CN107704720B - 一种石油平均分子结构模型的构建方法以及性质预测方法 - Google Patents

一种石油平均分子结构模型的构建方法以及性质预测方法 Download PDF

Info

Publication number
CN107704720B
CN107704720B CN201710839117.2A CN201710839117A CN107704720B CN 107704720 B CN107704720 B CN 107704720B CN 201710839117 A CN201710839117 A CN 201710839117A CN 107704720 B CN107704720 B CN 107704720B
Authority
CN
China
Prior art keywords
petroleum
unit
average molecular
molecular structure
distribution algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710839117.2A
Other languages
English (en)
Other versions
CN107704720A (zh
Inventor
张霖宙
吕文进
史权
赵锁奇
徐春明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Puluo Shuzhi Technology Co.,Ltd.
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN201710839117.2A priority Critical patent/CN107704720B/zh
Publication of CN107704720A publication Critical patent/CN107704720A/zh
Application granted granted Critical
Publication of CN107704720B publication Critical patent/CN107704720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like

Landscapes

  • Computing Systems (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种石油平均分子结构模型的构建方法以及性质预测方法,其中,构建石油平均分子结构模型的方法包括以下步骤:获取石油样品的不同类型氢的氢分率、元素的质量分率以及相对分子量数据;根据获取的上述数据,计算出石油样品的结构参数;设定石油样品的构筑单元,然后通过建立构筑单元的分配算法,将所述构筑单元与所述结构参数进行逻辑关联;通过对所述分配算法进行推演计算,得出构筑单元数量,同时获得石油样品的结构单元和结构单元数量,完成对石油样品的平均分子结构模型的构建。获得石油的平均分子结构后,即可结合基团贡献法,对石油的物理性质进行预测,尤其是那些难以测量的物理性质,如临界性质、偏心因子等。

Description

一种石油平均分子结构模型的构建方法以及性质预测方法
技术领域
本发明属于石油加工领域,具体涉及一种石油平均分子结构模型的构建方法以及性质预测方法。
背景技术
石油的物理性质对于石油加工过程的工艺计算、设备选型和装置设计等具有指导性的意义,同时也是影响石油产品质量的关键因素。石油是由各种烃类以及非烃类化合物组成的复杂混合物,其物理性质是混合体系中各种化合物性质的综合体现,与其化学组成有着密切联系。
由于石油组成不易测定,石油的许多物理性质又不具有简单的可加性,因此需采用规定的试验方法对其性质进行测定。传统的基于核磁共振谱预测性质的方法往往需要大量样本,过程需测定样本的波谱及物理性质并进行关联训练,工作量大,繁复耗时且昂贵。可即便如此,这种传统方法也无法预测石油那些难以测量的物理性质,如临界性质、偏心因子等。
发明内容
为解决上述问题,本发明的目的在于提供一种石油平均分子结构模型构建方法。
本发明的另一目的是提供一种石油平均分子结构模型构建系统。
本发明的另一目的是提供一种预测石油性质的方法。
本发明的又一目的是提供一种预测石油性质的系统。
为达到上述目的,本发明提供了一种石油平均分子结构模型构建方法,该方法包括以下步骤:
获取石油样品的不同类型氢的氢分率、元素的质量分率以及相对分子量数据;
根据获取的上述数据,计算出石油样品的结构参数;
设定石油样品的构筑单元,然后通过建立构筑单元的分配算法,将所述构筑单元与所述结构参数进行逻辑关联;
通过对所述分配算法进行推演计算,得出构筑单元数量,同时,获得石油样品的结构单元和结构单元数量,完成对石油样品的平均分子结构模型的构建。
本发明提供了一种通过建立石油样品的结构参数和构筑单元的关联关系,推演计算出石油平均分子结构的方法。获得石油的平均分子结构后,即可结合基团贡献法,对石油的物理性质进行预测,尤其是那些难以测量的物理性质,如临界性质、偏心因子等。
在本发明提供的石油平均分子结构模型构建方法中,优选地,所述石油样品包括原油、原油蒸馏馏分或渣油馏分。
在本发明提供的石油平均分子结构模型构建方法中,优选地,获取所述不同类型氢的氢分率的过程为:测定石油样品的核磁共振氢谱,根据化学位移划分谱区,并分别归属为不同氢类型;将谱图进行积分处理,计算各谱区的峰面积并进行归一化处理,得到不同类型氢的氢分率。上述不同类型氢是根据氢与不同类型碳连接的情况进行的分类,一般划分成四种类型的氢,分别为与芳香碳直接相连的氢(A型氢),与芳香环的α碳相连的氢(α型氢),芳香环上的β碳上的氢以及β以远的CH2、CH基上的氢(β型氢),芳香环的γ位及γ位以远的CH3基上的氢原子(γ型氢)。
在本发明提供的石油平均分子结构模型构建方法中,优选地,所述元素的质量分率包括碳质量分率、氢质量分率、硫质量分率、氮质量分率和氧质量分率。可以采用本领域常规的元素分析方法获取上述数据。
在本发明提供的石油平均分子结构模型构建方法中,优选地,所述石油样品的结构参数包括芳碳率fA、单元芳环数RA*、单元芳碳数CA*、单元环烷环数RN*、氮原子数NT*、氧原子数OT*、硫原子数ST*、单元环烷碳数CN*或单元支链碳数CP*。优选地,计算石油样品的结构参数时采用改进型Brown-Ladner法。
在本发明提供的石油平均分子结构模型构建方法中,可以采用本领域常规方法设定构筑单元。在本发明提供的一优选实施方式中,构筑单元包括六元芳香环(A6)、四元芳香环增量(A4)、二元芳香环增量(A2)、六元环烷环(N6)、五元环烷环(N5)、四元环烷环增量(N4)、三元环烷环增量(N3)、环烷烃中的双键(IH)、环烷环上的硫原子(NS)、芳环上的氮原子(AN)、碳氢原子间的氧原子(RO)、除甲基外的链烷基(R)、与环相连的甲基(Me)以及侧链上的甲基(Br)。
在本发明提供的石油平均分子结构模型构建方法中,优选地,所述构筑单元的分配算法包括:芳烃分配算法、环烷烃分配算法、侧链分配算法以及杂原子分配算法;
所述芳烃分配算法是在构建芳烃的构筑单元与芳烃的结构参数方程的基础上,结合了芳环成环条件的推演运算;
所述环烷烃分配算法是在构建环烷烃的构筑单元与环烷烃的结构参数方程的基础上,结合了环烷烃成环条件的推演运算;
所述侧链分配算法为构建的侧链的构筑单元与侧链的结构参数方程;
所述杂原子分配算法为构建的杂原子的构筑单元与杂原子的结构参数方程。
本发明还提供了一种石油平均分子结构模型构建系统,该系统包括:
第一单元,所述第一单元用于获取石油样品的不同类型氢的氢分率、元素的质量分率以及相对分子量数据;
第二单元,所述第二单元用于根据获取的上述数据,计算出石油样品的结构参数;
第三单元,所述第三单元用于设定石油样品的构筑单元,然后通过建立构筑单元的分配算法,将所述构筑单元与所述结构参数进行逻辑关联;
第四单元,所述第四单元用于通过对所述分配算法进行推演计算,得出构筑单元数量的同时,获得了石油样品的结构单元和结构单元数量,完成对石油样品的平均分子结构模型的构建。
在上述石油平均分子结构模型构建系统中,优选地,所述构筑单元包括六元芳香环、四元芳香环增量、二元芳香环增量、六元环烷环、五元环烷环、四元环烷环增量、三元环烷环增量、环烷烃中的双键、环烷环上的硫原子、芳环上的氮原子、碳氢原子间的氧原子、除甲基外的链烷基、与环相连的甲基以及侧链上的甲基。
在上述石油平均分子结构模型构建系统中,优选地,所述构筑单元的分配算法包括:芳烃分配算法、环烷烃分配算法、侧链分配算法以及杂原子分配算法;
所述芳烃分配算法是在构建芳烃的构筑单元与芳烃的结构参数方程的基础上,结合了芳环成环条件的推演运算;
所述环烷烃分配算法是在构建环烷烃的构筑单元与环烷烃的结构参数方程的基础上,结合了环烷烃成环条件的推演运算;
所述侧链分配算法为构建的侧链的构筑单元与侧链的结构参数方程;
所述杂原子分配算法为构建的杂原子的构筑单元与杂原子的结构参数方程。
本发明还提供了一种预测石油性质的方法,该方法包括以下步骤:
根据上述石油平均分子结构模型构建方法计算出石油平均分子结构;
根据所述石油平均分子结构,计算出基团贡献法中各类型基团的数量;
通过基团贡献法对石油样品的物理性质进行预测。
在上述预测石油性质的方法中,优选地,所述物理性质包括密度、沸点、临界温度、临界压力、临界体积或偏心因子。
本发明另提供了一种预测石油性质的系统,该系统包括:
第一模块,所述第一模块用于根据上述方法构建石油平均分子结构模型,以获得石油平均分子结构;
第二模块,所述第二模块用于根据所述石油平均分子结构,计算出基团贡献法中各类型基团的数量;
第三模块,所述第三模块用于通过基团贡献法对石油样品的物理性质进行预测。
本发明提供的方案可采用操作较为简便的核磁共振方法得到各类型的氢分率,通过元素分析得到各元素的质量分率,将以上数据和测得的相对分子量一起作为原始数据计算石油样品的结构单元构成信息,并由此预测石油样品的物理性质,可为石油的加工提供准确快速的预测数据。
本发明方案与现有方法相比,具有以下优点:
1.不需要测定大量样本的波谱及物理性质进行关联训练,工作量小、成本低廉,节省人力物力。
2.从石油的平均分子构筑单元出发,能够预测石油样品一些难以测量的物理性质,如临界温度、临界压力等。
附图说明
图1为实施例1中的计算结构参数的算法框图;
图2为实施例1中的构筑单元示例图;
图3为实施例1中的结构参数转化为构筑单元的分配算法框图;
图4为实施例1中对渣油样品平均结构的第一部分预测结果;
图5为实施例1中对渣油样品平均结构的第二部分预测结果;
图6为实施例1中渣油样品密度预测值与实测值的相关性。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
以下实施例中,各石油样品的核磁共振氢谱采用美国Varian公司生产的UNITYINOVA 500MHz核磁共振波谱仪,5mm双共振宽带探头。实验参数:测试温度T=21.5℃,脉冲宽度pw=1.9μs,谱宽sw=8000Hz,观测核的共振频率Sfrq=500MHz,采样时间at=1.0s,化学位移定标δTMS=0,延迟时间d1=10s,氘代氯仿锁场。石油样品的元素分析:碳、氢含量测量采用Flash EA 1112有机微量元素分析仪;硫、氮含量测量采用美国ANTEK7000硫氮分析仪,硫为紫外荧光法(ASTM5453),氮为化学发光法(ASTM5762);氧含量采用减差法计算得到。石油样品的相对分子量采用凝胶渗透色谱(GPC)方法测定,实验仪器为美国Waters公司GPC515-2410 System,流动相为四氢呋喃(THF),流速:1mL/min,检测器温度:30℃,标准样品为聚苯乙烯(PS)。
核磁共振氢谱(1H-NMR)测定氢原子在有机化合物中的结构状态是利用其吸收频率的不同来完成的。各类氢原子在核磁共振波谱上有特定的范围,如表1所示。根据各类氢原子的归属数据,可以从核磁共振谱图上各类氢原子峰的面积计算出各种氢的含量,归一化处理后得到各类型的氢分率。
表1 各类氢原子在核磁共振波谱上的范围
Figure BDA0001410312610000051
实施例1
本实施例提供了一种石油平均分子结构模型构建方法,并在此基础上进行了物理性质的预测。其中,石油平均分子结构模型构建的过程为:
(1)获取石油样品的不同类型氢的氢分率、元素的质量分率以及相对分子量数据;
(2)根据获取的上述数据,计算出石油样品的结构参数;
(3)设定石油样品的构筑单元,然后通过建立构筑单元的分配算法,将所述构筑单元与所述结构参数进行逻辑关联;
(4)通过对所述分配算法进行推演计算,得出构筑单元数量的同时,获得了石油样品的结构单元和结构单元数量,完成对石油样品的平均分子结构模型的构建。
具体的,以经过减压蒸馏至500℃得到的渣油为原料,采用超临界流体萃取分馏仪将原料进行萃取分馏,以正戊烷为溶剂,将原料按5%的质量收率切割成十三个窄馏分和一个萃余残渣,以此为样品,将测定的各类型氢分率、各元素的质量分率以及相对分子量作为输入信息,利用改进型的Brown-Ladner法计算,得到样品的结构参数,如芳碳率fA、单元芳环数RA*、单元芳碳数CA*、单元环烷环数RN*、氮原子数NT*、氧原子数OT*、硫原子数ST*、单元环烷碳数CN*、单元支链碳数CP*等。具体算法见图1。
本实施例定义的构筑单元如图2所示,根据得到的结构参数,可以计算出构筑单元数量,并得到石油样品的结构单元和结构单元数量。算法如图3所示框图。
图3示出的分配算法简述如下:
1、计算芳烃:已知量CA*(单元芳碳数)、RA*(单元芳环数),未知量A6、A4、A2;
满足A6+A4+A2=RA*;
6·A6+4·A4+2·A2=CA*;
由于A6代表苯环,A4、A2是苯环的增量,所以应优先分配A6的数量,若CA*取整小于6,也就是不满一个A6,则A6=CA*/6;若CA*取整大于等于6且CA*/RA*取整小于6,则令A6=1,A4、A2利用方程求解。
2、计算环烷烃:已知量CN*(单元环烷碳数)、RN*(单元环烷环数),未知量N6、N5、N4、N3;
满足N6(or N5)+N4+N3=RN*;
6·N6(or 5·N5)+4·N4+3·N3=CN*;
分配规则类似芳烃。
3、计算侧链:已知量CP*(单元支链碳数),未知量Me、R、Br;
满足Me+R+Br=CP*。
4、计算杂原子:已知量NT*(氮原子数)、OT*(氧原子数)、ST*(硫原子数),未知量AN、RO、NS、IH
满足AN=NT*;RO=OT*;
NS=ST*;
IH=(-2)·ST*(or(-4)·ST*)。
石油样品的各元素质量分率、各类型氢分率、相对分子量见表2。
表2 石油样品的各元素质量分率、各类型氢分率、相对分子量
Figure BDA0001410312610000071
Figure BDA0001410312610000081
石油样品的计算所得构筑单元数量见表3,同时将得到的结构单元数量记载于表3,平均分子结构见图4和图5。
表3 石油样品的构筑单元数量和结构单元数量
Figure BDA0001410312610000082
Figure BDA0001410312610000091
通过以上平均分子结构模型,得到的石油平均分子结构,计算基团贡献法中各类型基团的数量;通过基团贡献法即可对物理性质进行预测。结果见表4、表5和表6。
表4 部分物理性质(01)
Figure BDA0001410312610000092
表5 部分物理性质(02)
Figure BDA0001410312610000101
表6 部分物理性质(03)
Figure BDA0001410312610000102
Figure BDA0001410312610000111
表6中样品的密度采用比重瓶法(GB/T2540-81)测定,密度预测值和实测值具有较好的相关性,详见图6。
实施例2
本实施例以原油作为样品,按实施例1的方法对所得的核磁共振氢谱进行预处理,得到各类型的氢分率。将测定的各类型氢分率、各元素的质量分率以及相对分子量作为输入信息,按实施例1的方法计算结构单元数量和构筑单元数量,输入信息和计算结果汇总至表7、表8。
表7 石油样品的各元素质量分率、各类型氢分率、相对分子量
Figure BDA0001410312610000112
表8 石油样品的构筑单元数量和结构单元数量
Figure BDA0001410312610000113
通过以上平均分子结构模型构建,得到的石油平均分子结构,计算出基团贡献法中各类型基团的数量;通过基团贡献法对石油样品的物理性质进行预测。结果见表9。
表9 预测的物理性质
性质名称 单位 数值
沸点 K 714.81
临界温度 K 855.74
临界压力 kPa 745.96
临界体积 cc/mol 1644.07
熔点 K 333.96
吉布斯自由能 KJ/mol 263.31
生成焓 KJ/mol -558.54
融化焓 KJ/mol 64.92
辛醇/水分配系数 A.U. 11.68
闪点 K 560.92
蒸发焓(298K) KJ/mol 148.60
蒸发焓(沸点) KJ/mol 84.31
汽化熵(沸点) J/(mol·K) 93.96
偏心因子 A.U. 1.15
液体摩尔体积 cc/mol 505.24
密度(298K) g/cm<sup>3</sup> 0.91
折射率 A.U. 1.51
实施例3
本实施例取沸点350℃以下的轻质油为样品,按实施例1的方法对所得的核磁共振氢谱进行预处理,得到各类型的氢分率。将测定的各类型氢分率、各元素的质量分率以及相对分子量作为输入信息,按实施例1的方法计算结构单元数量和构筑单元数量,输入信息和计算结果汇总至表10、表11。
表10 石油样品的各元素质量分率、各类型氢分率、相对分子量
Figure BDA0001410312610000121
表11 石油样品的构筑单元数量和结构单元数量
Figure BDA0001410312610000131
通过以上平均分子结构模型构建,得到的石油平均分子结构,计算出基团贡献法中各类型基团的数量;通过基团贡献法对石油样品的物理性质进行预测。预测结果见表12。
表12 预测的物理性质
性质名称 单位 数值
沸点 K 568.59
临界温度 K 748.07
临界压力 kPa 1421.42
临界体积 cc/mol 919.09
熔点 K 242.05
吉布斯自由能 KJ/mol 140.90
生成焓 KJ/mol -301.23
融化焓 KJ/mol 33.72
辛醇/水分配系数 A.U. 6.63
闪点 K 385.20
蒸发焓(298K) KJ/mol 85.31
蒸发焓(沸点) KJ/mol 52.54
汽化熵(沸点) J/(mol·K) 87.75
偏心因子 A.U. 0.66
液体摩尔体积 cc/mol 287.84
密度(298K) g/cm<sup>3</sup> 0.84
折射率 A.U. 1.47
通过以上实施例可知,本发明方案的可预测渣油馏分的多种性质。而且整个过程不需要测定大量样本的物理性质进行关联训练,工作量小、成本低廉且快速。

Claims (9)

1.一种石油平均分子结构模型构建方法,其特征在于,该方法包括以下步骤:
获取石油样品的不同类型氢的氢分率、元素的质量分率以及相对分子量数据;
根据获取的上述数据,计算出石油样品的结构参数;
设定石油样品的构筑单元,然后通过建立构筑单元的分配算法,将所述构筑单元与所述结构参数进行逻辑关联;
通过对所述分配算法进行推演计算,得出构筑单元数量,同时,获得石油样品的结构单元和结构单元数量,完成对石油样品的平均分子结构模型的构建;
所述石油样品的结构参数包括芳碳率fA、单元芳环数RA*、单元芳碳数CA*、单元环烷环数RN*、氮原子数NT*、氧原子数OT*、硫原子数ST*、单元环烷碳数CN*或单元支链碳数CP*;
所述构筑单元包括六元芳香环A6、四元芳香环增量A4、二元芳香环增量A2、六元环烷环N6、五元环烷环N5、四元环烷环增量N4、三元环烷环增量N3、环烷烃中的双键IH、环烷环上的硫原子NS、芳环上的氮原子AN、碳氢原子间的氧原子RO、除甲基外的链烷基R、与环相连的甲基Me以及侧链上的甲基Br;
所述构筑单元的分配算法包括:芳烃分配算法、环烷烃分配算法、侧链分配算法以及杂原子分配算法;
所述芳烃分配算法是在构建芳烃的构筑单元与芳烃的结构参数方程的基础上,结合了芳环成环条件的推演运算;
所述环烷烃分配算法是在构建环烷烃的构筑单元与环烷烃的结构参数方程的基础上,结合了环烷烃成环条件的推演运算;
所述侧链分配算法为构建的侧链的构筑单元与侧链的结构参数方程;
所述杂原子分配算法为构建的杂原子的构筑单元与杂原子的结构参数方程;
具体计算方法如下:
(1)计算芳烃:已知量CA*、RA*,未知量A6、A4、A2;
满足A6+A4+A2=RA*;
6×A6+4×A4+2×A2=CA*;
由于A6代表苯环,A4、A2是苯环的增量,所以应优先分配A6的数量,若CA*取整小于6,也就是不满一个A6,则A6=CA*/6;若CA*取整大于等于6且CA*/RA*取整小于6,则令A6=1,A4、A2利用方程求解;
(2)计算环烷烃:已知量CN*、RN*,未知量N6、N5、N4、N3;
满足N6(或N5)+N4+N3=RN*;
6×N6(或5×N5)+4×N4+3×N3=CN*;
分配规则类似芳烃;
(3)计算侧链:已知量CP*,未知量Me、R、Br;
满足Me+R+Br=CP*;
(4)计算杂原子:已知量NT*、OT*、ST*,未知量AN、RO、NS、IH;
满足AN=NT*;RO=OT*;
NS=ST*;
IH=(-2)×ST*(或(-4)×ST*)。
2.根据权利要求1所述的石油平均分子结构模型构建方法,其特征在于,所述石油样品包括原油、原油蒸馏馏分或渣油馏分。
3.根据权利要求2所述的石油平均分子结构模型构建方法,其特征在于,所述元素的质量分率包括碳质量分率、氢质量分率、硫质量分率、氮质量分率和氧质量分率。
4.根据权利要求1所述的石油平均分子结构模型构建方法,其特征在于,获取所述不同类型氢的氢分率的过程为:
测定石油样品的核磁共振氢谱,根据化学位移划分谱区,并分别归属为不同氢类型;将谱图进行积分处理,计算各谱区的峰面积并进行归一化处理,得到不同类型氢的氢分率。
5.根据权利要求1所述的石油平均分子结构模型构建方法,其特征在于,计算石油样品的结构参数时采用改进型Brown-Ladner法。
6.一种石油平均分子结构模型构建系统,其特征在于,该系统包括:
第一单元,所述第一单元用于获取石油样品的不同类型氢的氢分率、元素的质量分率以及相对分子量数据;
第二单元,所述第二单元用于根据获取的上述数据,计算出石油样品的结构参数;
第三单元,所述第三单元用于设定石油样品的构筑单元,然后通过建立构筑单元的分配算法,将所述构筑单元与所述结构参数进行逻辑关联;
第四单元,所述第四单元用于通过对所述分配算法进行推演计算,得出构筑单元数量的同时,获得了石油样品的结构单元和结构单元数量,完成对石油样品的平均分子结构模型的构建;
所述石油样品的结构参数包括芳碳率fA、单元芳环数RA*、单元芳碳数CA*、单元环烷环数RN*、氮原子数NT*、氧原子数OT*、硫原子数ST*、单元环烷碳数CN*或单元支链碳数CP*;
所述构筑单元包括六元芳香环A6、四元芳香环增量A4、二元芳香环增量A2、六元环烷环N6、五元环烷环N5、四元环烷环增量N4、三元环烷环增量N3、环烷烃中的双键IH、环烷环上的硫原子NS、芳环上的氮原子AN、碳氢原子间的氧原子RO、除甲基外的链烷基R、与环相连的甲基Me以及侧链上的甲基Br;
所述构筑单元的分配算法包括:芳烃分配算法、环烷烃分配算法、侧链分配算法以及杂原子分配算法;
所述芳烃分配算法是在构建芳烃的构筑单元与芳烃的结构参数方程的基础上,结合了芳环成环条件的推演运算;
所述环烷烃分配算法是在构建环烷烃的构筑单元与环烷烃的结构参数方程的基础上,结合了环烷烃成环条件的推演运算;
所述侧链分配算法为构建的侧链的构筑单元与侧链的结构参数方程;
所述杂原子分配算法为构建的杂原子的构筑单元与杂原子的结构参数方程;
具体计算方法如下:
(1)计算芳烃:已知量CA*、RA*,未知量A6、A4、A2;
满足A6+A4+A2=RA*;
6×A6+4×A4+2×A2=CA*;
由于A6代表苯环,A4、A2是苯环的增量,所以应优先分配A6的数量,若CA*取整小于6,也就是不满一个A6,则A6=CA*/6;若CA*取整大于等于6且CA*/RA*取整小于6,则令A6=1,A4、A2利用方程求解;
(2)计算环烷烃:已知量CN*、RN*,未知量N6、N5、N4、N3;
满足N6(或N5)+N4+N3=RN*;
6×N6(或5×N5)+4×N4+3×N3=CN*;
分配规则类似芳烃;
(3)计算侧链:已知量CP*,未知量Me、R、Br;
满足Me+R+Br=CP*;
(4)计算杂原子:已知量NT*、OT*、ST*,未知量AN、RO、NS、IH;
满足AN=NT*;RO=OT*;
NS=ST*;
IH=(-2)×ST*(或(-4)×ST*)。
7.一种预测石油性质的方法,其特征在于,该方法包括以下步骤:
根据权利要求1-5任一项所述的方法构建石油平均分子结构模型,以获得石油平均分子结构;
根据所述石油平均分子结构,计算出基团贡献法中各类型基团的数量;
通过基团贡献法对石油样品的物理性质进行预测。
8.根据权利要求7所述的方法,其特征在于,所述物理性质包括密度、沸点、临界温度、临界压力、临界体积或偏心因子。
9.一种预测石油性质的系统,其特征在于,该系统包括:
第一模块,所述第一模块用于根据权利要求1-5任一项所述的方法构建石油平均分子结构模型,以获得石油平均分子结构;
第二模块,所述第二模块用于根据所述石油平均分子结构,计算出基团贡献法中各类型基团的数量;
第三模块,所述第三模块用于通过基团贡献法对石油样品的物理性质进行预测。
CN201710839117.2A 2017-09-18 2017-09-18 一种石油平均分子结构模型的构建方法以及性质预测方法 Active CN107704720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710839117.2A CN107704720B (zh) 2017-09-18 2017-09-18 一种石油平均分子结构模型的构建方法以及性质预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710839117.2A CN107704720B (zh) 2017-09-18 2017-09-18 一种石油平均分子结构模型的构建方法以及性质预测方法

Publications (2)

Publication Number Publication Date
CN107704720A CN107704720A (zh) 2018-02-16
CN107704720B true CN107704720B (zh) 2020-07-24

Family

ID=61172744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710839117.2A Active CN107704720B (zh) 2017-09-18 2017-09-18 一种石油平均分子结构模型的构建方法以及性质预测方法

Country Status (1)

Country Link
CN (1) CN107704720B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956814B (zh) * 2018-07-03 2020-07-03 中国石油大学(北京) 一种直接构建汽油分子组成模型的方法以及性质预测方法
CN109949870B (zh) * 2019-03-07 2020-12-29 广东辛孚科技有限公司 一种分子级基础油调和优化方法
CN111899795B (zh) * 2020-06-12 2023-12-22 中国石油天然气股份有限公司 一种分子级炼油加工全流程优化方法、装置、系统及存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《Molecular Representation of Petroleum Vacuum Resid》;Linzhou Zhang et al.;《Energy&Fuel》;20131226;全文 *
《几种来源渣油组成结构的研究》;王丽敏;《中国优秀硕士学位论文全文数据库 信息科技辑》;20090615(第2009年第05期);第6-7页,第21-24页 *
《基于结构导向集总的渣油分子组成矩阵构建模型》;倪腾亚等;《石油炼制与化工》;20150715;第46卷(第7期);第17页,第21页 *
《结构导向集总新方法构建延迟焦化动力学模型及其应用研究》;田立达;《中国优秀硕士学位论文全文数据库 信息科技辑》;20120815(第2012年第08期);第3-4页,第28-37页 *

Also Published As

Publication number Publication date
CN107704720A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
Rakhmatullin et al. Application of high resolution NMR (1H and 13C) and FTIR spectroscopy for characterization of light and heavy crude oils
CN107704720B (zh) 一种石油平均分子结构模型的构建方法以及性质预测方法
CN101988895B (zh) 由近红外光谱预测混合原油中单种原油含量的方法
CN104089911B (zh) 基于一元线性回归的光谱模型传递方法
Le Losq et al. Determination of water content in silicate glasses using Raman spectrometry: Implications for the study of explosive volcanism
US8682597B2 (en) Estimating detailed compositional information from limited analytical data
CN105388123B (zh) 一种由近红外光谱预测原油性质的方法
Molina et al. Correlations between SARA fractions and physicochemical properties with 1H NMR spectra of vacuum residues from Colombian crude oils
CN105004745B (zh) 一种由核磁共振谱预测原油粘度的方法
CN105987886A (zh) 近红外光谱测定加氢裂化尾油性质的方法
Zhu et al. Determination of gel time and gel point of epoxy-amine thermosets by in-situ near infrared spectroscopy
CN107966499B (zh) 一种由近红外光谱预测原油碳数分布的方法
CN109668856B (zh) 预测lco加氢原料与产物的烃族组成的方法和装置
CN106018451A (zh) 一种利用低场核磁共振技术测定大豆含油含水量的方法
Huang et al. In‐line monitoring of component content of polypropylene/polystyrene blends during melt extrusion using Raman spectroscopy
Li et al. Correlation of chemical and physical properties of an Alaska heavy oil from the Ugnu formation
Brun et al. Quantification of rubber in high impact polystyrene by Raman spectroscopy. Comparison of a band fitting method and chemometrics
CN100425975C (zh) 由近红外光谱测定汽油性质数据的方法
Lyu et al. Average Molecule Construction of Petroleum Fractions Based on 1H‐NMR
CN103926215A (zh) 一种沥青针入度的快速检测方法
MX2009008353A (es) Metodos para la determinacion in situ de la viscosidad del petroleo pesado.
Mäkelä et al. Automating the NMR analysis of base oils: Finding napthene signals
CN105021747B (zh) 由核磁共振氢谱预测柴油族组成的方法
Kemper et al. A new method for the detection and quantification of residual volatiles in XLPE electrical cable using large-spot Raman spectroscopy
CN1191472C (zh) 一种测定重质油相对密度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230803

Address after: Room 303-1, 3rd Floor, Building 21, Yard 3, Gaolizhang Road, Haidian District, Beijing, 100000

Patentee after: Beijing Puluo Shuzhi Technology Co.,Ltd.

Address before: 102249 Beijing city Changping District Road No. 18

Patentee before: China University of Petroleum (Beijing)