CN107674409A - 一种聚氨酯/液晶复合生物材料及其制备方法、应用 - Google Patents

一种聚氨酯/液晶复合生物材料及其制备方法、应用 Download PDF

Info

Publication number
CN107674409A
CN107674409A CN201710846256.8A CN201710846256A CN107674409A CN 107674409 A CN107674409 A CN 107674409A CN 201710846256 A CN201710846256 A CN 201710846256A CN 107674409 A CN107674409 A CN 107674409A
Authority
CN
China
Prior art keywords
polyurethane
liquid crystal
preparation
side chain
chain type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710846256.8A
Other languages
English (en)
Other versions
CN107674409B (zh
Inventor
李娜
周长忍
李立华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201710846256.8A priority Critical patent/CN107674409B/zh
Publication of CN107674409A publication Critical patent/CN107674409A/zh
Application granted granted Critical
Publication of CN107674409B publication Critical patent/CN107674409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0422Elimination of an organic solid phase containing oxygen atoms, e.g. saccharose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • C08J2201/0446Elimination of NaCl only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/10Medical applications, e.g. biocompatible scaffolds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Textile Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

本发明公开了一种聚氨酯/液晶复合材料及其制备方法、应用。这种聚氨酯/液晶复合生物材料的制备方法,包括以下步骤:(1)侧链高分子液晶的制备;(2)用溶剂挥发法或3D打印法或静电纺丝法制备聚氨酯/液晶复合材料。这种聚氨酯/液晶复合材料拉伸压缩模量达拉伸弹性模量0.025~0.53MPa,压缩弹性模量1.67~4.10MPa,膜材料的最大伸长率高达700%~900%。本发明复合材料具有较好的弹性性能、较好的液晶性、较好的生物学性能、降解速率可调,能够很好的进行力学传导和用于力学微环境的研究。

Description

一种聚氨酯/液晶复合生物材料及其制备方法、应用
技术领域
本发明属于组织工程领域,具体涉及一种新型聚氨酯/液晶复合材料及其制备方法与应用。
背景技术
自20世纪中期聚氨酯首次应用于生物医学工程领域以来,到现在已经有了50多年的历史。医用聚氨酯作为一种生物相容性和力学性能良好的高分子材料,当前在组织工程领域中的应用也是非常广泛的。大量的动物实验和急慢性毒性实验证实,医用聚氨酯无毒、无致畸变作用,对局部无刺激性反应和过敏反应,特别是,近年来随着社会科学技术的进步和发展,聚氨酯的性能得到了不断地完善,其应用也逐渐拓展到,人工心脏、人造血管、矫形绷带、粘合剂、人工皮肤、药物载体等各个领域。此外,聚氨酯是有软链段和硬链段交替镶嵌组成的,所以具有良好的物理机械性能,因此作为一种生物学性能良好的弹性体材料,聚氨酯在组织工程的力学传导和微环境力学刺激领域具有极高的研究价值。
液晶态是物质介于固态与液态之间的一种状态,它既有晶体结构的规则性,又有液体的流动性。从分子序来看,液晶分子往往具有一维或二维远程有序,即介于理想的液体和晶体之间。液晶是自然界两大基本法则流动性和有序性的有机结合,可以通过自组装形成,而生命正是自组织过程的最高体现。生物体中极为重要的物质生物膜所特有的功能与液晶特性和行为就有着密切的关。因此,从仿生角度构建液晶态生物材料,研究液晶态生物材料与细胞相互作用以及材料液晶特性与生物体生命活动的相互影响的机理探讨,可为人们开发新型仿生生物材料,更好地模拟体内组织培养的微环境提供新的思路。
在生物医学领域中,组织工程支架材料除了具备良好的生物相容性外,还必须具有与细胞、组织生长速率相适应的可生物降解和吸收性,利于大量细胞种植、细胞和组织生长、细胞外基质形成、氧气和营养传输、代谢物排泄以及血管、神经内生长的孔洞结构。更重要的是,组织工程支架材料应具有控制细胞粘附和诱导细胞向一定方向分化增殖的功能,尤其是在组织形成过程中生长环境的影响因素对细胞功能的影响。支架材料还必须与植入部位组织的力学性能相匹配,以便在体内生物力学微环境中保持结构稳定性和完整性,为植入支架内部的细胞提供合适的微应力环境。因此,系统研究组织工程支架材料的力学传导性能和支架材料内部细胞与体内生物力学微环境之间的关系就显得愈来愈重要,也是组织工程领域必须尽快解决的关键问题。
能量守恒、动量定律、质量守恒三定律是生物力学的基础,人体系统的所有器官和组织都是生物力学的研究范畴。人体组织的再生与修复与生物力学的微环境息息相关,组织工程支架材料的力学稳定性与力学传导性是必不可少的关键因素,尤其是骨组织、软骨组织、皮肤组织、神经组织,肌腱组织等的修复与再生过程与人体内生物力学微环境的关系非常密切。
近年,对于细胞体外分化影响因素的研究已从化学和生物方面开始聚焦于力学刺激对干细胞分化的作用。特别是针对于具有多想分化潜能的干细胞,多项研究表明干细胞的体外微环境及干细胞相互作用的力学刺激对调节干细胞生长、增殖和分化均具有非常重要的作用。有学者研究了斑马鱼的原肠胚形成期,干细胞分化受到黏附力的影响,使用原子力显微镜检测相邻细胞间的黏附力发现不同胚层内有不同黏附力,外胚层中的相邻细胞结合比中胚层和内胚层中更松散,这表明其能感应外部机械力,并表现出相应的分化倾向性。此外,成体干细胞也可对外部机械力作出反应,如间充质干细胞MSCs在1Hz频率、15%应变幅度的单向循环拉力下,无需添加生长因子即可向平滑肌细胞(smooth muscle cells,SMCs)分化,并表现出较高的增殖速率。生物力学刺激中无论是剪切应力、机械牵张力还是压应力军队细胞的结构、形态和分化具有不可忽视的影响,研究表明剪切应可引导干细胞想血管分化,牵张力有助于软骨组织的形成,压应力对破骨细胞的分化和新骨形成具有极大的促进作用。
在当前的研究中,聚氨酯的力学性能和生物相容性与理想的生物材料有一定的差距。针对于液晶材料,目前的研究主要停留在小分子液晶的制备和表征而对于其生物学性能及高分子液晶材料的研究却鲜有报道。系统研究组织工程支架材料的力学传导性能和支架材料内部细胞与体内生物力学微环境之间的关系就显得愈来愈重要,也是组织工程领域必须尽快解决的关键问题之一。
发明内容
为解决现有技术的缺点和不足,本发明的首要目的在于提供一种聚氨酯/液晶复合材料。
本研究的另一目的在于提供制备该聚氨酯/液晶复合材料的制备方法。
本研究的再一目的在于提供上述聚氨酯/液晶复合材料的应用。
本发明的目的通过以下技术方案实现:
一种聚氨酯/液晶复合生物材料的制备方法,包括以下步骤:
(1)侧链高分子液晶的制备:将十一烯酸胆甾醇酯和聚甲基含氢硅氧烷溶于甲苯,进行加聚反应;反应液倒入甲醇中沉淀,过滤,抽滤,即得到侧链高分子液晶;
(2)聚氨酯/液晶复合材料的制备,选自下列方法任一种:
溶剂挥发法A:将聚氨酯颗粒溶于氯仿中,配置成聚氨酯/氯仿溶液,加入步骤(1)中的侧链高分子液晶配置成聚氨酯/液晶混合溶液,将混合溶液倾倒于培养皿中,覆保鲜膜,溶剂挥发完,得到聚氨酯/液晶膜;
3D打印法B:混合聚氨酯和侧链高分子液晶,利用单螺杆挤出机挤出混合材料的3D打印耗材,得到多孔支架聚氨酯/液晶;
静电纺丝法C:按上述方法A中的方式制备聚氨酯/液晶混合溶液,通过纺丝获得聚氨酯/液晶复合材料的纤维膜。
步骤(1)中所述的反应的温度是65~70℃;反应后侧链高分子液晶的温度区间保持为5~85℃。
步骤(1)中所述的聚甲基含氢硅氧烷相对分子质量控制为697.32。
步骤(1)中所述的聚甲基含氢硅氧烷与十一烯酸胆甾醇酯投料的摩尔比是7:1~14:1。
步骤(2)方法A和B中所述的聚氨酯质量浓度为8%,侧链高分子液晶与聚氨酯的质量比为4:5;方法C中所述的聚氨酯质量浓度为7%,侧链高分子液晶与聚氨酯的质量比为4:5。
步骤(2)方法A中,在聚氨酯/氯仿溶液中加入蔗糖、NaCl颗粒制备成多孔复合材料。
步骤(2)方法A中,在聚氨酯/氯仿溶液中加入纳米级羟基磷灰石制备成多元复合膜材料。
步骤(2)方法B中,单螺杆挤出机的微量注射泵的推出速率应为20μmL/min,3D打印耗材是材料直径设定为1.77mm,3D打印的填充率为60%,打印温度240℃,打印速度15mm/s;步骤(3)方法C中所述的静电纺丝法的温度是25℃,电压是-2~+9KV,以1mL/h的速率,600/min的滚轮转速连续纺丝6h。
本发明的原理:聚醚型聚氨酯是一种具有良好弹性性能的可降解材料,除了具备良好的生物相容性它还具有极其优良的力学传导性能。侧链高分子液晶是一种能够在生理温度呈现液晶现象的胆甾型高分子液晶,与其他小分子液晶相比它具有更为优异的生物相容性,与其它非液晶材料相比又具有和细胞膜类似的有序流动性。本发明利用聚氨酯/液晶复合材料,发挥液晶的有序流动性和良好生物相容性的优势,结合聚氨酯良好的弹性性能,并复合膜材料、纤维材料以及3D打印技术制备具有力学转导功能的复合材料。
与现有技术相比,本发明具有以下优点及有益效果:
(1)单纯的液晶材料虽然具有与细胞膜相似的流动性但是无法模拟人体组织的力学微环境,本研究将弹性性能极好的聚氨酯和胆甾醇液晶材料结合在一起,使材料具有聚氨酯的弹性和液晶的有序流动性,以及卓越的力学传导性。
(2)本发明的胆甾醇侧链高分子液晶的制备,通过在75℃呈现液晶现象的胆甾醇小分子液晶和聚甲基含氢硅氧烷在特定条件下的反应最终制得在生理温度呈现液晶现象的胆甾醇高分子液晶。通过胆甾醇十一烯酸酯取代聚甲基含氢气硅氧烷上的活泼氢发生加聚反应,最终制得胆甾醇高分子液晶的液晶温度范围为5~85℃,通过对胆甾醇小分子液晶的再一步加成不仅改善了液晶的温度范围,同时避免了胆甾醇小分子液晶带来的毒性问题,在材料的生物相容性方面也是极大的改善。
(3)将聚氨酯/液晶和3D打印技术有机的结合在一起,实现液晶态材料3D打印的可行性。
(4)本发明介绍三种复合材料,两种膜材料能够应用于拉应力和剪切应力的力学微环境传导中,3D打印的块状多孔支架材料能够应用于压应力的力学微环境传到中,三种材料制备方法涵盖了力学微环境力学种类的传导,此发明能够很好的解决材料-力学微环境刺激这一研究领域。
(5)本发明在材料中加入特定的致孔材料比如特定颗粒大小的蔗糖、NaCl粒子等可以制备具有多孔结构的膜材料,弹性特别好。
(6)在本发明中采用的聚氨酯/液晶进行混合之后混炼挤出成丝进行3D打印,同样的依据本发明可以将聚氨酯与羟基磷灰石、纤维素等多种材料进行混合的3D打印成型,可应用在人体支架,引导新骨的形成。
(7)本发明复合材料制备工艺简单,原料来源丰富,功能全面。
附图说明
图1是聚氨酯宏观形貌图。
图2是十一烯酸胆甾醇酯的偏光图。
图3是胆甾醇侧链高分子液晶的偏光图。
图4是实施例中聚氨酯、聚氨酯/液晶等复合材料力学测试样品图。
图5是实施例1所制备的4种透明的膜材料的偏光照片(a:聚氨酯/侧链高分子液晶,b:聚氨酯/十一烯酸胆甾醇酯,c:聚氨酯/胆甾醇,d:聚氨酯)。
图6是对聚氨酯/液晶复合纤维进行辐照灭菌并进行了M3T3-E1成骨细胞的培养,培养5天之后的扫描电镜图(a:聚氨酯/侧链高分子液晶,b:聚氨酯/十一烯酸胆甾醇酯,c:聚氨酯/胆甾醇,d:聚氨酯)。
图7是网格状3D打印聚氨酯/液晶复合膜材料。
图8是网格状3D打印聚氨酯/液晶复合圆柱体。
图9是实施例3的材料成骨细胞的培养图。
图10是实施例3的细胞在聚氨酯/液晶材料和其他材料上的增殖状况(A:聚氨酯/侧链高分子液晶,B:聚氨酯/十一烯酸胆甾醇酯,C:聚氨酯/胆甾醇,D:聚氨酯)。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。如无特别说明,本发明中所有原料和试剂均为市购常规原料、试剂。
一种聚氨酯/液晶复合材料,其拉伸弹性模量0.025-0.53MPa,压缩弹性模量1.67-4.10MPa。聚氨酯/液晶复合材料具有有序和无序纵横交错的小孔结构,所述孔之间有一定的连通性,孔隙率高达70%。
本发明实施例所用聚氨酯为德国Lubrizol公司的生物医用聚醚型聚氨酯EG-80A;胆甾醇、10-十一烯酸、六水合氯铂酸为美国Sigma-Aldrich公司;聚甲基含氢硅氧烷购自美国Sigma-Aldrich公司分子量为697.32。
本发明实施例所用到的聚氨酯宏观形貌图,如图1所示,本发明实施例所制备的十一烯酸胆甾醇酯和侧链高分子液晶的偏光图,如图2和图3所示。
本发明实施例中聚氨酯/液晶复合材料的弹性模量是将材料取特定形状(如图4)试样用万能压力测试机测得,材料的偏光照片是通过Olympus Corporation偏光显微镜测得,材料的扫描电镜图片通过TM3030扫描电镜测得,3D打印通过实验室自行组装的打印机完成。
实施例1
用溶剂挥发法制备聚氨酯/液晶复合膜,包括以下步骤
(1)溶液的配置:
准确称取0.64侧链高分子液晶产品于锥形瓶中加入8.56g的氯仿溶液按100r/min搅拌至溶解完全加入0.8g的聚氨酯,继续搅拌至完全溶解得混合溶液a(聚氨酯浓度为8%,液晶/聚氨酯质量比为80%)。准确称取0.2g的十一烯酸胆甾醇酯于锥形瓶中加入9g的氯仿溶液以100r/min的速度搅拌至溶解完全,加入0.8g的聚氨酯继续搅拌至完全溶解得混合溶液b。准确称取0.14g的十一烯酸胆甾醇酯于锥形瓶中加入9.06g的氯仿溶液以100r/min的速度搅拌至溶解完全,加入0.8g的聚氨酯继续搅拌至完全溶解得混合溶液c。锥形瓶中加入9.2g氯仿溶液后加入0.8g聚氨酯以100r/min的速度搅拌至溶解完全,得聚氨酯溶液d。其中混合溶液b、c中胆甾醇十一烯酸酯和胆甾醇的量按照与混合溶液a中胆固醇单元相同的摩尔量换算出,以保证混合溶液a、b、c中所含胆甾醇的量是相同的。
(2)膜材料的制备:
注射器抽取上述步骤中制备的溶液,将溶液缓慢的推出至聚四氟乙烯的培养皿中,过程中要保证推出溶液中午气泡存在,溶液全部推出后立即用保鲜膜包覆在培养板的表面,并用橡皮筋扎紧,于室温条件下静置过夜得复合膜材料。
本实施例所制备的4种透明的膜材料,材料的拉伸弹性模量达0.25、0.27、0.31、0.37MPa(a,b,c,d),且其断裂伸长率能达到700%~900%,在37℃的偏光照片如图5所示。从图中可以看出加入侧链高分子液晶的材料在生理温度下呈现出液晶状态。
在生物材料领域,对于液晶的研究一直以来都是备受热捧的话题,但之前的研究多讲找重点放在液晶材料本身,而针对其在植入方面的应用却鲜有报道,本实施例中制备的聚氨酯/液晶复合膜材料能够在生理温度呈现其液晶状态也为之后对其与细胞甚至机体的相互作用提供了一定的理论基础和技术支持。
实施例2
一种聚氨酯/液晶静电纺丝纤维的制备方法,包括以下步骤
(1)溶液的制备:
准确称取0.64侧链高分子液晶产品于锥形瓶中加入6.84g的氯仿和1.71g的N-N溶液按100r/min搅拌至溶解完全加入0.8g的聚氨酯,继续搅拌至完全溶解得混合溶液A(聚氨酯浓度为8%,液晶/聚氨酯质量比为80%)。准确称取0.2g的十一烯酸胆甾醇酯于锥形瓶中加入7.2g的氯仿和1.8g的N-N二甲基甲酰胺以100r/min的速度搅拌至溶解完全,加入0.8g的聚氨酯继续搅拌至完全溶解得混合溶液B。准确称取0.14g的胆甾醇于锥形瓶中加入7.24g的氯仿和1.81g的N-N二甲基甲酰胺以100r/min的速度搅拌至溶解完全,加入0.8g的聚氨酯继续搅拌至完全溶解得混合溶液C。锥形瓶中加入7.36g的氯仿和1.84g的N-N二甲基甲酰胺后加入0.8g聚氨酯以100r/min的速度搅拌至溶解完全,得聚氨酯溶液D。其中混合溶液B、C中十一烯酸胆甾醇酯和胆甾醇的量按照与混合溶液A中胆固醇单元相同的摩尔量换算出,以保证混合溶液A、B、C中所含胆甾醇的量是相同的。
(2)专用静电纺丝注射器分别抽取溶液A、B、C、D各10mL,选择21号针头,选择温度25℃,电压-2~9KV,以1mL/h的速率,600/min的滚轮转速连续纺丝6h,得静电纺丝材料,将制得材料置于真空干燥箱中50℃、-1atm条件下干燥12h得到最终产品。
本施例在实验操作过程中,首先对不加任何添加原料的不同浓度的聚氨酯溶液进行了测试,测试浓度包括5%、6%、7%、8%、9%、10%,通过对静电纺丝材料进行扫描电镜结果进行分析,结果表明选择溶液浓度为8%能够获得综合质量最好的静电纺丝纤维。本施例在完成材料的制备之后,测定材料力学性能表明,聚氨酯纤维材料的拉伸弹性模量可达到0.02MP,聚氨酯/液晶复合纤维的弹性模量达0.025MPa,同时对材料进行辐照灭菌并进行了M3T3-E1成骨细胞的培养,培养5天之后的扫描电镜图如图6所示,材料—细胞培养结果表明,细胞在侧链高分子聚氨酯/液晶复合纺丝纤维上的黏附状态与单纯的聚氨酯纺丝纤维基本相同,而细胞在聚氨酯/胆甾醇酯和聚氨酯/胆甾醇纤维上的黏附情况明显较差,这表明胆甾醇型高分子液晶与同类型胆甾醇小分子液晶相比生物相容性更好。
实施例3
3D打印制备聚氨酯/液晶复合材料的方法,包括以下步骤:
(1)准确称取0.56g侧链高分子液晶产品于锥形瓶中加入8.74g的氯仿溶液按100r/min搅拌至溶解完全加入0.7g的聚氨酯,继续搅拌至完全溶解得聚氨酯浓度为7%,液晶/聚氨酯质量比为40%的混合溶液。用注射器抽取5mL的溶液,将注射器装置在微量注射泵上,连接注射泵和3D打印机,设定好3D打印参数,按照20μmL/min的挤出速度运行打印,打印30min得网格状3D打印聚氨酯/液晶复合膜材料如图7所示。
(2)准确称取聚氨酯颗粒50g及侧链高分子液晶40g混合均匀,倒入高温3D打印耗材挤出实验线HTES-25小型同向平行双螺杆挤出机(HTGD-20)中,设定直径为1.77mm,挤出丝备用。设定3D打印模型(网格状圆柱体),输入打印参数,填充率为60%,打印温度240℃,打印速度15mm/s,完成打印如图8所示。
在上述实施例步骤(1)中,称取聚氨酯颗粒,加入氯仿溶液制备成浓度分别为5%、6%、7%、8%、9%、10%的聚氨酯溶液待用。按照(1)中的实验方法实施溶液的3D打印,实验结果表明当溶液浓度为5%、6%、8%、9%、10%时,由于溶液粘度、溶剂挥发速率、打印速度、打印层高等问题不能较好的匹配,无法完成材料的打印工作,因此在最终选择了实施例说明(1)中的实验参数。
在上述实施例中,整个的3D打印装置为本实验室人员自行组装而成,特别是微量注射泵与3D打印联合应用这一举措,不仅解决了无法在当时的实验条件下无法将原有的两种材料利用挤出机挤出混合的3D打印耗材这一问题,并且为今后凝胶、细胞等一系列需要存在于液体环境下的3D打印工作提供了一定的理论基础和技术支持。
在上述实施例步骤(2)中,3D打印机进样孔直径对材料的要求为1.75mm,而在耗材挤出工作中设定的挤出直径却为1.77mm,因为聚氨酯和聚乳酸这样较硬的材料不同,它是是一种弹性很好的材料,挤出是很容易受弹性的影响实际直径与参数设定的有所差别,将挤出参数设定为1.77mm时挤出的丝能够最好的应用于3D打印机。测定材料力学性能,材料的压缩弹性模量分别为1.67MPa和2MPa(聚氨酯/液晶,聚氨酯),孔隙率高达70%,同时,对于材料的生物学性能也进行初步的测试如图9所示,对其进行成骨细胞的培养表明,细胞在打印材料上黏附状态较好,细胞增殖速率与空白聚氨酯对照试验相比较好,特别是在3D打印的多孔聚氨酯/液晶支架材料上,细胞不仅在材料的表面生长,在孔壁上还有趋向空洞生长的趋势,同时通过CCK8测得细胞在材料上的增殖状况如图10所示,结果表明与其它材料相比,细胞在聚氨酯/侧链高分子液晶材料上增殖状态明显优于其它组分,这也为之后研究聚氨酯/液晶复合材料在生物组织工程中的跟进一步研究提供了便利条件,同时结合3D打印的方式能够将材料打印成各种特定情况,对于在临床中人体材料植入是非常有意义的,特别是聚氨酯/液晶复合材料作为一种力学性能良好的弹性材料,结合3D打印技术将其应用于人体腰椎置换通过一定的力学环境影响及材料特有的生物学性能有望于应用在椎间盘修复及椎间融合方面,来解决临床中越来越多的腰椎疾病问题。
实施例4
多孔聚氨酯材料材料的制备,包括以下步骤:
(1)溶液的制备:
准确称取一定量的聚氨酯制备成浓度分别为5%、6%、7%、8%、9%、10%的聚氨酯/氯仿溶液,溶液中加入一定量粒径为500μm的蔗糖颗粒,保持蔗糖与蔗糖聚氨酯混合物质量比为5%,10%,15%,20%,搅拌均匀溶液待用。
(2)膜材料的制备:
按照实施例1步骤(2)的膜材料制备方法制备膜材料,将材料浸泡在500ml的蒸馏水中,每48更换新鲜蒸馏水工更换三次,材料于室温下晾干即得到多孔聚氨酯膜材料。
在此实施例中,将蔗糖颗粒换位NaCl颗粒可得到同样性质的多孔聚氨酯材料。在此实施例中,聚氨酯浓度和蔗糖与蔗糖聚氨酯混合物的质量比均是变量,这两因素不仅会影响膜材料的制备同时也会影响材料的孔洞结构,因此在反复的比较重最终确定聚氨酯的浓度为9%,蔗糖与蔗糖聚氨酯混合物的质量比为10%,聚氨酯的浓度太低溶液粘度低会导致致孔颗粒沉到材料的底部从而导致孔洞结构不均匀,而浓度太高粘度太大则不利于致孔颗粒在材中的均匀分布,同时致孔颗粒的量也同样会影响材料的孔洞结构。最终制备的材料其拉伸弹性模量高达0.25MPa,孔隙率达30%。同时在此实施例中保证蔗糖和NaCl颗粒的粒径为500μm,500μm的孔径有利于细胞的黏附和生长,这也对后续监测力学微环境中细胞在材料上的生长状态提供了一定的理论基础。
实施例5
聚氨酯/羟基磷灰石复合材料的制备
(1)复合膜材料的制备:
准确称取一定量的聚氨酯制备质量浓度分别为9%聚氨酯/氯仿溶液,加入一定量的纳米级羟基磷灰石(HAP),加入一定量的HAP并搅拌均与,保证HAP与HAP聚氨酯混合物质量比为10%,20%,30%,40%,按照实施例1(2)膜材料的制备方法制备材料,得聚氨酯/羟基磷灰石膜材料。
(2)3D打印多孔材料得制备:
准确称取聚氨酯颗粒70g及侧链高分子液晶30g混合均匀,倒入高温3D打印耗材挤出实验线HTES-25小型同向平行双螺杆挤出机(HTGD-20)中,设定直径为1.77mm,挤出丝备用。按照实施例3(2)中的方法进行材料得打印,最终得聚氨酯/羟基磷灰石多孔材料。
上述施例方法(1)中,综合材料的孔洞结构、均匀度其中聚氨酯浓度为9%,HAP与HAP聚氨酯混合物的质量比为20%为最佳方案,所得膜材料拉伸强度为0.53MPa,施例(2)中,3D打印的多空复合材料压缩模量为4.10MPa。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种聚氨酯/液晶复合生物材料的制备方法,其特征在于,包括以下步骤:
(1)侧链高分子液晶的制备:将十一烯酸胆甾醇酯和聚甲基含氢硅氧烷溶于甲苯,进行加聚反应;反应液倒入甲醇中沉淀,过滤,抽滤,即得到侧链高分子液晶;
(2)聚氨酯/液晶复合材料的制备,选自下列方法任一种:
溶剂挥发法A:将聚氨酯颗粒溶于氯仿中,配置成聚氨酯/氯仿溶液,加入步骤(1)中的侧链高分子液晶配置成聚氨酯/液晶混合溶液,将混合溶液倾倒于培养皿中,覆保鲜膜,溶剂挥发完,得到聚氨酯/液晶膜;
3D打印法B:混合聚氨酯和侧链高分子液晶,利用单螺杆挤出机挤出混合材料的3D打印耗材,得到多孔支架聚氨酯/液晶;
静电纺丝法C:按上述方法A中的方式制备聚氨酯/液晶混合溶液,通过纺丝获得聚氨酯/液晶复合材料的纤维膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述的反应的温度是65~70℃;反应后侧链高分子液晶的温度区间保持为5~85℃。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述的聚甲基含氢硅氧烷相对分子质量控制为697.32。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述的聚甲基含氢硅氧烷与十一烯酸胆甾醇酯投料的摩尔比是7:1~14:1。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)方法A和B中所述的聚氨酯质量浓度为8%,侧链高分子液晶与聚氨酯的质量比为4:5;方法C中所述的聚氨酯质量浓度为7%,侧链高分子液晶与聚氨酯的质量比为4:5。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)方法A中,在聚氨酯/氯仿溶液中加入蔗糖、NaCl颗粒制备成多孔复合材料。
7.根据权利要求1所述的制备方法,其特征在于,步骤(2)方法A中,在聚氨酯/氯仿溶液中加入纳米级羟基磷灰石制备成多元复合膜材料。
8.根据权利要求1所述的制备方法,其特征在于,步骤(2)方法B中,单螺杆挤出机的微量注射泵的推出速率应为20μmL/min,3D打印耗材是材料直径设定为1.77mm,3D打印的填充率为60%,打印温度240℃,打印速度15mm/s;步骤(3)方法C中所述的静电纺丝法的温度是25℃,电压是-2~+9KV,以1mL/h的速率,600/min的滚轮转速连续纺丝6h。
9.一种根据权利要求1~8任一项所述的方法制备得到的聚氨酯/液晶复合生物材料。
10.根据权利要求9所述的聚氨酯/液晶复合生物材料在支架材料和人体生物膜中的应用。
CN201710846256.8A 2017-09-19 2017-09-19 一种聚氨酯/液晶复合生物材料及其制备方法、应用 Active CN107674409B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710846256.8A CN107674409B (zh) 2017-09-19 2017-09-19 一种聚氨酯/液晶复合生物材料及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710846256.8A CN107674409B (zh) 2017-09-19 2017-09-19 一种聚氨酯/液晶复合生物材料及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN107674409A true CN107674409A (zh) 2018-02-09
CN107674409B CN107674409B (zh) 2020-06-16

Family

ID=61137303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710846256.8A Active CN107674409B (zh) 2017-09-19 2017-09-19 一种聚氨酯/液晶复合生物材料及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN107674409B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040424A (zh) * 2019-12-11 2020-04-21 东莞市雄林新材料科技股份有限公司 一种透明度可控tpu薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270041A (en) * 1989-07-21 1993-12-14 Marigen S.A. Sterols, their fatty acid esters and glucosides; processes for their preparation; spontaneously dispersible agents containing these compounds, and their use for treatment of tumors
WO2007100136A1 (ja) * 2006-03-03 2007-09-07 The University Of Tokyo 液晶性組成物
CN101319108A (zh) * 2007-06-07 2008-12-10 中国印钞造币总公司 一种圆偏振新型油墨及其制造方法
CN101538372A (zh) * 2009-01-22 2009-09-23 暨南大学 硅橡胶/烯酸胆甾醇酯液晶交联膜及其制备方法和用途
CN101797401A (zh) * 2009-11-17 2010-08-11 暨南大学 一种血液相容性材料及其制备方法
CN102643432A (zh) * 2012-04-01 2012-08-22 北京科技大学 一种胆甾相硅氧烷侧链液晶高分子的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270041A (en) * 1989-07-21 1993-12-14 Marigen S.A. Sterols, their fatty acid esters and glucosides; processes for their preparation; spontaneously dispersible agents containing these compounds, and their use for treatment of tumors
WO2007100136A1 (ja) * 2006-03-03 2007-09-07 The University Of Tokyo 液晶性組成物
CN101319108A (zh) * 2007-06-07 2008-12-10 中国印钞造币总公司 一种圆偏振新型油墨及其制造方法
CN101538372A (zh) * 2009-01-22 2009-09-23 暨南大学 硅橡胶/烯酸胆甾醇酯液晶交联膜及其制备方法和用途
CN101538372B (zh) * 2009-01-22 2012-09-05 暨南大学 硅橡胶/烯酸胆甾醇酯液晶交联膜及其制备方法和用途
CN101797401A (zh) * 2009-11-17 2010-08-11 暨南大学 一种血液相容性材料及其制备方法
CN102643432A (zh) * 2012-04-01 2012-08-22 北京科技大学 一种胆甾相硅氧烷侧链液晶高分子的制备方法
CN102643432B (zh) * 2012-04-01 2013-07-17 北京科技大学 一种胆甾相硅氧烷侧链液晶高分子的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAO-YAN ZHANG等: "Side-chain Cholesteric Liquid Crystalline Elastomers Derived from Nematic Bis-olefinic Crosslinking Units", 《MACROMOL. CHEM. PHYS.》 *
TZONG‐LIU WANG等: "Synthesis and characterization of side‐chain liquid‐crystalline polyurethane elastomers", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *
姚雯还: "聚硅氧烷侧链液晶聚合物的制备与自组装行为研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
莫文军: "新型液晶化合物的合成及其在抗凝血材料中应用的研究", 《中国优秀博硕士学位论文全文数据库 (硕士) 医药卫生科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040424A (zh) * 2019-12-11 2020-04-21 东莞市雄林新材料科技股份有限公司 一种透明度可控tpu薄膜及其制备方法
CN111040424B (zh) * 2019-12-11 2022-04-19 东莞市雄林新材料科技股份有限公司 一种透明度可控tpu薄膜及其制备方法

Also Published As

Publication number Publication date
CN107674409B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
Dorishetty et al. Bioprintable tough hydrogels for tissue engineering applications
Liu et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments
Osidak et al. Viscoll collagen solution as a novel bioink for direct 3D bioprinting
Distler et al. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting
Liu et al. Synthetic extracellular matrices with nonlinear elasticity regulate cellular organization
Nadernezhad et al. Nanocomposite bioinks based on agarose and 2D nanosilicates with tunable flow properties and bioactivity for 3D bioprinting
Prévôt et al. Liquid crystal elastomers—A path to biocompatible and biodegradable 3D-LCE scaffolds for tissue regeneration
Boontheekul et al. Regulating myoblast phenotype through controlled gel stiffness and degradation
Nazhat et al. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers
Walters et al. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales
Yeo et al. A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink
Rockwood et al. Materials fabrication from Bombyx mori silk fibroin
Matthews et al. Electrospinning of collagen nanofibers
Kim et al. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting
Castro et al. Physically active bioreactors for tissue engineering applications
Beckett et al. Enhancement of the mechanical properties of hydrogels with continuous fibrous reinforcement
Othman et al. Alginate-gelatin bioink for bioprinting of hela spheroids in alginate-gelatin hexagon shaped scaffolds
Wang et al. Three-dimensional printing self-healing dynamic/photocrosslinking gelatin-hyaluronic acid double-network hydrogel for tissue engineering
Bandyopadhyay et al. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting
Ahmed et al. Engineering fiber anisotropy within natural collagen hydrogels
Dessane et al. Nucleotide lipid-based hydrogel as a new biomaterial ink for biofabrication
CN110180026A (zh) 一种生物支架及其制备方法和应用
Castaño et al. Combining breath figures and supercritical fluids to obtain porous polymer scaffolds
Tan et al. Silk fibroin as a bioink–a thematic review of functionalization strategies for bioprinting applications
Marga et al. Organ printing: a novel tissue engineering paradigm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant