CN107721184A - 一种制备单模磁光玻璃光纤的逆磁玻璃体系 - Google Patents

一种制备单模磁光玻璃光纤的逆磁玻璃体系 Download PDF

Info

Publication number
CN107721184A
CN107721184A CN201710981819.4A CN201710981819A CN107721184A CN 107721184 A CN107721184 A CN 107721184A CN 201710981819 A CN201710981819 A CN 201710981819A CN 107721184 A CN107721184 A CN 107721184A
Authority
CN
China
Prior art keywords
glass
magneto
optic
shell
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710981819.4A
Other languages
English (en)
Inventor
陈秋玲
王晖
王艳荣
马秋花
王庆伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201710981819.4A priority Critical patent/CN107721184A/zh
Publication of CN107721184A publication Critical patent/CN107721184A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products

Abstract

本发明公开一种制备磁光玻璃光纤的逆磁玻璃体系,该体系基于TeO2和PbO 玻璃网络体,通过B2O3和SiO2稳定玻璃结构并改进玻璃性能参数。芯和壳玻璃成分为(58.8‑60%)TeO2‑(39.2‑40)PbO‑(0‑2%)B2O3(mol%)和(56‑57%)TeO2‑(36‑38%)PbO‑(0‑4%)B2O3–(0‑3%)SiO2(mol%)。该玻璃通过融熔淬火工艺900−1000°C制备。其法拉第系数大(0.2‑ 0.25 min/ Oe.cm)且无温度依赖性,可见光和红外透光率>70%,热稳定>100°C,符合磁光玻璃光纤芯&壳玻璃对线性热膨胀系数,折射率以及玻璃转化温度的匹配要求。

Description

一种制备单模磁光玻璃光纤的逆磁玻璃体系
技术领域
本发明涉及磁光玻璃光纤技术领域,尤其是涉及光纤芯&壳玻璃的成分,制备及参数匹配。
背景技术
近年来,随着光子和光学技术的进步,光学传感,光通信等光子器件对玻璃基非互易磁光效应元件的需求日益增加,其中具有磁光法拉第效应的磁光玻璃,以其透光率高,可以被拉制成光纤形式等优点已经在激光光学,光纤通信系统以及感测技术中得到了广泛的应用。比如基于法拉第效应的旋转器,隔离器,光开关,调制器以及磁光电流传感器等,他们凭借精度高,响应快,体积小,成本低等优势引起了人们的高度关注。
当前磁光材料的菲尔德常数(无论顺磁还是逆磁)都远远不能满足高性能磁光器件的需求。磁光玻璃分为顺磁和逆磁玻璃两种,以稀土掺杂为主的顺磁玻璃的磁光性能有严重的温度依赖性,而且随着稀土离子的掺杂,玻璃热稳定性和化学稳定性都会降低,对光纤性能产生不利影响,因此该体系不可取。以重金属氧化物氧化碲和氧化铅为主的逆磁玻璃虽然在可见光以及红外具有很好的透光率,低熔点,热稳定性好,然而目前逆磁玻璃的磁光菲尔德常数和昂贵的磁性晶体BIG,YIG等比较仍偏低,缺乏具有良好磁光性能的磁光玻璃是实现磁光玻璃器件商业化的主要障碍。
磁光玻璃光纤能满足高性能磁光器件对磁光响应快,磁光活性大的需求。当磁场施加在磁光玻璃制成的磁光光纤时,在光纤内引起法拉第效应,偏振面的旋转角度取决于所施加的磁场和光纤的长度,θ= VHL其中θ是法拉第旋转角,H是磁场,L是磁化方向的感应长度,V是光纤的Verdet常数。对于给定的菲尔德常数和磁场,样品长度越大,法拉第旋转角度越大,器件的磁光灵敏度就越大。
磁光光纤特殊的性能是实现高磁光灵敏器件的保证。光纤的最大优点是尺寸小,灵活性强,双折射小,可以通过缠绕等方式大大增强感应长度。法拉第效应属于非互易现象,不受光传播方向的影响,只和磁场方向有关,所以缠绕的光纤长度所引起的磁光效应起到叠加增强的效果。因此研究具有逆磁效应的磁光光纤是实现磁光器件商业化的最佳方案。
目前国内外对磁光光纤的研究主要有稀土Tb等掺杂的硅酸盐玻璃光纤和少量的硫系玻璃光纤。前者属于顺磁玻璃性质,因为其磁光性能随温度变化不稳定,因此不能用于户外或恶略环境。加之稀土价格昂贵,稀土在硅酸盐玻璃中的溶解度有限,所以其磁光性能和应用大大受到限制。硫系玻璃光纤的热稳定性和化学稳定性较差,光纤寿命短。而重金属氧化物为主的逆磁体系的磁光性能稳定,不受温度影响。而且原料低廉,熔点低,在很多光学光子器件中受到欢迎。然而逆磁玻璃光纤尚属空白,主要原因之一是光纤芯&壳玻璃对的性能匹配困难。
根据光纤的结构和抽制原理,光纤是由芯玻璃和壳玻璃组成的圆柱型芯壳结构,光纤由两种玻璃制成的预制棒按照一定条件拉制而成。为保证预制棒以及光纤的成功制备,两种不同成分的玻璃之间有苛刻的参数匹配要求。这些参数包括:线性热膨胀系数a(Δa= a – a < 2.0×10-6 [°C-1]),折射率n( (n 2 n 2)1/ 2<0.4(NA))以及玻璃转化温度(ΔT = Tg壳 - Tg芯< 30°C)。这些严苛的要求对逆磁光纤的材料选择是一个很大的挑战。
目前,对基于磁光效应的各类传感器件和光学器件研究正在向广泛应用领域及深度产业化转型。磁光光纤是提高磁光活性实现磁光器件的必然选择,开发磁光玻璃光纤芯&壳玻璃体系是制备磁光玻璃光纤的一个首先解决的课题。
发明内容
本发明的目的在于提供一种制备单模磁光玻璃光纤的逆磁玻璃体系,同时本发明还提供了制备磁光光纤的芯&壳玻璃的成分,生成及性能匹配。
为实现上述目的,本发明可采取下述技术方案:
本发明所述的制备单模磁光玻璃光纤的逆磁玻璃体系为:
该逆磁玻璃体系基于氧化碲和氧化铅网络体,并通过少量氧化硼和氧化硅调节稳定玻璃结构并改进玻璃性能参数。其中磁光玻璃光纤芯玻璃和壳玻璃的成分分别为:(58.8-60%)TeO2-(39.2-40)PbO-(0-2%)B2O3 (mol%)和 (56-57%)TeO2 - (36-38%)PbO - (0-4%)B2O3 –(0-3%)SiO2(mol%)。
该磁光玻璃体系通过融熔淬火工艺制备:将化学纯原料按比例称量并均匀搅拌的粉体在铂金坩埚内加热至900−1000°C并保持40−60分钟后,快速浇铸至200-300°C预热黄铜磨具中并在玻璃转化温度附件进行1-2小时的退火处理。
该体系磁光玻璃具有较大磁光法拉第系数(0.2- 0.25 min/ Oe.cm),在可见光和红外波长区域透光率大于70%,热稳定性良好(100摄氏度),满足磁光玻璃单模光纤芯&壳玻璃对线性热膨胀系数a(Δa= a – a < 2.0×10-6 [°C-1]),折射率( (n 2 n 2)1/ 2<0.4(NA))以及玻璃转化温度(ΔT = Tg壳 - Tg芯< 30°C)的匹配指标。
根据权利要求1 所述的制备磁光玻璃光纤的磁光玻璃体系,所述磁光光纤芯&壳玻璃样品的菲尔德常数由自制法拉第旋转光学平台测定。
本发明的优点是首次公开选用原料低廉、低熔点,热、化学性能稳定,光学和磁光性能好的逆磁玻璃作为磁光光纤芯&壳玻璃成分,通过成熟的玻璃制备工艺生成透明,均一的磁光光纤芯玻璃和壳玻璃,使两种逆磁玻璃性能达到光纤制备和光纤性能方面的严格匹配要求,从而为制备磁光玻璃光纤奠定非常重要的材料选择和匹配。成品菲尔德常数用自制的法拉第旋转光学平台测试,用紫外可见光和红外光谱分析仪分析其透光率,通过差热方法分析玻璃热稳定性和玻璃转化温度。所测结果表明磁光光纤芯玻璃和壳玻璃热性能稳定,光学透光率高,磁光菲尔德常数较好,按照公开的成分和制备方法所得的玻璃满足磁光光纤所要求的各项匹配指标。
附图说明
图1本发明实施例1制备的磁光光纤芯和壳玻璃照片;
图2 为本发明实施例1芯及壳玻璃的红外光谱分析照片;
图3 为本发明实施例1芯及壳玻璃的DTA分析照片;
图4 为本发明实施例2 制备磁光光纤芯及壳玻璃的紫外光谱照片;
图5为本发明中磁光光纤芯&壳玻璃性能匹配表。
具体实施方式
下面通过具体实施例对本发明做进一步说明。
实施例1
该体系基于氧化碲和氧化铅玻璃网络体,并通过少量氧化硼和氧化硅调节稳定玻璃结构并改进玻璃性能参数。其中磁光玻璃光纤芯玻璃和壳玻璃的成分分别为:58.8TeO2-39.2PbO-2%B2O3 (mol%)和 56TeO2 -36PbO-4%B2O3 –4%SiO2(mol%)。
磁光玻璃体系通过融熔淬火工艺制备:将99.99%化学纯原料TeO2, PbO, B2O3or/and SiO2按摩尔比计算得到质量比, 每份样品总重30克称量并均匀搅拌各粉体,然后将粉体转入铂金坩埚内在马弗炉内加热至900°C并保持60分钟,快速浇铸至200°C预热黄铜磨具中并转入退火炉内以每分钟5°C 升温至300°C退火1小时,然后以每分钟2°C降至室温。
对该体系磁光玻璃性能进行表征使其满足磁光玻璃单模光纤芯&壳玻璃对相应线性热膨胀系数a(Δa= a – a < 2.0×10-6 [°C-1]),折射率( (n 2 n 2)1/ 2<0.4(NA))以及玻璃转化温度(ΔT = Tg壳 - Tg芯< 30°C)的匹配指标。主要包括:差热法对玻璃转化温度和析晶温度进行表征,通过DTA 测量玻璃热膨胀系数,并对紫外和红外光谱扫描。玻璃的菲尔德常数通过法拉第光学平台进行测量计算。
本发明实施例1磁光光纤芯和壳玻璃的成分和性能匹配如图5所示。其中热膨胀系数Δa= a – a = 1 < 2.0×10-6 [°C-1],折射率n (n 2 n 2)1/ 2 = 0.20376<0.4(NA),玻璃转化温度ΔTg = Tg壳 - Tg芯=5°C< 30°C,以上参数均满足指标要求,芯和壳玻璃折射率表明该磁光光纤NA属于单模光纤。此外,玻璃的磁光菲尔德常数较大,热稳定性良好(96-101°C)。
本发明实施例1制备的磁光光纤芯和壳玻璃照片如图1所示,样品透明均一,呈浅黄色,无气泡,无裂纹。
本发明实施例1 磁光光纤芯及壳玻璃的红外光谱照片如图2所示,该玻璃体系在红外区域除了2760cm-1附件有对水分子OH 键的吸收之外, 无其他额外杂质吸收,总体透光率超过75%。OH 键的存在是由于该玻璃体系在空气中制备,可通过在手套箱中制备得以消除。
本发明实施例1磁光光纤芯及壳玻璃的DTA分析照片如图3所示。该玻璃体系在100°C-250°C之间的线性热膨胀系数匹配良好,保证避免后期光纤预制棒制备和光纤拉制程序中芯和壳玻璃界面由于热处理产生的开裂和变形。
实施例2
该体系基于氧化碲和氧化铅玻璃网络体,并通过少量氧化硼和氧化硅调节稳定玻璃结构并改进玻璃性能参数。其中磁光玻璃光纤芯玻璃和壳玻璃的成分分别为:60%TeO2-40%PbO-2%B2O3 (mol%)和 57%TeO2 -38%PbO-4%B2O3 –1%SiO2(mol%)。
磁光玻璃体系通过融熔淬火工艺制备:将99.99%化学纯原料TeO2, PbO, B2O3or/and SiO2按摩尔比计算得到质量比,没分样品称量30克称量并均匀搅拌各粉体,然后将粉体转入铂金坩埚内在马弗炉内加热至1000°C并保持60分钟,快速浇铸至250°C预热黄铜磨具中并转入退火炉内以每分钟5°C 升温至300°C退火1小时,然后以每分钟2°C降至室温。
对该体系磁光玻璃性能进行表征使其符合磁光玻璃单模光纤芯&壳玻璃对相应线性热膨胀系数a(Δa= a – a < 2.0×10-6 [°C-1]),折射率( (n 2 n 2)1/ 2<0.4(NA)),玻璃转化温度之差满足ΔT = Tg壳 - Tg芯< 30°C的匹配指标。主要包括:差热法对玻璃转化温度和析晶温度进行表征,通过DTA 测量玻璃热膨胀系数,并对紫外和红外光谱扫描。玻璃的菲尔德常数通过法拉第光学平台进行测量计算。
本发明实施例2磁光光纤芯和壳玻璃的紫外光谱如图4所示。该玻璃体系在紫外–可见光区域的透光率良好,超过70%,无其他杂质吸收峰。

Claims (2)

1.一种制备磁光玻璃光纤的逆磁玻璃体系,其特征在于:
1)成分:该体系基于氧化碲和氧化铅玻璃网络体,并通过少量氧化硼和氧化硅调节稳定玻璃结构并改进玻璃性能参数;其中磁光玻璃光纤芯玻璃和壳玻璃的成分分别为:(58.8-60%)TeO2-(39.2-40)PbO-(0-2%)B2O3 (mol%)和 (56-57%)TeO2 - (36-38%)PbO -(0-4%) B2O3 –(0-3%)SiO2(mol%);
2)制备:该磁光玻璃体系通过融熔淬火工艺制备:将化学纯原料按比例称量并均匀搅拌的粉体在铂金坩埚内加热至900−1000°C并保持40−60分钟后,快速浇铸至200-300°C预热黄铜磨具中并在玻璃转化温度附件进行1-2小时的退火处理;
3)性能匹配:该磁光玻璃体系具有较大磁光法拉第系数(0.2- 0.25 min/ Oe.cm),在可见光和红外波长区域透光率大于70%,热稳定性良好(100摄氏度),满足磁光玻璃单模光纤芯&壳玻璃对线性热膨胀系数a(Δa= a – a < 2.0×10-6 [°C-1]),折射率( (n 2 n 2)1/ 2<0.4(NA))以及玻璃转化温度(ΔT = Tg壳 - Tg芯< 30°C)的匹配指标。
2.根据权利要求1 所述的制备磁光玻璃光纤的磁光玻璃体系,所述磁光光纤芯&壳玻璃样品的菲尔德常数由自制法拉第旋转光学平台测定。
CN201710981819.4A 2017-10-20 2017-10-20 一种制备单模磁光玻璃光纤的逆磁玻璃体系 Pending CN107721184A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710981819.4A CN107721184A (zh) 2017-10-20 2017-10-20 一种制备单模磁光玻璃光纤的逆磁玻璃体系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710981819.4A CN107721184A (zh) 2017-10-20 2017-10-20 一种制备单模磁光玻璃光纤的逆磁玻璃体系

Publications (1)

Publication Number Publication Date
CN107721184A true CN107721184A (zh) 2018-02-23

Family

ID=61212301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710981819.4A Pending CN107721184A (zh) 2017-10-20 2017-10-20 一种制备单模磁光玻璃光纤的逆磁玻璃体系

Country Status (1)

Country Link
CN (1) CN107721184A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734228A (zh) * 2019-11-21 2020-01-31 北方工业大学 一种碲酸盐掺杂闪烁光纤及其制备方法
CN113176240A (zh) * 2021-05-11 2021-07-27 河南工业大学 一种磁光双控光纤spr传感器的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079073A1 (en) * 2002-03-15 2003-09-25 The University Of Sydney Incorporating inclusions in polymer optical fibres
CN103834998A (zh) * 2014-03-28 2014-06-04 福州大学 一种磷灰石型硅酸铽磁光晶体及其制备方法
CN106082684A (zh) * 2016-06-11 2016-11-09 华南理工大学 一种高掺杂Tb3+磷酸盐玻璃芯复合材料光纤及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079073A1 (en) * 2002-03-15 2003-09-25 The University Of Sydney Incorporating inclusions in polymer optical fibres
CN103834998A (zh) * 2014-03-28 2014-06-04 福州大学 一种磷灰石型硅酸铽磁光晶体及其制备方法
CN106082684A (zh) * 2016-06-11 2016-11-09 华南理工大学 一种高掺杂Tb3+磷酸盐玻璃芯复合材料光纤及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QIULING CHEN ET AL.: "Faraday rotation influence factors in tellurite-based glass and fibers", 《APPL. PHYS. A》 *
QIULING CHEN ET AL.: "Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies", 《APPLIED OPTICS》 *
QIULING CHEN ET AL.: "Properties of tellurite core/cladding glasses for magneto-optical fibers", 《JOURNAL OF NON-CRYSTALLINE SOLIDS》 *
王伟 等: "《玻璃生产工艺技术》", 31 December 2013, 武汉理工大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734228A (zh) * 2019-11-21 2020-01-31 北方工业大学 一种碲酸盐掺杂闪烁光纤及其制备方法
CN110734228B (zh) * 2019-11-21 2021-11-30 北方工业大学 一种碲酸盐掺杂闪烁光纤及其制备方法
CN113176240A (zh) * 2021-05-11 2021-07-27 河南工业大学 一种磁光双控光纤spr传感器的制备方法
CN113176240B (zh) * 2021-05-11 2023-01-24 河南工业大学 一种磁光双控光纤spr传感器的制备方法

Similar Documents

Publication Publication Date Title
Boulos et al. Structure and properties of silver borate glasses
Yang et al. Magneto-optical glass mixed with Tb3+ ions: High Verdet constant and luminescence properties
Bellanger et al. Fluorophosphate glasses with high terbium content for magneto-optical applications
Mo et al. Luminescence properties of magneto-optical glasses containing Tb3+ ions
Babkina et al. Terbium concentration effect on magneto-optical properties of ternary phosphate glass
Chen et al. Properties and structure of Faraday rotating glasses for magneto optical current transducer
Ali et al. A study of thermal, and optical properties of 22SiO2-23Bi2O3-37B2O3-13TiO2-(5-x) LiF-x BaO glasses
CN107721184A (zh) 一种制备单模磁光玻璃光纤的逆磁玻璃体系
Elisa et al. Thermal, structural, magnetic and magneto-optical properties of dysprosium-doped phosphate glass
CN110240402A (zh) 一种环保型透深紫外硼硅酸盐玻璃及其制备方法、应用
Skopak et al. Mixture experimental design applied to gallium-rich GaO3/2-GeO2-NaO1/2 glasses
So et al. Magnetic properties and photoluminescence of thulium-doped calcium aluminosilicate glasses
Barczak et al. Measurements of Verdet constant in heavy metal oxide glasses for magneto-optic fiber current sensors
Zhang et al. Microstructure and Faraday effect of Tb2O3‐Al2O3‐SiO2‐B2O3 glasses for fiber‐based magneto‐optical applications
Dubrovin et al. Highly Dy2O3 and Er2O3 doped boron-aluminosilicate glasses for magneto-optical devices operating at 2 µm
CN101948246A (zh) 一种高维尔德常数磁光玻璃及其制备方法
CN107651856A (zh) 一种磁光玻璃光纤的低温制备方法及表征
Youngman Borosilicate glasses
CN101182118B (zh) 碱金属镧铋镓酸盐红外光学玻璃及其制备方法
Linganna et al. Development of aluminosilicate glass fiber doped with high Pr 3+ concentration for all-optical fiber isolator application
Wang et al. Effect of the addition of MgF2 and NaF on the thermal, optical and magnetic properties of fluoride glasses for sensing applications
Guo et al. Effect of B2O3 addition on structure and properties of Yb3+/Al3+/B3+‐co‐doped silica glasses
CN107986632A (zh) 一种单模磁光玻璃光纤芯和壳逆磁玻璃体系成分及制备
CN110183104A (zh) 一种透深紫外玻璃及其制备方法、应用
CN108483902B (zh) 高v值和低温度系数重金属硼酸盐玻璃及制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180223

RJ01 Rejection of invention patent application after publication