:
其中R7为烷基、环烷基、芳环或苄基,R8为氢、卤素、烷基、烷氧基或环烷基,R9为氢、卤素、烷基、烷氧基或环烷基,R10为氢、卤素、烷基、烷氧基或环烷基,n为1或2;
所述相转移催化剂选自金鸡纳碱衍生物Ia、IIa、Ib或IIb,对应的结构式为:
其中R1为H或OMe,R2为卤素、三氟甲基或甲氧基,R3为卤素、三氟甲基或甲氧基,R4为卤素、三氟甲基或甲氧基,R5为卤素、三氟甲基或甲氧基,R6为卤素、三氟甲基或甲氧基;
所述碱性溶液为有机碱水溶液或无机碱水溶液;
所述溶剂为卤代烃、芳香烃、烷烃或醚。
2.根据权利要求1所述的相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于:所述无机碱水溶液为碳酸钠、磷酸氢二钾、碳酸钾、碳酸铯、氢氧化钠、氢氧化钾、氢氧化锂、叔丁醇钠、叔丁醇钾、甲醇钠或乙醇钠中一种或多种水溶液组合。
3.根据权利要求1所述的相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于:所述无机碱水溶液优选为质量浓度为30%的碳酸钾水溶液、质量浓度为50%的氢氧化钠水溶液、质量浓度为50%的氢氧化钾水溶液、质量浓度为30%的碳酸铯水溶液、质量浓度为50%的磷酸氢二钾水溶液或质量浓度为50%的乙醇钠水溶液。
4.根据权利要求1所述的相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于:所述溶剂优选为甲苯、三氟甲苯、氯仿、乙醚、乙酸乙酯、对二甲苯、均三甲苯、正己烷或体积比为8:2的甲苯与氯仿的混合溶液。
5.根据权利要求1所述的相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于:所述相转移催化剂与β-酮酸酯类化合物的投料摩尔比为0.0001-0.5:1,过氧化苯甲酰与β-酮酸酯类化合物的投料摩尔比为1-3:1。
6.根据权利要求1所述的相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于:所述相转移催化剂与β-酮酸酯类化合物的投料摩尔比优选为0.01-0.05:1。
7.根据权利要求1所述的相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于:反应温度优选为0-20℃。
8.根据权利要求1所述的相转移催化β-酮酸酯不对称α-苯甲酰化的方法,其特征在于具体步骤为:将β-酮酸酯类化合物、相转移催化剂、过氧化苯甲酰和碱性溶液在溶剂中于0-20℃搅拌反应,薄层色谱跟踪反应,反应结束后混合液分层,相转移催化剂在有机层不溶,悬浮于水层中,收集有机层并旋干溶剂,柱层析分离得到手性α-苯甲酰基-β-酮酸酯类化合物,含有相转移催化剂的水层中加入β-酮酸酯类化合物、过氧化苯甲酰和溶剂后重复循环反应,实现相转移催化剂的重复循环使用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710960135.6A CN107721858B (zh) | 2017-10-16 | 2017-10-16 | 相转移催化β-酮酸酯不对称α-苯甲酰化的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710960135.6A CN107721858B (zh) | 2017-10-16 | 2017-10-16 | 相转移催化β-酮酸酯不对称α-苯甲酰化的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107721858A true CN107721858A (zh) | 2018-02-23 |
CN107721858B CN107721858B (zh) | 2020-09-22 |
Family
ID=61210504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710960135.6A Active CN107721858B (zh) | 2017-10-16 | 2017-10-16 | 相转移催化β-酮酸酯不对称α-苯甲酰化的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107721858B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110872232A (zh) * | 2019-11-08 | 2020-03-10 | 新乡医学院 | 相转移催化β-酮酸酯不对称α-二氟甲基化的方法 |
CN113563187A (zh) * | 2021-08-20 | 2021-10-29 | 南京工业大学 | 一种手性α-羟基-β-酮酸酯化合物的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003040083A1 (en) * | 2001-11-07 | 2003-05-15 | E.I. Du Pont De Nemours And Company | Enantioselective hydroxylation of beta-dicarbonyls catalyzed by cinchona alkaloid derivatives |
CN105732387A (zh) * | 2016-04-14 | 2016-07-06 | 大连理工大学 | 新型C-2`相转移催化剂光致氧化β-二羰基化合物不对称α-羟基化的方法 |
CN105753703A (zh) * | 2016-04-14 | 2016-07-13 | 大连理工大学 | 一种新型金鸡纳碱N-O相转移催化剂光致氧化β-二羰基化合物不对称α-羟基化的方法 |
-
2017
- 2017-10-16 CN CN201710960135.6A patent/CN107721858B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003040083A1 (en) * | 2001-11-07 | 2003-05-15 | E.I. Du Pont De Nemours And Company | Enantioselective hydroxylation of beta-dicarbonyls catalyzed by cinchona alkaloid derivatives |
CN105732387A (zh) * | 2016-04-14 | 2016-07-06 | 大连理工大学 | 新型C-2`相转移催化剂光致氧化β-二羰基化合物不对称α-羟基化的方法 |
CN105753703A (zh) * | 2016-04-14 | 2016-07-13 | 大连理工大学 | 一种新型金鸡纳碱N-O相转移催化剂光致氧化β-二羰基化合物不对称α-羟基化的方法 |
Non-Patent Citations (2)
Title |
---|
DEHONG WANG等: "Asymmetric Benzoyloxylation of ketocarbonyls by a chiral primary amine catalyst", 《ORGANIC LETTERS》 * |
MILIND S. JADHAV等: "Enantioselective Benzoyloxylation of Ketones Promoted by Primary Amine Catalyst", 《THE JOURNAL OF ORGANIC CHEMISTRY》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110872232A (zh) * | 2019-11-08 | 2020-03-10 | 新乡医学院 | 相转移催化β-酮酸酯不对称α-二氟甲基化的方法 |
CN110872232B (zh) * | 2019-11-08 | 2022-01-25 | 新乡医学院 | 相转移催化β-酮酸酯不对称α-二氟甲基化的方法 |
CN113563187A (zh) * | 2021-08-20 | 2021-10-29 | 南京工业大学 | 一种手性α-羟基-β-酮酸酯化合物的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107721858B (zh) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Bromide-promoted visible-light-induced reductive Minisci reaction with aldehydes | |
Maji et al. | Visible-light photoredox catalysis: dehalogenation of vicinal dibromo-, α-halo-, and α, α-dibromocarbonyl compounds | |
Chandrasekharam et al. | Iron-Catalyzed Regioselective Direct Oxidative Aryl–Aryl Cross-Coupling | |
CN103418438B (zh) | 一种氮杂卡宾类钯催化剂及其制备方法和应用 | |
JP2008545716A (ja) | アモルファ−4,11−ジエンのアルテミシニンおよびアルテミシニン前駆体への変換 | |
Hau et al. | Enantioselective Brønsted base catalyzed [4+ 2] cycloaddition using novel amino-substituted tetraphenylene derivatives | |
CN105152958B (zh) | 新型金鸡纳碱C-2`衍生物为催化剂制备手性α-羟基-β-二羰基化合物的方法 | |
Liu et al. | Confining task-specific ionic liquid in silica-gel matrix by sol-gel technique: a highly efficient catalyst for oxidation of alcohol with molecular oxygen | |
CN107973778B (zh) | 一种钌催化芳香酮与二苯乙炔环化反应制备多芳取代萘衍生物的方法及应用 | |
CN105521826A (zh) | 一种锆催化剂及其制备手性α-羟基-β-酮酸酯化合物的方法 | |
CN105753703A (zh) | 一种新型金鸡纳碱N-O相转移催化剂光致氧化β-二羰基化合物不对称α-羟基化的方法 | |
Zhang et al. | Synthesis of highly substituted 1, 3-dienes, 1, 3, 5-trienes, and 3, 6-disubstituted cyclohexenes by the palladium-catalyzed coupling of organic halides, internal alkynes or 1, 3-cyclohexadienes, and organoboranes | |
CN105732387A (zh) | 新型C-2`相转移催化剂光致氧化β-二羰基化合物不对称α-羟基化的方法 | |
Kwong et al. | Iridium-catalyzed cascade decarbonylation/highly enantioselective Pauson–Khand-type cyclization reactions | |
CN107721858A (zh) | 相转移催化β‑酮酸酯不对称α‑苯甲酰化的方法 | |
Huang et al. | Substrate-controlled Cu (OAc) 2-catalyzed stereoselective semi-reduction of alkynes with MeOH as the hydrogen source | |
Zhang et al. | Synthesis of chiral fluorine-containing compounds via Pd-catalyzed asymmetrical allylations of dimethyl 2-fluoromalonate using sulfonamide-pyridine ligands | |
Lu et al. | The Heck reaction in aqueous micelles | |
JP2004537405A (ja) | パラジウム触媒 | |
CN101503358B (zh) | 高乌甲素作为催化剂制备手性α-羟基-β-二羰基化合物的方法 | |
Demchuk et al. | The halogen-less catalytic transition metal-mediated cross-coupling reactions: a sustainable alternative for utilisation of organohalides | |
Gou et al. | Scandium Triflate Catalyzed Tandem Transfer Hydrogenation and Cyclization Reaction of o-Aminobenzaldehydes and o-Aminoacetophenone with Alcohols | |
Chen et al. | Palladium-Catalyzed Homo-Dimerization of Terminal Alkynes | |
CN101844980A (zh) | 手性β-烷氧基β’-氨基醇作为催化剂制备手性α-羟基-β-酮酸酯化合物的方法 | |
JP2006143627A (ja) | 軸不斉を有する光学活性アミノ酸誘導体及び該アミノ酸誘導体を不斉触媒として用いる光学活性化合物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |