CN113176240B - 一种磁光双控光纤spr传感器的制备方法 - Google Patents

一种磁光双控光纤spr传感器的制备方法 Download PDF

Info

Publication number
CN113176240B
CN113176240B CN202110509478.7A CN202110509478A CN113176240B CN 113176240 B CN113176240 B CN 113176240B CN 202110509478 A CN202110509478 A CN 202110509478A CN 113176240 B CN113176240 B CN 113176240B
Authority
CN
China
Prior art keywords
optical fiber
fiber
optical
diamagnetic
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110509478.7A
Other languages
English (en)
Other versions
CN113176240A (zh
Inventor
陈秋玲
苗保记
冯亚刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN202110509478.7A priority Critical patent/CN113176240B/zh
Publication of CN113176240A publication Critical patent/CN113176240A/zh
Application granted granted Critical
Publication of CN113176240B publication Critical patent/CN113176240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01268Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01271Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by centrifuging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/048Silica-free oxide glass compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Glass Compositions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种磁光双控光纤SPR传感器的制备方法,该方法以金纳米团簇量子点和稀土Eu2+掺杂的抗磁玻璃光纤为基础构建光纤SPR传感器,实现了优质发光强磁性材料的磁光双控,即使在微弱待测物质折射率变化的情况下,也可通过增加磁场或调谐光信号等技术使发光信号的等离子信号增强,提高了传感器灵敏度,具有成本低、便捷灵活、实时远程检测、传感灵敏度高的优点,可广泛用于光纤技术中的生物、医学传感和环境监测等领域。

Description

一种磁光双控光纤SPR传感器的制备方法
技术领域
本发明属于光纤SPR传感器制备领域,具体是一种磁光双控光纤SPR传感器的制备方法。
背景技术
光纤SPR传感将能量高度密集的等离子体共振场汇聚于“头发丝”大小的光纤波导上,可实现“信息获取”与“信号传输”集于一体的高精度、高速率、远距离测量,不受电磁干扰,基于小巧灵活等优点成为近十年来发展最为迅速的传感技术之一;然而,由于现有普通光纤材料磁性极弱,现有光纤SPR传感采用的是单一的光控传感模式,再加上现有普通光纤不具备磁性,通过磁场调控传感信号无法实现,使得现有光纤SPR传感器的传感灵敏度不能借助其他手段得以增强,只能凭借发光中心本身的参数比如浓度,形貌尺寸等实现发光性能的控制;此外,虽然SPR周围环境物理参数变化非常敏感,然而在待测物质浓度较小的情况下,液体折射率或介电常数的变化值极其微小,所产生的共振信号和发光信号也很微弱,传感灵敏度受到限制,比如现有的一般丙酮和苯气体传感器对丙酮的敏感检出限仅有1-5ppm,稍微先进的气体传感器也只能达到0.48ppm,因此迫切需要高质量高灵敏的生物传感器,保障人体和环境的健康。
磁场调控具有无源、非接触、快速、灵敏度高和成本低的独特优势,若是能将磁场调控与光控结合起来实现磁光双控,将给光纤等离子传感技术带来非凡的优势和诱人的前景,如何实现磁光双控传感是本领域科研工作者面临的挑战。
发明内容
良好的发光性能和强磁性材料是实施磁光双控光纤SPR传感的基础,也是增大光纤SPR 传感灵敏度的关键,金纳米团簇(Au25)是介于原子与纳米粒子之间的新型无毒发光量子点,有非凡的光致发光和强烈的表面等离子共振性能,而且,Au25自由电子具备量子约束并导致离散电子能级带隙变大,使Au25在可见光范围具有高度旋光磁性;不同于Eu3+,稀土Eu2+ 由于半填充Eu4f能级的7/2自旋和局部磁矩之间的交换作用,使激发光在Eu5d和6s轨道形成的导带中产生扩展电子和激子,产生较大磁矩并展现强抗磁性质,而且在磁场作用下其晶格产生畸变,晶格参数发生变化或进而影响发光离子所处的晶体场强度,致使Eu2+的能级结构发生精细劈裂,改变发光性质,因此Eu2+具备优异的磁控发光性能。
本发明的目的在于提供一种磁光双控光纤SPR传感器的制备方法,以克服现有技术存在的上述缺陷;该方法以金纳米团簇量子点和稀土Eu2+ 掺杂的抗磁玻璃光纤为基础构建光纤SPR传感器,基于金纳米团簇量子点和稀土Eu2+ 优异的发光性能、等离子性能以及抗磁玻璃光纤的强磁光性能,不仅可以通过磁场调节金纳米团簇和稀土Eu2+晶格常数、晶体场、能量转移和带隙能量大小来控制金纳米团簇和Eu2+发光及抗磁光纤内磁光效应,而且由于金纳米团簇的带隙能量受形貌、尺寸、结构和环境影响较大,也可同时通过调节激发光频率和强度达到对发光性能的有效控制,实现了优质发光强磁性材料的磁光双控,即使在微弱待测物质折射率变化的情况下,也可通过增加磁场或调谐光信号等技术使发光信号的等离子信号增强,达到提高传感器灵敏度的目的。
为实现上述目的,本发明通过以下技术方案来实现:一种磁光双控光纤SPR传感器的制备方法,包括以下步骤:
1)按照35Bi2O3-40TeO2-10H3BO3-3GeO2-(12-y)ZnO-yNa2O (y= 3, 5 和 8 )的摩尔比称量壳玻璃原料,搅拌后在900-950℃ N2中熔融,浇注预热旋转炉并以600-1000r/min旋转40-60s,冷却后取出壳玻璃管,固定于U型模具;其中,y取 3、5 、8中的任一数值;
2)按照xAuCl3 -(100-x) (40Bi2O3-45TeO2-5EuCl2-8ZnO-2BaO)的摩尔比称量芯玻璃原料,充分搅拌后在还原气氛下880-930℃熔融1-2h,浇注至270-290℃预热的壳玻璃管,285-365℃退火1-3hrs后获得金纳米团簇和Eu2+掺杂的预制棒;其中,x取1、2、5中的任一数值;
3)将金纳米团簇和Eu2+掺杂的预制棒装入光纤塔进料口,设置上氮气管N2流速100-150cm3/min 、下氮气管N2流速10-15cm3/min,拉纤温度480-530℃, 预制棒下降速度0.9-1.0mm/min, 卷纤鼓速度5.5-6.0r/min,光纤拉制后300-365℃退火1-4小时,得到金纳米团簇和Eu2+掺杂的抗磁玻璃光纤;
4)抗磁玻璃光纤一端耦合激光信号和泵浦信号,另一端连接光谱仪,在抗磁玻璃光纤传感区域剥离外壳,纤芯表面溅射金膜,金膜表面涂覆有机敏感层,增加传感材料的生物兼容性和对检测生物分子的亲和力,然后把抗磁玻璃光纤加可调磁场后插入生物检测液,随着敏感层吸附周围生物分子、蛋白质或有毒挥发性气体的增加,敏感层折射率和介电常数发生变化,激发量子点荧光发射,调节磁场和光场信息,根据光谱漂移获取生物分子浓度。
优选的,芯玻璃原料与壳玻璃原料的质量比为1∶(1.5-1.7)。
优选的,步骤4)中金膜厚度为200-500nm,有机敏感层厚度为50-100nm。
本发明取得的有益效果:
采用金纳米团簇量子点原位生成的工艺和低温拉纤的技术保证了金纳米团簇在预制棒和拉纤过程中不产生变形、晶体长大以及析出晶体;以无毒、优质发光、等离子效应和磁光效应的金纳米团簇和Eu2+掺杂的抗磁玻璃光纤为基础,实现了磁光双控传感发光对生物物质微小变化的传感,避免了单一光控的传感模式,具有成本低、便捷灵活、实时远程检测、传感灵敏度高(检出限0.01-0.05ppm,灵敏度(1.5-2.0)×106nm/RIU,折射率分辨率为(0.1-1)×10-5 RIU)的优点,可广泛用于光纤技术中的生物、医学传感和环境监测等领域。
附图说明
图1是本发明实施例 1中金纳米团簇量子点在抗磁玻璃光纤中的赋存状态和大小;
图2是本发明实施例 1中金纳米团簇量子点在抗磁玻璃光纤中光控量子发光性能;
图3是本发明实施例 2抗磁玻璃光纤中Eu2+的磁控发光性能;
图4是本发明实施例2中光纤生物传感器的磁光效应。
具体实施方式
下面通过具体实施例对本发明做进一步说明。
实施例1
1)按照35Bi2O3-40TeO2-10H3BO3-3GeO2-9ZnO-3Na2O的摩尔比称量壳玻璃原料38.5,搅拌后在900℃ N2中熔融,浇注预热旋转炉并以1000r/min旋转60s,冷却后取出壳玻璃管,固定于U型模具;
2)按照2AuCl3 -98(40Bi2O3-45TeO2-5EuCl2-8ZnO-2BaO)的摩尔比称量芯玻璃原料25g,充分搅拌后在还原气氛下900℃熔融1.5h,浇注至270℃预热的壳玻璃管,320℃退火2hrs后获得金纳米团簇和Eu2+掺杂的预制棒;
3)将金纳米团簇和Eu2+掺杂的预制棒装入光纤塔进料口,设置上氮气管N2流速120cm3/min 、下氮气管N2流速12cm3/min,拉纤温度500℃, 预制棒下降速度0.95mm/min,卷纤鼓速度6.0r/min,光纤拉制后365℃退火2小时,得到金纳米团簇和Eu2+掺杂的抗磁玻璃光纤;
4)抗磁玻璃光纤一端耦合激光信号和泵浦信号,另一端连接光谱仪,在抗磁玻璃光纤传感区域剥离外壳,纤芯表面溅射200nm金膜,然后在金膜表面涂覆50nm有机酵素酶,然后把抗磁玻璃光纤加可调磁场后插入生物检测液,随着酵素酶吸附周围丙酮分子的增加,酵素酶折射率和介电常数发生变化,激发量子点荧光发射,调节磁场3T、光场信息500nm,根据光谱漂移获取丙酮分子浓度;本实施例所检测丙酮分子浓度下限为0.03ppm,灵敏度为150000nm/RIU,折射率分辨率为(0.5-0.9)×10-5 RIU。
实施例1中金纳米团簇量子点在抗磁光纤中的赋存状态和大小在图1中展示,可以看到,原位生成的金纳米团簇经过两次还原气氛下的300℃热处理后,金纳米团簇量子点在抗磁纤芯内分布均匀,而且呈现准球形,符合量子点尺寸;实施例1中金纳米团簇量子点在抗磁光纤SPR传感的发光性能在图2中展示,可以看到,抗磁光纤发光强度好,光纤形貌完整。
实施例2
1)按照35Bi2O3-40TeO2-10H3BO3-3GeO2-7ZnO-5Na2O的摩尔比称量壳玻璃原料40g,搅拌后在900℃ N2中熔融,浇注预热旋转炉并以900r/min旋转55s,冷却后取出壳玻璃管,固定于U型模具;
2)按照5AuCl3 -95(40Bi2O3-45TeO2-5EuCl2-8ZnO-2BaO)的摩尔比称量芯玻璃原料25.3g,充分搅拌后在还原气氛下920℃熔融1h,浇注至285℃预热的壳玻璃管,300℃退火3hrs后获得金纳米团簇和Eu2+掺杂的预制棒;光纤拉制后340℃退火4小时,
3)将金纳米团簇和Eu2+掺杂的预制棒装入光纤塔进料口,设置上氮气管N2流速150cm3/min 、下氮气管N2流速15cm3/min,拉纤温度480℃, 预制棒下降速度0.9mm/min, 卷纤鼓速度5.6r/min,335℃退火3小时,得到金纳米团簇和Eu2+掺杂的抗磁玻璃光纤;
4)抗磁玻璃光纤一端耦合激光信号和泵浦信号,另一端连接光谱仪,在抗磁玻璃光纤传感区域剥离外壳,纤芯表面溅射300nm金膜,然后在金膜表面涂覆80nm有机酵素酶,然后把抗磁玻璃光纤加可调磁场后插入生物检测液,随着酵素酶吸附周围丙酮分子的增加,酵素酶折射率和介电常数发生变化,激发量子点荧光发射,调节磁场5T、光场信息400nm,根据光谱漂移获取丙酮分子浓度;本实施例所检测丙酮分子浓度底限为0.01ppm,灵敏度为180000nm/RIU,折射率分辨率为(0.2-0.6)×10-5 RIU。
如图3所示,实施例2中金纳米团簇量子点在抗磁光纤内的发射光随激发波长的变化而改变,展示了良好的光控发光性能;如图4所示,实施例2光纤SPR传感器中Eu2+展现优良磁控发光性能。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (3)

1.一种磁光双控光纤SPR传感器的制备方法,其特征在于包括以下步骤:
1)按照35Bi2O3-40TeO2-10H3BO3-3GeO2-(12-y)ZnO-yNa2O的摩尔比称量壳玻璃原料,搅拌后在900-950℃N2中熔融,浇注预热旋转炉并以600-1000r/min旋转40-60s,冷却后取出壳玻璃管,固定于U型模具;其中,y取3、5 、8中的任一数值;
2)按照xAuCl3-(100-x)(40Bi2O3-45TeO2-5EuCl2-8ZnO-2BaO)的摩尔比称量芯玻璃原料,充分搅拌后在还原气氛下880-930℃熔融1-2h,浇注至270-290℃预热的壳玻璃管,285-365℃退火1-3hrs后获得金纳米团簇和Eu2+掺杂的预制棒;其中,x取1、2、5中的任一数值;
3)将金纳米团簇和Eu2+掺杂的预制棒装入光纤塔进料口,设置上氮气管N2流速100-150cm3/min 、下氮气管N2流速10-15cm3/min,拉纤温度480-530℃, 预制棒下降速度0.9-1.0mm/min, 卷纤鼓速度5.5-6.0r/min,光纤拉制后300-365℃退火1-4小时,得到金纳米团簇和Eu2+掺杂的抗磁玻璃光纤;
4)抗磁玻璃光纤一端耦合激光信号和泵浦信号,另一端连接光谱仪,在抗磁玻璃光纤传感区域剥离外壳,纤芯表面溅射金膜,金膜表面涂覆有机敏感层,然后把抗磁玻璃光纤加可调磁场后插入生物检测液,随着敏感层吸附周围生物分子的增加,敏感层折射率和介电常数发生变化,激发量子点荧光发射,调节磁场和光场信息,根据光谱漂移获取生物分子浓度。
2.根据权利要求1所述的制备方法,其特征在于:芯玻璃原料与壳玻璃原料的质量比为1∶(1.5-1.7)。
3.根据权利要求1所述的制备方法,其特征在于:步骤4)中金膜厚度为200-500nm,有机敏感层厚度为50-100nm。
CN202110509478.7A 2021-05-11 2021-05-11 一种磁光双控光纤spr传感器的制备方法 Active CN113176240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110509478.7A CN113176240B (zh) 2021-05-11 2021-05-11 一种磁光双控光纤spr传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110509478.7A CN113176240B (zh) 2021-05-11 2021-05-11 一种磁光双控光纤spr传感器的制备方法

Publications (2)

Publication Number Publication Date
CN113176240A CN113176240A (zh) 2021-07-27
CN113176240B true CN113176240B (zh) 2023-01-24

Family

ID=76928724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110509478.7A Active CN113176240B (zh) 2021-05-11 2021-05-11 一种磁光双控光纤spr传感器的制备方法

Country Status (1)

Country Link
CN (1) CN113176240B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544964A (zh) * 2003-11-14 2004-11-10 中国科学院上海光学精密机械研究所 稀土离子掺杂的氧氟化物微晶玻璃光纤及其制备方法
CN1733637A (zh) * 2004-07-23 2006-02-15 日本板硝子株式会社 包层玻璃组合物、折射率分布型棒透镜及其制造方法
CN101209897A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 磁光玻璃陶瓷及其制备方法
CN101492248A (zh) * 2009-02-27 2009-07-29 中国科学院上海光学精密机械研究所 2μm激光输出掺铥碲酸盐玻璃与光纤及其制备方法
CN106082684A (zh) * 2016-06-11 2016-11-09 华南理工大学 一种高掺杂Tb3+磷酸盐玻璃芯复合材料光纤及其制备方法
CN106706888A (zh) * 2016-11-30 2017-05-24 国网山东省电力公司泰安供电公司 应用于光纤电流互感器的逆磁玻璃制作检测方法
JP2017095301A (ja) * 2015-11-24 2017-06-01 日本電気硝子株式会社 ガラス材及びその製造方法
CN107651856A (zh) * 2017-10-20 2018-02-02 河南工业大学 一种磁光玻璃光纤的低温制备方法及表征
CN107721184A (zh) * 2017-10-20 2018-02-23 河南工业大学 一种制备单模磁光玻璃光纤的逆磁玻璃体系
CN108872155A (zh) * 2018-04-29 2018-11-23 河南工业大学 一种磁光光纤基表面等离子空气质量传感器的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927176B1 (fr) * 2008-02-01 2010-05-14 Alcatel Lucent Guide optique dope par des ions terres rares et dispositif optique le comprenant.
CN102674690A (zh) * 2012-05-31 2012-09-19 中国科学院上海光学精密机械研究所 3μm掺稀土离子的铋锗酸盐激光玻璃及其制备方法
CN103130414B (zh) * 2013-03-05 2014-12-24 中山大学 一种稀土掺杂硅酸盐发光玻璃及其制备方法
EP3729520A1 (de) * 2017-12-18 2020-10-28 LITEC-Vermögensverwaltungsgesellschaft mbH Lichtkonvertierendes material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544964A (zh) * 2003-11-14 2004-11-10 中国科学院上海光学精密机械研究所 稀土离子掺杂的氧氟化物微晶玻璃光纤及其制备方法
CN1733637A (zh) * 2004-07-23 2006-02-15 日本板硝子株式会社 包层玻璃组合物、折射率分布型棒透镜及其制造方法
CN101209897A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 磁光玻璃陶瓷及其制备方法
CN101492248A (zh) * 2009-02-27 2009-07-29 中国科学院上海光学精密机械研究所 2μm激光输出掺铥碲酸盐玻璃与光纤及其制备方法
JP2017095301A (ja) * 2015-11-24 2017-06-01 日本電気硝子株式会社 ガラス材及びその製造方法
CN106082684A (zh) * 2016-06-11 2016-11-09 华南理工大学 一种高掺杂Tb3+磷酸盐玻璃芯复合材料光纤及其制备方法
CN106706888A (zh) * 2016-11-30 2017-05-24 国网山东省电力公司泰安供电公司 应用于光纤电流互感器的逆磁玻璃制作检测方法
CN107651856A (zh) * 2017-10-20 2018-02-02 河南工业大学 一种磁光玻璃光纤的低温制备方法及表征
CN107721184A (zh) * 2017-10-20 2018-02-23 河南工业大学 一种制备单模磁光玻璃光纤的逆磁玻璃体系
CN108872155A (zh) * 2018-04-29 2018-11-23 河南工业大学 一种磁光光纤基表面等离子空气质量传感器的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Cu,Ag颗粒对Tb3+,Yb3+:Er3+掺杂CaSrSiO4发光特性的调控;洪远志;《中国知网》;20181215;第11-22页 *
Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices;Markus Alexander Schmidt等;《Adv. Optical Mater》;20151015;第13-36页 *
Properties of tellurite-based high numerical aperture fibers with diamagnetic core and cladding glasses;Qiuling Chen等;《Journal of Non-Crystalline Solids》;20150402;第27-33页 *
稀土磁光玻璃的研究进展;王昱 等;《云南大学学报》;20051231;第27卷(第3A期);第305-309页 *
纳米功能颗粒掺杂玻璃的制备及光学特性;曾慧丹等;《硅酸盐学报》;20031031;第31卷(第10期);第974-978页 *

Also Published As

Publication number Publication date
CN113176240A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
Ji et al. Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection
Yin et al. Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4: Yb 3+, Tm 3+/Er 3+ nanocrystals
Yin et al. Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals
Huang et al. Rare earth ion–and transition metal ion–doped inorganic luminescent nanocrystals: from fundamentals to biodetection
CN102992613B (zh) 一种稀土均匀掺杂光纤预制棒芯棒及其制备方法
CN106905974A (zh) 一种用核壳结构纳米粒子增强量子点发光的方法
Yamamoto et al. Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap
CN107418554B (zh) 一种金纳米棒与上转换纳米晶复合纳米材料及其制备方法
Feng et al. Highly efficient and wide range low temperature sensing of upconversion luminescence of NaYF4: Er3+ nanoparticles: Effects of concentration of active or sensitive ions, excitation power and particle size on temperature sensing sensitivity
Shen et al. Ultraviolet sensing characteristics of Ag-doped ZnO micro-nano fiber
CN113176240B (zh) 一种磁光双控光纤spr传感器的制备方法
Huang et al. Simultaneous enhancement of fluorescence intensity, thermometric sensitivity and SNR of upconversion thermometers via optical field localization
Wang et al. Structures, plasmon-enhanced luminescence, and applications of heterostructure phosphors
CN109163739B (zh) 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法
Wang et al. Research Progress of Resonance Optical Fiber Sensors Modified by Low‐Dimensional Materials
Zhou et al. A high-sensitivity optical thermometer based on Nd3+/Tm3+/Yb3+/Gd3+ four-doped NaYF4 nanomaterials
CN107359404B (zh) 调控多个随机不相干单光子发射器辐射的环腔纳米天线
Shang et al. Ag@ DWs nanopillars as a nanoprobe for detection of R6G via surface-enhanced fluorescent
Peng et al. Surface plasmon resonance of Au/Ag metals for the photoluminescence enhancement of lanthanide ion Ln 3+ doped upconversion nanoparticles in bioimaging
Nie et al. Dual-tuning upconversion luminescence based on perfectly absorbed nanocavities under triple NIR excitation
CN207426131U (zh) 调控多个随机不相干单光子发射器辐射的环腔纳米天线
CN107331717A (zh) 一种有机‑无机纳米线及其制备方法和有机‑无机光探测器及其制备方法
Zhou et al. Upconversion luminescence enhancement of the composite films by coupling local surface plasmon effect and photonic crystals effect
Wang et al. One-pot synthesis of multicolor MnSe: ZnSe nanocrystals for optical coding
Toropov et al. Direct enhancement of luminescence of CdxZn1− xSeyS1− y/ZnS nanocrystals with gradient chemical composition by plasmonic nanoantennas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant