CN107670685B - 一种有机废水臭氧氧化催化剂及其制备方法和应用 - Google Patents

一种有机废水臭氧氧化催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN107670685B
CN107670685B CN201711063904.9A CN201711063904A CN107670685B CN 107670685 B CN107670685 B CN 107670685B CN 201711063904 A CN201711063904 A CN 201711063904A CN 107670685 B CN107670685 B CN 107670685B
Authority
CN
China
Prior art keywords
oxide
solution
calculated
catalyst
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711063904.9A
Other languages
English (en)
Other versions
CN107670685A (zh
Inventor
陈春茂
董一凡
徐莹莹
李西辰
姬源源
王艳丹
王庆宏
詹亚力
郭绍辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN201711063904.9A priority Critical patent/CN107670685B/zh
Publication of CN107670685A publication Critical patent/CN107670685A/zh
Application granted granted Critical
Publication of CN107670685B publication Critical patent/CN107670685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种有机废水臭氧氧化催化剂及其制备方法和应用。所述催化剂由ZSM‑5分子筛、氧化铝和活性金属的氧化物组成;所述活性金属为锰、镍、铁、铈和钛;以负载了锰和镍的氧化物的ZSM‑5分子筛总重量为100%计,锰氧化物含量以氧化锰计为1.0‑4.5wt%,镍氧化物以氧化镍计含量为0.5‑2.5wt%;负载了锰和镍的氧化物的ZSM‑5分子筛与氧化铝的质量比为1:(1.2‑1.8);以所述催化剂总质量为100%计,铁氧化物的含量以氧化铁计为1.5‑2.5wt%,铈氧化物的含量以氧化铈计为0.5‑1.0wt%,钛氧化物的含量以氧化钛计为0.5‑0.9%。本发明的优点在于以锰和镍负载ZSM‑5分子筛为副组分,可以实现吸附和催化作用的有效结合。

Description

一种有机废水臭氧氧化催化剂及其制备方法和应用
技术领域
本发明涉及有机废水的处理领域,具体的说,本发明涉及一种有机废水臭氧氧化催化剂及其制备方法和应用。
背景技术
随着化学工业的发展和化工合成产品的广泛应用,水环境中难降解的有机污染物和新型污染物的种类、含量明显增加。随着我国环境意识的逐渐加强,污水排放标准的不断升级,各级相关单位都加强了废水治理的力度,以达到国家水处理标准。
臭氧催化氧化技术处理炼油废水以其处理效率高,操作简单而得到广泛关注和应用。在臭氧氧化处理废水的工艺中,催化剂的存在可以促进臭氧转化成氧化能力更强的羟基自由基,进而提高污水处理效果。因此开发高效的臭氧氧化催化剂是提高废水处理效果的有效途径之一。
专利CN101406831A公开了一种MnO2负载型催化剂的制备方法,将醋酸锰配置成溶液,以活性炭、活性三氧化二铝、白色硅胶、分子筛、沸石或者硅藻土中的一种为载体,浸渍于该溶液中,经浸渍、蒸发浓缩、干燥、焙烧,制得负载型固体催化剂。
专利CN102921406A公开了一种活性炭催化剂及其制备方法和应用,将供炭剂如粒度为200目的无烟煤或烟煤或两者的混合物、金属化合物溶液如浓度为20-30%的Mn、Fe、Co、Ni、Cu、Ti、Mo的硝酸盐或醋酸盐水溶液的一种、粘结剂、辅助剂相混合、压条并干燥形成料条;将所述料条进行炭化处理;将上述处理后的料条进行后处理,得到臭氧氧化催化剂,特点是中孔发达、使用寿命长。
专利CN105688927A报道了一种用于处理高酸重质原油加工废水的臭氧催化氧化催化剂,该催化剂包括载体和负载在所述载体上的活性组分和助剂,所述载体包括氧化铝,所述活性组分元素包括Fe、Mn、Cu和Co,所述助剂组分包括Ce和Mg;所述的活性组分元素以氧化物计的总含量为6-12wt%,所述助剂元素以氧化物计的总含量为1.5-2.5wt%。
专利CN101982237A公开了一种处理炼油废水臭氧催化氧化催化剂的制备方法,将无定形氧化铝与羟基氧化铁粉末按干基重量100:1-30比例混合,经滚动造粒、养护、烘干、焙烧各步骤制成成品催化剂。
专利CN103566959A采用的催化剂的制备如下:将适量赤泥原矿用蒸馏水连续清洗,去除赤泥原矿表面的灰分,烘干;称取清洗后的赤泥,置于瓷坩埚内,放到马弗炉高温处理;降低马弗炉内温度至23-27℃,并在23-27℃条件下保持6-10小时;研磨与过筛,降至23-27℃后得到干燥粉末,将其研磨并过筛,选取粒径在0.075-0.15mm范围的颗粒。
专利CN104043458A报道了一种磁性纳米锰铁羟基氧化物臭氧催化氧化催化剂,该催化剂集成了Fex(OH)y和Mnx(OH)y,二元金属羟基氧化物的表面特性,可以有效实现催化剂与水相分离,以铁盐和锰盐为活性源,通过碱液沉淀、陈化、表面清洗、烘干、研磨和过筛工序制备而得。
专利CN103991948A报道了一种改性分子筛为催化剂处理含低浓度全氟辛酸铵废水的方法,包括改性分子筛的制备,配置含有硝酸铈、硝酸铅、硝酸锰或硝酸铁的混合溶液,将20-40目的分子筛浸渍于混合溶液3-6小时,60-120℃干燥2-5小时,450-600℃焙烧2-4小时;将上述的改性分子筛和含全氟辛酸铵浓度为50-500mg/L、温度为20-100℃的废水倒入容器中,通入臭氧,搅拌30-120分钟。
专利涉及活性炭基、氧化铝基、天然矿物材料基、以及金属氧化物等催化剂。然而不断寻找适宜的载体以及金属氧化物的负载方法制备新的高性能的催化氧化催化剂,从而提高有机废水的处理效果,是科研人员持续关注的一个研究方向。
发明内容
本发明的一个目的在于提供一种臭氧氧化催化剂。
本发明的另一目的在于提供所述的臭氧氧化催化剂的制备方法。
本发明的再一目的在于提供一种有机废水臭氧氧化方法。
为达上述目的,一方面,本发明提供了一种有机废水臭氧氧化催化剂,其中,所述催化剂由ZSM-5分子筛、氧化铝和活性金属的氧化物组成;所述活性金属为锰、镍、铁、铈和钛;以负载了锰和镍的氧化物的ZSM-5分子筛总重量为100%计,锰氧化物含量以氧化锰(MnO2)计为1.0-4.5wt%,镍氧化物含量以氧化镍(NiO)计为0.5-2.5wt%;负载了锰和镍的氧化物的ZSM-5分子筛与氧化铝的质量比为1:(1.2-1.8);以所述催化剂总质量为100%计,铁氧化物的含量以氧化铁(Fe2O3)计为1.5-2.5wt%,铈氧化物的含量以氧化铈(CeO2)计为0.5-1.0wt%,钛氧化物的含量以氧化钛(TiO2)计为0.5-0.9%。
其中可以理解的是,本发明所述的负载了锰和镍的氧化物的ZSM-5分子筛是指负载了锰氧化物和镍氧化物的ZSM-5分子筛。
根据本发明一些具体实施方案,其中,所述ZSM-5分子筛的硅铝摩尔比为38-120。
根据本发明一些具体实施方案,其中,所述ZSM-5分子筛的硅铝摩尔比为80-120。
根据本发明一些具体实施方案,其中,所述催化剂的制备方法包括如下步骤:
(1)对ZSM-5负载锰和镍的氧化物的步骤;
(2)制备步骤(1)产物和氧化铝、钛氧化物的混合物的步骤;
(3)将步骤(2)的混合物负载铁氧化物和铈氧化物并得到所述催化剂的步骤。
根据本发明一些具体实施方案,其中,步骤(1)包括使用锰氧化物和镍氧化物的前驱体的水溶液对ZSM-5分子筛进行离子交换或浸渍,然后进行焙烧或水热处理。
根据本发明一些具体实施方案,其中,锰氧化物的前驱体为在焙烧下能够生成锰氧化物的锰的水溶性盐。
根据本发明一些具体实施方案,其中,锰氧化物的前驱体为硝酸锰、或氯化锰。
根据本发明一些具体实施方案,其中,镍氧化物的前驱体为在焙烧下能够生成镍氧化物的镍的水溶性盐。
根据本发明一些具体实施方案,其中,镍氧化物的前驱体为硝酸镍或氯化镍。
根据本发明一些具体实施方案,其中,步骤(1)的焙烧或水热处理的温度为350-650℃。
根据本发明一些具体实施方案,其中,步骤(1)的焙烧或水热处理的温度为480-540℃。
根据本发明一些具体实施方案,其中,步骤(1)的焙烧或水热处理的时间为2-8h。
根据本发明一些具体实施方案,其中,步骤(1)的焙烧或水热处理的时间为3-4h。
根据本发明一些具体实施方案,其中,步骤(1)的焙烧或水热处理的温度为350-650℃,时间为2-8h。
根据本发明一些具体实施方案,其中,步骤(1)的焙烧或水热处理的温度为480-540℃,时间为3-4h。
根据本发明一些具体实施方案,其中,步骤(1)在离子交换或浸渍后,还包括干燥的步骤,然后再进行焙烧或水热处理。
根据本发明一些具体实施方案,其中,步骤(1)的干燥温度为70-120℃。
根据本发明一些具体实施方案,其中,步骤(1)的干燥时间为3-16h。
根据本发明一些具体实施方案,其中,步骤(2)包括将步骤(1)产物和拟薄水铝石、以及偏钛酸和/或二氧化钛混合均匀、挤条,然后焙烧的步骤。
其中可以理解的是,步骤(2)可以将步骤(1)产物和拟薄水铝石、以及偏钛酸混合均匀、挤条,然后焙烧;或者
步骤(2)可以将步骤(1)产物和拟薄水铝石、以及二氧化钛混合均匀、挤条,然后焙烧;或者
步骤(2)可以将步骤(1)产物和拟薄水铝石、以及偏钛酸和二氧化钛混合均匀、挤条,然后焙烧。
根据本发明一些具体实施方案,其中,步骤(2)的焙烧温度为450-600℃。
根据本发明一些具体实施方案,其中,步骤(2)的焙烧温度为480-540℃。
根据本发明一些具体实施方案,其中,步骤(2)的焙烧时间为2-8h。
