CN107674180A - 基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用 - Google Patents

基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用 Download PDF

Info

Publication number
CN107674180A
CN107674180A CN201710836020.6A CN201710836020A CN107674180A CN 107674180 A CN107674180 A CN 107674180A CN 201710836020 A CN201710836020 A CN 201710836020A CN 107674180 A CN107674180 A CN 107674180A
Authority
CN
China
Prior art keywords
furans
conjugated
chain
conjugated polymer
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710836020.6A
Other languages
English (en)
Inventor
黄飞
胡志诚
应磊
曹镛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710836020.6A priority Critical patent/CN107674180A/zh
Publication of CN107674180A publication Critical patent/CN107674180A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3222Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more oxygen atoms as the only heteroatom, e.g. furan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用。所述的共轭聚合物由两个部分组成,萘二酰亚胺和共轭π桥相连呋喃结构。所述共轭聚合物具有较宽的吸收光谱和吸收系数以及较高的电子迁移率,可作为高效的电子受体用于高效有机太阳电池中。本发明设计了D‑A共聚的n型半导体共轭聚合物,能够极大地提高聚合物的吸收系数,拓宽吸收光谱,能够极大地提高电池器件的光电流以及电池器件效率;所述的新型n型共轭聚合物作为电子受体能够达到短路电流,开路电压和填充因子的平衡,制备能量转化效率超过10%的全聚合物太阳电池,远超过基于现有受体的电池性能。

Description

基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件 中的应用
技术领域
本发明涉及高分子光电材料领域,具体涉及基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用。
背景技术
随着全球对于能源需求的逐年增加,石油、煤炭等传统能源的日益枯竭,以及对保护地球生态环境的需要,全世界越来越多的科学家将研究集中在氢气、太阳能等取之不尽用之不竭的可再生清洁能源。
已经成熟的无机硅、砷化镓、磷化铟等基于无机材料的太阳电池已经在市场上占有主导地位,然而由于其对于材料纯度的要求高,加工过程中会产生高能耗及污染等问题,且其价格非常昂贵,因此在追求低成本和绿色环保的今天,其大规模应用受到了限制。
有机太阳电池作为一种新型薄膜光伏电池技术,具有全固态、光伏材料性质可调范围宽、可实现半透明、柔性电池、具有大面积低成本制备潜力等突出优点。有机材料的光伏性能可调范围宽,可利用化学手段对材料的能级、载流子迁移率以及吸收等性能进行有效的调控。有机/聚合物太阳电池可采用打印、印刷等方法进行加工,可借鉴传统塑料的加工工艺,通过卷对卷滚动加工流程制造大面积、柔性的薄膜太阳电池,该生产工艺能够有效降低光伏电池的制造成本。有机太阳电池几乎不受环境和场地限制,在许多场合可将光能转换为电能,同时与无机半导体太阳电池有非常强的互补性,无疑具有巨大的商业开发价值和市场竞争力。因此有机太阳电池的研究引起了广泛关注,以有机太阳电池为核心的科学研究已经成为一个世界范围内竞争激烈的材料科学前沿研究领域。
有机太阳电池的受体研究进展缓慢,早期的研究以富勒烯为主。最近两年来,非富勒烯进展较快,然后以共轭聚合物为受体的报道相对较少,效率也不高。其主要原因是现有的受体的吸收系数不高,吸收光谱不够宽所导致的。通过对于共轭聚合物分子结构的调节,可以有效地改善这些问题,并提高以共轭聚合物为受体的有机太阳电池的性能。
发明内容
本发明的目的在于设计并合成一类主链结构为共轭π桥相连呋喃与萘酰亚胺共聚的n 型共轭聚合物作为电子受体材料用于有机太阳电池。该共轭聚合物由两个部分组成,萘二酰亚胺和共轭π桥相连呋喃结构。所述共轭聚合物具有较宽的吸收光谱和吸收系数以及较高的电子迁移率,可作为高效的电子受体用于高效有机太阳电池中。
本发明技术方案如下。
基于共轭π桥相连呋喃的n型共轭聚合物,结构如下:
其中,n为小于100万的正整数,R1,R2为烷基链;R3,R4,R5,R6为氢、氟、氯、溴、碘、烷基链、烷氧链或烷硫链;π为共轭单元结构,所述共轭单元为双键、三键、噻吩,呋喃,苯,芴、咔唑、硅芴、联噻吩、联呋喃、苯并二噻吩、苯并二硒吩、苯并二呋喃、吩噻嗪、吩噁嗪、联噻吩、并噻吩、噻吩并环戊二烯、噻吩并吡咯、噻吩并噻咯、吲哚芴、吲哚咔唑、吡咯、苯并噻二唑、苯并硒二唑、苯并恶二唑、苯并三氮唑及以上所有结构的衍生物中的一种以上。
进一步地,所述的R1、R2为具有1~40个碳原子的直链、支链或者环状烷基链;所述直链、支链或者环状烷基链中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基或硝基取代;所述直链、支链或者环状烷基链中氢原子被氟原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基或硝基取代;R1、R2相同或不相同。
进一步地,所述的R3,R4,R5,R6为氢、氟、氯、溴、碘原子或者为具有1~40个碳原子的直链、支链或者环状烷基链;所述直链、支链或者环状烷基链中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基或硝基取代;所述直链、支链或者环状烷基链的氢原子被氟原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基或硝基取代。
进一步地,其中π为共轭单元结构,具有如下结构的一种或一种以上:
基于共轭π桥相连呋喃的n型共轭聚合物作为电子受体用于有机光伏器件中。
本发明所述的新型D-A结构的n型共轭聚合物通过Suzuki或Stille聚合反应得到。
本发明中使用的有机光伏器件结构如图1所示,由衬底1、阴极2、阴极界面层3、光吸收层4、阳极界面层5、阳极6或由衬底1、阳极2、阳极界面层3、光吸收层4、阴极界面层5、阴极6依次层叠构成。光吸收层受体由本发明合成的共轭聚合物组成。
本发明太阳电池中,阳极材料优选为铝、银、金、钙/铝合金或钙/银合金。
本发明所述阳极界面层优选为有机共轭聚合物(如聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐)或无机半导体。
本发明所述阴极优选为金属、金属氧化物(如氧化铟锡导电膜(ITO),掺杂二氧化锡 (FTO),氧化锌(ZnO),铟镓锌氧化物(IGZO))和石墨烯及其衍生物中的至少一种。
本发明所述衬底优选为玻璃、柔性材料(如聚酰亚胺、聚对苯二甲酸乙二醇酯、乙烯对苯二甲酸酯、聚萘二甲酸乙二醇酯或其他聚酯材料)、金属、合金和不锈钢薄膜中的至少一种。
与现有技术相比,本发明具有以下优点:
(1)本发明设计了D-A交替的n型半导体共轭聚合物,能够极大地提高聚合物的吸收系数,拓宽吸收光谱,能够极大地提高电池器件的光电流以及电池器件效率;
(2)所述的新型D-A结构的n型共轭聚合物作为电子受体能够达到短路电流,开路电压和填充因子的平衡,制备能量转化效率超过10%的全聚合物太阳电池,远超过基于现有受体的电池性能。
附图说明
图1有机太阳电池结构示意图;
图2代表性所述的新型D-A结构的n型共轭聚合物(P1,P2,P3)的紫外-可见光-近红外吸收谱图;
图3代表性所述的新型D-A结构的n型共轭聚合物(P4,P5)的紫外-可见光-近红外吸收谱图;
图4电池结构为ITO阴极/阴极界面层/活性层/阳机界面层/阳极(倒装结构)时,代表性含本次发明的共轭聚合物(P1,P2,P3)作为电子受体材料时电池器件的电流-电压曲线图;
图5电池结构为ITO阴极/阳极界面层/活性层/阴机界面层/阳极(正装结构)时,代表性含本次发明的共轭聚合物(P1,P2,P3)作为电子受体材料时电池器件的电流-电压曲线图。
图6电池结构为ITO阴极/阴极界面层/活性层/阳机界面层/阳极(倒装结构)时,代表性含本次发明的共轭聚合物(P4,P5)作为电子受体材料时电池器件的电流-电压曲线图。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,其目的在于帮助更好的理解本发明的内容,具体包括合成、表征与器件制备,但这些具体实施方案不以任何方式限制本发明的保护范围。
实施例1
代表性合成路线如下:
(1)单体M1,M6按照文献[Journal of Materials Chemistry C,2015,3(34):8904-8915.]公开的方法合成。
(2)单体M2,M3,M4按照文献[Journal of the American Chemical Society,2016,138(11): 3679-3686..]公开的方法合成。
(3)聚合物P1,P2,P3的合成:
将单体M1(0.5mmol)和单体M2(0.5mmol)加入到25mL两口烧瓶中,通入氮气保护,加入 8mL甲苯。抽换气两次后加入5mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P1,产率90.7%。
将单体M1(0.5mmol)和单体M3(0.5mmol)加入到25mL两口烧瓶中,通入氮气保护,加入12mL甲苯。抽换气两次后加入7mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P2,产率87.9%。
将单体M1(0.5mmol)和单体M4(0.5mmol)5加入到25mL两口烧瓶中,通入氮气保护,加入11mL甲苯。抽换气两次后加入4mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P3,产率92.2%。
(5)聚合物P4,P5的合成
将单体M5(0.5mmol)和单体M2(0.5mmol)加入到25mL两口烧瓶中,通入氮气保护,加入 11mL甲苯。抽换气两次后加入3mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P4,产率91.1%。
将单体M6(0.5mmol)和单体M2(0.5mmol)5加入到25mL两口烧瓶中,通入氮气保护,加入11mL甲苯。抽换气两次后加入4mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P5,产率89.3%。
将所得的聚合物进行溶液的吸收光谱的测定,如图2和图3所示。从溶液的浓度(0.02mg/ml)和所测得的吸收值可以计算出聚合物P1,P2,P3的吸收系数。P1,P2,P3,P4,P5在最高峰的吸收系数分别为1.27*105cm-1,1.11*105cm-1,1.13*105cm-1,1.35*105cm-1和1.09*105cm-1
实施例2
以实施例1所合成的共轭聚合物P1,P2,P3(结构中AB组分相同)作为电子受体在有机太阳电池(ITO阴极/阴极界面层/活性层/阳机界面层/阳极)中应用。
将ITO导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ITO上旋凃一层5nm厚的PFN-Br,然后旋涂活性层材料PTB7-Th/P1,PTB7-Th/P2,PTB7-Th/P3,厚度为110纳米,最后蒸镀MoO3和Al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的倒装电池器件的电流-电压曲线如图4所示,相关的数据在表一中列出。可以看出,本发明所述的新型含醌式结构的n型共轭聚合物能够极大地提高电池器件的电流,提高电池效率。主要是在填充因子,短路电流以及开路电压达到了很好的平衡。器件性能超过目前所报道的最好值(Energy Environ.Sci.,2017,10,1243-1251;Adv.Mater.2016,28,1884–1890)。
实施例3
以实施例1所合成的共轭聚合物P1,P2,P3(结构中AB组分相同)作为电子受体在有机太阳电池(ITO阳极/阳极界面层/活性层/阴机界面层/阴极)中应用。
将ITO导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ITO上旋凃一层20nm厚的PEDOT:PSS,然后旋涂活性层材料PTB7-Th/P1,PTB7-Th/P2,PTB7-Th/P3,厚度均为100纳米。然后旋涂一层5nm厚的PFN-Br,最后蒸镀Al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的正装电池器件的电流-电压曲线如图5所示,相关的数据在表一中列出。可以看出,本发明所述的新型含醌式结构的n型共轭聚合物能够极大地提高电池器件的电流,并且填充因子也较高,器件效率最高可达10.14%。
实施例4
以实施例1所合成的共轭聚合物P4,P5(结构中AB组分不同)作为电子受体在有机太阳电池(ITO阳极/阳极界面层/活性层/阴机界面层/阴极)中应用。
将ITO导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ITO上旋凃一层20nm厚的PEDOT:PSS,然后旋涂活性层材料PTB7-Th/P4,PTB7-Th/P5,PTB7-Th/P3,厚度均为100纳米。然后旋涂一层5nm厚的PFN-Br,最后蒸镀Al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的正装电池器件的电流-电压曲线如图5所示,相关的数据图6所示并在表一中列出。可以看出,本发明所述的新型含醌式结构的n型共轭聚合物能够极大地提高电池器件的电流,并且填充因子也较高,器件效率最高可达10.64%。
表1代表性共轭聚合物作为电子受体材料时,有机太阳电池的性能参数
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (5)

1.基于共轭π桥相连呋喃的n型共轭聚合物,其特征在于,结构如下:
其中,n为小于100万的正整数,R1,R2为烷基链;R3,R4,R5,R6为氢、氟、氯、溴、碘、烷基链、烷氧链或烷硫链;π为共轭单元结构,所述共轭单元为双键、三键、噻吩,呋喃,苯,芴、咔唑、硅芴、联噻吩、联呋喃、苯并二噻吩、苯并二硒吩、苯并二呋喃、吩噻嗪、吩噁嗪、联噻吩、并噻吩、噻吩并环戊二烯、噻吩并吡咯、噻吩并噻咯、吲哚芴、吲哚咔唑、吡咯、苯并噻二唑、苯并硒二唑、苯并恶二唑、苯并三氮唑及以上所有结构的衍生物中的一种以上。
2.根据权利要求1所述基于共轭π桥相连呋喃的n型共轭聚合物,其特征在于,所述的R1、R2为具有1~40个碳原子的直链、支链或者环状烷基链;所述直链、支链或者环状烷基链中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基或硝基取代;所述直链、支链或者环状烷基链中氢原子被氟原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基或硝基取代;R1、R2相同或不相同。
3.根据权利要求1所述基于共轭π桥相连呋喃的n型共轭聚合物,其特征在于,所述的R3,R4,R5,R6为氢、氟、氯、溴、碘原子或者为具有1~40个碳原子的直链、支链或者环状烷基链;所述直链、支链或者环状烷基链中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基或硝基取代;所述直链、支链或者环状烷基链的氢原子被氟原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基或硝基取代。
4.根据权利要求1所述基于共轭π桥相连呋喃的n型共轭聚合物,其中π为共轭单元结构,具有如下结构的一种或一种以上:
5.根据权利要求1-4任一项所述基于共轭π桥相连呋喃的n型共轭聚合物作为电子受体用于有机光伏器件中。
CN201710836020.6A 2017-09-16 2017-09-16 基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用 Pending CN107674180A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710836020.6A CN107674180A (zh) 2017-09-16 2017-09-16 基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710836020.6A CN107674180A (zh) 2017-09-16 2017-09-16 基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用

Publications (1)

Publication Number Publication Date
CN107674180A true CN107674180A (zh) 2018-02-09

Family

ID=61137434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710836020.6A Pending CN107674180A (zh) 2017-09-16 2017-09-16 基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用

Country Status (1)

Country Link
CN (1) CN107674180A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108727568A (zh) * 2018-06-08 2018-11-02 福建师范大学 可交联的基于萘二酰亚胺的全聚物太阳能电池受体材料、制备方法及其应用
CN109021214A (zh) * 2018-05-31 2018-12-18 华南理工大学 含寡聚乙二醇基侧链修饰萘二酰亚胺单元的n-型共轭聚合物及其在有机光电器件中的应用
CN111057222A (zh) * 2019-12-30 2020-04-24 广东技术师范大学 一种聚合物受体材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725613A (zh) * 2015-03-30 2015-06-24 华南理工大学 含萘并二酰亚胺环的n-型水醇溶共轭聚合物材料及制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725613A (zh) * 2015-03-30 2015-06-24 华南理工大学 含萘并二酰亚胺环的n-型水醇溶共轭聚合物材料及制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JORGE W. MOK,ET AL: ""Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives"", 《J. MATER. CHEM. A》 *
LINGWEI XUE,ET AL: ""Synthesis and Characterization of Arylenevinylenearylene-Naphthalene Diimide Copolymers as Acceptor in All-Polymer Solar Cells"", 《JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109021214A (zh) * 2018-05-31 2018-12-18 华南理工大学 含寡聚乙二醇基侧链修饰萘二酰亚胺单元的n-型共轭聚合物及其在有机光电器件中的应用
CN108727568A (zh) * 2018-06-08 2018-11-02 福建师范大学 可交联的基于萘二酰亚胺的全聚物太阳能电池受体材料、制备方法及其应用
CN111057222A (zh) * 2019-12-30 2020-04-24 广东技术师范大学 一种聚合物受体材料

Similar Documents

Publication Publication Date Title
Li et al. Enhanced organic photovoltaic performance through modulating vertical composition distribution and promoting crystallinity of the photoactive layer by diphenyl sulfide additives
CN107098919B (zh) A-d-a型水/醇溶共轭小分子及其在有机电子器件中的应用
JP4981672B2 (ja) 光電池におけるヘテロ原子位置規則性ポリ(3−置換チオフェン)
CN109749059A (zh) 一种主链含氰基茚酮的稠环n型聚合物及其应用
Yu et al. Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer
CN104241530B (zh) 一种基于水溶性共聚物的有机薄膜太阳能电池
CN107325266A (zh) 含醌式结构的n型共轭聚合物及其在有机光电器件中的应用
CN106986982A (zh) 三键连接的水醇溶共轭聚合物及其在有机光电器件中的应用
Cheng et al. Coplanar phenanthro [9, 10-d] imidazole based hole-transporting material enabling over 19%/21% efficiency in inverted/regular perovskite solar cells
CN108276560B (zh) 基于主链含苯并三唑酰亚胺和引达省氰基茚酮的嵌段共聚物及在单组分有机太阳电池的应用
Huang et al. Performance improvement mechanisms of P3HT: PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers
CN105237745A (zh) 含季膦盐基团共轭聚电解质及其在有机光电器件中的应用
Chen et al. Tuning the frontier molecular orbital energy levels of n‐type conjugated copolymers by using angular‐shaped naphthalene tetracarboxylic diimides, and their use in all‐polymer solar cells with high open‐circuit voltages
CN107674180A (zh) 基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用
Qiu et al. An asymmetric small molecule based on thieno [2, 3-f] benzofuran for efficient organic solar cells
CN111081883B (zh) 一种高效稳定的平面异质结钙钛矿太阳能电池及制备方法
Gao et al. Effect of additives on the photovoltaic properties of organic solar cells based on triphenylamine-containing amorphous molecules
CN108034042B (zh) 一种主链给体-侧链受体型共轭聚合物及其制备和应用
CN108084405A (zh) 基于主链结构为萘二酰亚胺和引达省氰基茚酮的嵌段共聚物及其在有机光伏器件中的应用
CN107946463A (zh) 基于以萘[1,2‑c:5,6‑c]二[1,2,5]噻二唑为核的聚合物的光探测器
CN107793423A (zh) 新型n型醌式结构小分子及其在有机光电器件中的应用
CN107674183B (zh) 含萘[1,2-c;5,6-c]二[1,2,5]噻二唑的共轭聚合物及制备方法和应用
CN107778457A (zh) 基于连呋喃的n型共轭聚合物及其在有机光电器件中的应用
CN109749060B (zh) 一种侧链支化点可调的萘酰亚胺n型共轭聚合物及其应用
CN109232527B (zh) 自掺杂型富勒烯吡啶盐电子传输材料及其构成的有机太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180209

RJ01 Rejection of invention patent application after publication