根据本发明一些具体实施方案,其中,步骤(2)的焙烧时间为3-4h。
根据本发明一些具体实施方案,其中,步骤(2)的焙烧温度为450-600℃,焙烧时间为2-8h。
根据本发明一些具体实施方案,其中,步骤(2)的焙烧温度为480-540℃,焙烧时间为3-4h。
根据本发明一些具体实施方案,其中,步骤(2)在将步骤(1)产物和拟薄水铝石、以及偏钛酸混合均匀、挤条后,还包括干燥的步骤,然后再焙烧。
根据本发明一些具体实施方案,其中,步骤(2)的干燥温度为70-120℃。
根据本发明一些具体实施方案,其中,步骤(2)的干燥时间为2-12h。
根据本发明一些具体实施方案,其中,步骤(3)包括将步骤(2)的混合物使用铁氧化物和铈氧化物的前驱体的水溶液进行浸渍,然后进行焙烧。
根据本发明一些具体实施方案,其中,铁氧化物的前驱体为在焙烧下能够生成铁氧化物的铁的水溶性盐。
根据本发明一些具体实施方案,其中,铁氧化物的前驱体为硝酸铁、氯化铁或硫酸铁。
根据本发明一些具体实施方案,其中,铈氧化物的前驱体为在焙烧下能够生成铈氧化物的铈的水溶性盐。
根据本发明一些具体实施方案,其中,铈氧化物的前驱体为硝酸铈或硫酸铈。
根据本发明一些具体实施方案,其中,步骤(3)焙烧的温度为350-650℃。
根据本发明一些具体实施方案,其中,步骤(3)焙烧的温度为480-540℃。
根据本发明一些具体实施方案,其中,步骤(3)焙烧的时间为2-8h。
根据本发明一些具体实施方案,其中,步骤(3)焙烧的时间为3-4h。
根据本发明一些具体实施方案,其中,步骤(3)焙烧的温度为350-650℃,时间为2-8h。
根据本发明一些具体实施方案,其中,步骤(3)焙烧的温度为480-540℃,时间为3-4h。
另一方面,本发明还提供了本发明任意一项所述的有机废水臭氧氧化催化剂的制备方法,其中,所述方法包括:
(1)对ZSM-5负载锰和镍的氧化物的步骤;
(2)制备步骤(1)产物和氧化铝、钛氧化物的混合物的步骤;
(3)将步骤(2)的混合物负载铁氧化物和铈氧化物并得到所述催化剂的步骤。
再一方面,本发明还提供了一种有机废水臭氧氧化方法,其中,所述方法包括使用本发明任意一项所述的有机废水臭氧氧化催化剂进行反应。
根据本发明一些具体实施方案,其中,所述方法包括如下反应条件:臭氧的投加比例为1.3-1.6mgO3/mg废水中COD,废水在流化床反应器中的反应时间为30-65min,催化剂在流化床反应器中的填充比为0.5-3.0v%
根据本发明一些具体实施方案,其中,所述的有机废水为工业有机废水。
根据本发明一些具体实施方案,其中,所述的有机废水为炼油废水。
综上所述,本发明提供了一种有机废水臭氧氧化催化剂及其制备方法和应用。本发明的催化剂具有如下优点:
本发明的优点在于以锰和镍负载ZSM-5分子筛为副组分,可以实现吸附和催化作用的有效结合;氧化铝和ZSM-5分子筛的复合实现催化剂不同大小孔道的分布;铁氧化物、铈氧化物和钛氧化物多金属氧化物的复合形成多种激发臭氧转化成羟基自由基的活性中心;多孔道结构、多催化活性中心和适度的吸附性能,有利于废水中多种不同类别有机污染物、催化剂催化活性中心与臭氧充分接触和反应,提高有机废水的处理深度,实现有机废水排放达标。
具体实施方式
以下通过具体实施例详细说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。
实施例1
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分的制备:将2.25g质量浓度为50%的硝酸锰水溶液和4.63g六水硝酸镍(Ni(NO3)2·6H2O)加入到34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到50g NaZSM-5(硅铝摩尔比SiO2/Al2O3为38),空气静置3h后,在110℃下干燥12h,再540℃下焙烧3h;元素分析显示锰氧化物(以MnO2计)的质量百分含量为1.1wt%,镍氧化物(以NiO计)的质量百分含量为2.4wt%,得到产品F1;
(2)成型:将30g F1和0.49g偏钛酸与48.7g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后90℃干燥、500℃焙烧5h得到产品K1;
(3)浸渍:将2.56g九水合硝酸铁(Fe(NO3)3·9H2O)和0.68g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g K1里,空气静置3h后,在110℃下干燥12h,再500℃下焙烧3h。元素分析显示的铁氧化物(以Fe2O3计)的含量为1.67wt%,铈氧化物(以CeO2计)0.88wt%,钛氧化物(以TiO2计)0.53wt%,该催化剂命名为CAT-1。
实施例2
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分的制备:将2.63g六水硝酸镍(Ni(NO3)2·6H2O)加入到300g蒸馏水中配置成溶液,40℃搅拌20min,加入70g NaZSM-5(硅铝摩尔比SiO2/Al2O3为50),90℃交换2h,过滤、洗涤、100℃下干燥3h;将4.43g质量浓度为50%硝酸锰溶液加入34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到50g上述镍交换NaZSM-5(硅铝摩尔比SiO2/Al2O3为60),空气静置3h后,在100℃下干燥12h,再540℃下水热处理3h;元素分析显示锰氧化物(以MnO2计)的质量百分含量为2.1wt%,镍氧化物(以NiO计)的质量百分含量为0.75wt%,得到产品F2;
(2)成型:将30g F2和0.60g偏钛酸与60.9g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后100℃干燥、540℃焙烧4h得到产品K2;
(3)浸渍:将3.53g九水合硝酸铁(Fe(NO3)3·9H2O)和0.45g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g K2里,空气静置3h后,在100℃下干燥12h,再520℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为2.32wt%,铈氧化物(以CeO2计)0.59wt%,钛氧化物(以TiO2计)0.61wt%,该催化剂命名为CAT-2。
实施例3
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分的制备:将8.86g质量浓度为50%的硝酸锰水溶液和1.37g六水硝酸镍(Ni(NO3)2·6H2O)加入到34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到50g NaZSM-5(硅铝摩尔比SiO2/Al2O3为90),空气静置3h后,在100℃下干燥12h,再550℃下焙烧3h;元素分析显示锰氧化物(以MnO2计)的质量百分含量为4.3wt%,镍氧化物(以NiO计)的质量百分含量为0.7wt%,得到产品F3;
(2)成型:将30g F3和0.58g二氧化钛粉末与52.4g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后110℃干燥、540℃焙烧4h得到产品K3;
(3)浸渍:将3.02g九水合硝酸铁(Fe(NO3)3·9H2O)和0.54g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g K3里,空气静置4h后,在105℃下干燥8h,再540℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为1.97wt%,铈氧化物(以CeO2计)0.70wt%,钛氧化物(以TiO2计)0.79wt%,该催化剂命名为CAT-3。
实施例4
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分采用F1;
(2)成型:将30g F1和0.58g二氧化钛粉末与52.4g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后110℃干燥、540℃焙烧4h得到产品K4;
(3)浸渍:将3.02g九水合硝酸铁(Fe(NO3)3·9H2O)和0.54g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g K4里,空气静置4h后,在105℃下干燥8h,再540℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为1.97wt%,铈氧化物(以CeO2计)0.70wt%,钛氧化物(以TiO2计)0.79wt%,该催化剂命名为CAT-4。
实施例5
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分采用F2;
(2)成型:将30g F2和0.49g偏钛酸与48.7g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后90℃干燥、500℃焙烧5h得到产品K5;
(3)浸渍:将2.56g九水合硝酸铁(Fe(NO3)3·9H2O)和0.68g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g K5里,空气静置3h后,在110℃下干燥12h,再500℃下焙烧3h。元素分析显示的铁氧化物(以Fe2O3计)的含量为1.67wt%,铈氧化物(以CeO2计)0.88wt%,钛氧化物(以TiO2计)0.53wt%,该催化剂命名为CAT-5。
实施例6
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分的制备:将2.25g质量浓度为50%的硝酸锰水溶液和4.63g六水硝酸镍(Ni(NO3)2·6H2O)加入到34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到50g NaZSM-5(硅铝摩尔比SiO2/Al2O3为116),空气静置3h后,在110℃下干燥12h,再540℃下焙烧3h;元素分析显示锰氧化物(以MnO2计)的质量百分含量为1.1wt%,镍氧化物(以NiO计)的质量百分含量为2.4wt%,得到产品F6;
(2)成型:将30g F6和0.60g偏钛酸与60.9g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后100℃干燥、540℃焙烧4h得到产品K6;
(3)浸渍:将3.53g九水合硝酸铁(Fe(NO3)3·9H2O)和0.45g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g K6里,空气静置3h后,在100℃下干燥12h,再520℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为2.32wt%,铈氧化物(以CeO2计)0.59wt%,钛氧化物(以TiO2计)0.61wt%,该催化剂命名为CAT-6。
对比例1
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分的制备:将1.0g质量浓度为50%的硝酸锰水溶液和5.85g六水硝酸镍(Ni(NO3)2·6H2O)加入到34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到50g NaZSM-5(硅铝摩尔比SiO2/Al2O3为50),空气静置3h后,在100℃下干燥12h,再550℃下焙烧3h;元素分析显示锰氧化物(以MnO2计)的质量百分含量为0.49wt%,镍氧化物(以NiO计)的质量百分含量为2.91wt%,得到产品P1;
(2)成型:将30g P1和0.49g偏钛酸与48.7g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后90℃干燥、500℃焙烧5h得到产品Q1;
(3)浸渍:将2.56g九水合硝酸铁(Fe(NO3)3·9H2O)和0.68g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g Q1里,空气静置3h后,在110℃下干燥12h,再500℃下焙烧3h。元素分析显示的铁氧化物(以Fe2O3计)的含量为1.67wt%,铈氧化物(以CeO2计)0.88wt%,钛氧化物(以TiO2计)0.53wt%,该催化剂命名为CAT-R1。
对比例2
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分的制备:将2.78g六水硝酸镍(Ni(NO3)2·6H2O)加入到300g蒸馏水中配置成溶液,40℃搅拌20min,加入70g NaY(硅铝摩尔比SiO2/Al2O3为5.3),95℃交换1h,过滤、洗涤、100℃下干燥3h;将4.53g质量浓度为50%硝酸锰溶液加入34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到50g上述镍交换NaZSM-5(硅铝摩尔比SiO2/Al2O3为60),空气静置3h后,在100℃下干燥12h,再540℃下焙烧3h;元素分析显示锰氧化物(以MnO2计)的质量百分含量为2.1wt%,镍氧化物(以NiO计)的质量百分含量为0.72wt%,得到产品P2;
(2)成型:将30g P2和0.60g偏钛酸与60.9g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后100℃干燥、540℃焙烧4h得到产品Q2;
(3)浸渍:将3.53g九水合硝酸铁(Fe(NO3)3·9H2O)和0.45g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g Q2里,空气静置3h后,在100℃下干燥12h,再520℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为2.32wt%,铈氧化物(以CeO2计)0.59wt%,钛氧化物(以TiO2计)0.61wt%,该催化剂命名为CAT-R2。
对比例3
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分的制备:将2.25g质量浓度为50%的硝酸锰水溶液和4.63g六水硝酸镍(Ni(NO3)2·6H2O)加入到34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到50g MCM-41,空气静置3h后,在110℃下干燥12h,再540℃下焙烧3h;元素分析显示锰氧化物(以MnO2计)的质量百分含量为1.1wt%,镍氧化物(以NiO计)的质量百分含量为2.4wt%,得到产品P3;
(2)成型:将30g P3和0.60g偏钛酸与60.9g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后100℃干燥、540℃焙烧4h得到产品Q3;
(3)浸渍:将3.53g九水合硝酸铁(Fe(NO3)3·9H2O)和0.45g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g Q3里,空气静置3h后,在100℃下干燥12h,再520℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为2.32wt%,铈氧化物(以CeO2计)0.59wt%,钛氧化物(以TiO2计)0.61wt%,该催化剂命名为CAT-R3。
对比例4
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分采用F3;
(2)成型:将30g F3和0.58g二钛氧化物粉末与30.5g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后110℃干燥、540℃焙烧4h得到产品Q4;
(3)浸渍:将3.02g九水合硝酸铁(Fe(NO3)3·9H2O)和0.54g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30gQ4里,空气静置4h后,在105℃下干燥8h,再540℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为1.97wt%,铈氧化物(以CeO2计)0.70wt%,钛氧化物(以TiO2计)0.91wt%,该催化剂命名为CAT-R4。
对比例5
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)成型:0.58g二钛氧化物粉末与52.4g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后110℃干燥、540℃焙烧4h得到产品Q5;
(2)浸渍:-将3.02g九水合硝酸铁(Fe(NO3)3·9H2O)和0.54g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g Q5里,空气静置4h后,在105℃下干燥8h,再540℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为1.97wt%,铈氧化物(以CeO2计)0.70wt%,钛氧化物(以TiO2计)1.25wt%,该催化剂命名为CAT-R5。
对比例6
一种有机废水臭氧催化氧化催化剂及其制备方法:
(1)分子筛副组分采用F2;
(2)成型:将30g F2和1.6g偏钛酸与48.7g拟薄水铝石(氧化铝含量为82.5wt%)混合均匀-挤条成型,然后90℃干燥、500℃焙烧5h得到产品Q6;
(3)浸渍:将4.40g九水合硝酸铁(Fe(NO3)3·9H2O)和1.13g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g Q6里,空气静置3h后,在110℃下干燥12h,再500℃下焙烧3h。元素分析显示的铁氧化物(以Fe2O3计)的含量为2.91wt%,铈氧化物(以CeO2计)1.45wt%,钛氧化物(以TiO2计)1.85wt%,该催化剂命名为CAT-R6。
对比例7
一种有机废水臭氧催化氧化催化剂及其制备方法:
浸渍:-将0.55g质量浓度为50%的硝酸锰水溶液、2.95g六水硝酸镍(Ni(NO3)2·6H2O)、3.02g九水合硝酸铁(Fe(NO3)3·9H2O)和0.54g六水合硝酸铈(Ce(NO3)3·6H2O)溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g Q5里,空气静置4h后,在105℃下干燥8h,再540℃下焙烧5h。元素分析显示的铁氧化物(以Fe2O3计)的含量为1.97wt%,铈氧化物(以CeO2计)0.70wt%,钛氧化物(以TiO2计)0.79wt%,该催化剂命名为CAT-R7。
测试例1
将实施例1-6以及对比例1-7的催化剂用于有机废水臭氧催化氧化实验。有机废水、含臭氧的气体均从流化床反应器内提升管底部输入,在上向流进水及含臭氧气体的共同携带作用下,在内提升管内的催化剂成流化态,与臭氧、有机污染物之间进行传质反应;臭氧的投加比例为1.45mgO3/mg废水中COD,废水在流化床反应器中的反应时间为45min,催化剂在流化床反应器中的填充比为1.25v%。有机废水来源于锦西炼油厂,该水样水质指标如下:pH值为8.5,COD为125.3mg/L,BOD5为10.4mg/L。
实施例催化剂与对比催化剂臭氧氧化处理后效果如下。
表1实施例催化剂评价结果
CAT-1 CAT-2 CAT-3 CAT-4 CAT-5 CAT-6
COD脱出率% 57.7 59.0 66.9 58.7 60.5 64.5
表2对比例催化剂评价结果
Figure BDA0001455345370000121
从表1和2的评价结果可以看出,与对比例的催化剂相比,实施例的催化剂更有利于有机废水COD脱出,具有更高催化活性。

Claims (6)

1.一种有机废水臭氧氧化催化剂,其中,所述催化剂由包括如下步骤的制备方法制备得到:
(1)分子筛副组分的制备:将8.86g质量浓度为50%的硝酸锰水溶液和1.37g六水硝酸镍加入到34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到硅铝摩尔比SiO2/Al2O3为90的50g NaZSM-5,空气静置3h后,在100℃下干燥12h,再550℃下焙烧3h;元素分析显示,以MnO2计锰氧化物的质量百分含量为4.3wt%,以NiO计镍氧化物的质量百分含量为0.7wt%,得到产品F3;
(2)成型:将30g F3和0.58g二氧化钛粉末与氧化铝含量为82.5wt%的52.4g拟薄水铝石混合均匀-挤条成型,然后110℃干燥、540℃焙烧4h得到产品K3;
(3)浸渍:将3.02g九水合硝酸铁和0.54g六水合硝酸铈溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g K3里,空气静置4h后,在105℃下干燥8h,再540℃下焙烧5h得到所述催化剂;元素分析显示,以Fe2O3计铁氧化物的含量为1.97wt%,以CeO2计铈氧化物的含量为0.70wt%,以TiO2计钛氧化物的含量为0.79wt%。
2.权利要求1所述的有机废水臭氧氧化催化剂的制备方法,其中,所述方法包括:
(1)分子筛副组分的制备:将8.86g质量浓度为50%的硝酸锰水溶液和1.37g六水硝酸镍加入到34.5g蒸馏水中配置成混合溶液,采用等体积浸渍法,缓慢滴加到硅铝摩尔比SiO2/Al2O3为90的50g NaZSM-5,空气静置3h后,在100℃下干燥12h,再550℃下焙烧3h;元素分析显示,以MnO2计锰氧化物的质量百分含量为4.3wt%,以NiO计镍氧化物的质量百分含量为0.7wt%,得到产品F3;
(2)成型:将30g F3和0.58g二氧化钛粉末与氧化铝含量为82.5wt%的52.4g拟薄水铝石混合均匀-挤条成型,然后110℃干燥、540℃焙烧4h得到产品K3;
(3)浸渍:将3.02g九水合硝酸铁和0.54g六水合硝酸铈溶解于26g蒸馏水中配置成溶液,采用等体积浸渍法,缓慢滴加到30g K3里,空气静置4h后,在105℃下干燥8h,再540℃下焙烧5h得到所述催化剂;元素分析显示,以Fe2O3计铁氧化物的含量为1.97wt%,以CeO2计铈氧化物的含量为0.70wt%,以TiO2计钛氧化物的含量为0.79wt%。
3.一种有机废水臭氧氧化方法,其中,所述方法包括使用权利要求1所述的催化剂进行反应。
4.根据权利要求3所述的方法,其中,所述方法包括如下反应条件:臭氧的投加比例为1.3-1.6mgO3/mg废水中COD,废水在流化床反应器中的反应时间为30-65min,催化剂在流化床反应器中的填充比为0.5-3.0v%。
5.根据权利要求3所述的方法,其中,所述有机废水为工业有机废水。
6.根据权利要求5所述的方法,其中,所述有机废水为炼油废水。
CN201711063904.9A 2017-11-02 2017-11-02 一种有机废水臭氧氧化催化剂及其制备方法和应用 Active CN107670685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711063904.9A CN107670685B (zh) 2017-11-02 2017-11-02 一种有机废水臭氧氧化催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711063904.9A CN107670685B (zh) 2017-11-02 2017-11-02 一种有机废水臭氧氧化催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107670685A CN107670685A (zh) 2018-02-09
CN107670685B true CN107670685B (zh) 2020-06-12

Family

ID=61144866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711063904.9A Active CN107670685B (zh) 2017-11-02 2017-11-02 一种有机废水臭氧氧化催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107670685B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109529867A (zh) * 2018-10-25 2019-03-29 南京工业大学 一种处理煤化工尾水用高效催化剂及其制备方法
CN110066006A (zh) * 2019-05-08 2019-07-30 科盛环保科技股份有限公司 一种Mn-Al2O3/O3催化氧化深度处理工业废水的方法
CN113441134A (zh) * 2021-05-13 2021-09-28 重庆南科环工环保科技有限公司 一种有机磷农药生产废水用催化剂的制备方法及应用
CN114602494B (zh) * 2022-05-12 2022-07-29 中国环境科学研究院 一种共混合-浸渍联合法制备多金属臭氧催化剂的方法
CN115090319B (zh) * 2022-08-09 2023-12-05 山东默同生态有限公司 一种臭氧催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105363465A (zh) * 2015-07-07 2016-03-02 博天环境集团股份有限公司 一种负载多金属氧化物的臭氧氧化催化剂的制备方法
CN105776494A (zh) * 2016-04-06 2016-07-20 安徽工程大学 一种苯酚废水的处理方法、一种CuO/ZSM-5催化剂的制备方法
CN104399516B (zh) * 2014-12-11 2016-08-24 安徽工程大学 一种处理硝基苯酚废水的光催化剂的制备方法、一种硝基苯酚废水的处理方法
CN106256426A (zh) * 2015-06-18 2016-12-28 中国石油化工股份有限公司 一种用于催化臭氧氧化的催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399516B (zh) * 2014-12-11 2016-08-24 安徽工程大学 一种处理硝基苯酚废水的光催化剂的制备方法、一种硝基苯酚废水的处理方法
CN106256426A (zh) * 2015-06-18 2016-12-28 中国石油化工股份有限公司 一种用于催化臭氧氧化的催化剂及其制备方法
CN105363465A (zh) * 2015-07-07 2016-03-02 博天环境集团股份有限公司 一种负载多金属氧化物的臭氧氧化催化剂的制备方法
CN105776494A (zh) * 2016-04-06 2016-07-20 安徽工程大学 一种苯酚废水的处理方法、一种CuO/ZSM-5催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"金属负载Na-ZSM-5分子筛催化臭氧氧化硝基苯废水的实验研究";李阳等;《中国环境科学学会学术年会论文集》;20161014;第2394-2398页 *

Also Published As

Publication number Publication date
CN107670685A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN107670685B (zh) 一种有机废水臭氧氧化催化剂及其制备方法和应用
CA2423010C (en) Contact and adsorber granules
US7651973B2 (en) Contact and adsorbent granules
CN1466550A (zh) 吸附器以及氧化铁吸附剂
CN1552805A (zh) 一种含分子筛的烃类裂化催化剂及其制备方法
CN1552802A (zh) 一种具有脱硫作用的裂化助剂及其制备方法
CN101619231B (zh) 一种燃料油吸附脱硫吸附剂及其制备方法
CN113559858B (zh) 一种生物炭基复合材料的制备方法及应用
CN101402048B (zh) 高性能加氢裂化催化剂的制备方法
CN1402651A (zh) 一种热稳定的高表面积的改性中孔磷铝酸盐材料
CN1072975C (zh) 处理含硫化合物气体用催化剂及应用和处理气体的方法
CN106552644B (zh) 难生化废水用臭氧催化剂及其制备方法
CN105709744B (zh) 催化湿式氧化催化剂的制备方法
CN112675810A (zh) 一种非晶态高效除磷吸附材料及其制备方法与水处理应用
CN1240814A (zh) 一种烃类催化裂化催化剂的制造方法
CN1879960A (zh) 一种抗重金属的催化裂化助剂及其制备方法
JPS5939345A (ja) 石炭ガス化ガスの脱硫方法
CN1676576A (zh) 一种含分子筛的烃类裂化催化剂及其制备方法
CN105709776B (zh) 催化湿式氧化催化剂的制法
CN105618040B (zh) 一种用于催化湿式氧化的贵金属催化剂的制法
CN1566273A (zh) 一种含分子筛的烃类裂化催化剂及其制备方法
CN109465005B (zh) 硫转移催化剂及其制备方法
JP2017154965A (ja) 銀担持ゼオライト成形体
CN1261527C (zh) 一种烃油裂化方法
CN105709738B (zh) 利用含铁废渣原料制备铁基加氢催化剂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant