CN107659158A - 一种多谐振网络单元的隔离型高增益直流变换器 - Google Patents

一种多谐振网络单元的隔离型高增益直流变换器 Download PDF

Info

Publication number
CN107659158A
CN107659158A CN201711033739.2A CN201711033739A CN107659158A CN 107659158 A CN107659158 A CN 107659158A CN 201711033739 A CN201711033739 A CN 201711033739A CN 107659158 A CN107659158 A CN 107659158A
Authority
CN
China
Prior art keywords
switch pipe
voltage
diode
side winding
multiplication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711033739.2A
Other languages
English (en)
Other versions
CN107659158B (zh
Inventor
李山
章治国
刘俊良
宋立风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Hongyi Electric Co ltd
Zhang Zhiguo
Original Assignee
Chongqing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Technology filed Critical Chongqing University of Technology
Priority to CN201711033739.2A priority Critical patent/CN107659158B/zh
Publication of CN107659158A publication Critical patent/CN107659158A/zh
Application granted granted Critical
Publication of CN107659158B publication Critical patent/CN107659158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明公开了一种多谐振网络单元的隔离型高增益直流变换器,包括输入电源Vg,第一开关管S1,有源嵌位电路,多绕组变压器T,输出电容Co,输出二极管Do和负载R;多绕组变压器T包括一个原边绕组Tp,以及多个副边绕组Tk,k为正整数;有源嵌位电路包括第一电容Cr,第二开关管S2,以及谐振电感Lr;还包括准倍压结构,准倍压结构包括准倍压电容Ck和准倍压二极管Dk;第一开关管S1和第二开关管S2的开关逻辑为互补开通。本发明具有结构简单,开关管较少,能够减小二极管的电压应力,实现二极管的零电流断开,减少变压器的匝比;能够实现原边开关管零电压开通,减少其电压应力;实现功率管的软开关,减小开关损耗和EMI干扰等优点。

Description

一种多谐振网络单元的隔离型高增益直流变换器
技术领域
本发明涉及光伏新能源、燃料电池以及不间断电源等技术领域,特别的涉及一种多谐振网络单元的隔离型高增益直流变换器。
背景技术
目前,能源危机和环境问题越来越多的受到关注。各国政府都争相致力于绿色新能源中。其中光伏新能源因零污染、无噪声、设备安装方便和潜能巨等优点,在全世界范围内广泛使用。以两级式光伏并网发电系统为例,由于受限光伏电池特性的影响,光伏电池不能串联过多,通常的光伏组件模块输出电压为33~50V,功率约为100W~300W。为了将电压提升到常规的直流母线电压(350V~400V),需要利用高增益直流变换技术。此外高增益直流变换技术不仅应用在新能源光伏领域中,还应用在燃料电池和不间断电源领域中。
最典型的Boost变换器被广泛应用在升压领域中,理论上当占空比接近1时,它的电压增益无穷大,但伴随着开关电压应力大、二极管反向恢复严重、效率低和严重的EMI等问题。因此新的高增益直流变换技术被提出,比如利用耦合电感、开关电容、倍压单元和自举电路等。此类方法在实现高增益的同时,且具有高效率和高功率密度等优点,但是缺乏电气设备安全的考虑,譬如,太阳能光伏板与大地之间易形成的寄生电容,从而为漏电流提供共模通道,因此当其流过关联设施或是被人接触光伏板的导电部分都会造成安全问题。迄今为止在美国的光伏电站仍禁止使用非电气隔离的逆变器(美国标准UL1741-2010),无变压器隔离的光伏逆变器仅有极少量的公司获取了美国认证。而具有电气隔离的高增益变换器,通常具有变换器结构复杂(开关元件数量较多),开关管和二极管的电压应力大或是未完全实现所有功率管的软开关。因而,设计开发出一种高增益、具有变压器隔离、开关管电压应力低且电路结构简单的全软开关高增益直流变换器具有重要意义。
发明内容
针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种结构简单,开关管较少,能够减小二极管的电压应力,实现二极管的零电流断开,减少变压器的匝比;能够实现原边开关管零电压开通,减少其电压应力;实现功率管的软开关,减小开关损耗和EMI干扰的多谐振网络单元的隔离型高增益直流变换器。
为了解决上述技术问题,本发明采用了如下的技术方案:
一种多谐振网络单元的隔离型高增益直流变换器,其特征在于,包括输入电源Vg,第一开关管S1,有源嵌位电路,多绕组变压器T,输出电容Co,输出二极管Do和负载R;所述多绕组变压器T包括一个原边绕组Tp,以及多个副边绕组Tk,k为正整数;所述原边绕组Tp的同名端连接至所述输入电源Vg,所述原边绕组Tp的另一端连接至所述第一开关管S1的漏极;所述输入电源Vg的另一端与所述第一开关管S1的源极相连并接地;
所述有源嵌位电路包括第一电容Cr,第二开关管S2,以及连接在所述输入电源Vg和所述原边绕组Tp的同名端之间的谐振电感Lr;所述第一电容Cr的一端连接在所述输入电源Vg和所述谐振电感Lr之间,另一端与所述第二开关管S2的漏极相连,所述第二开关管S2的源极连接至所述原边绕组Tp和所述第一开关管S1的漏极之间;
还包括连接在所述副边绕组Tk上的准倍压结构,所述准倍压结构包括准倍压电容Ck和准倍压二极管Dk,所述副边绕组Tk的同名端连接至所述准倍压二极管Dk的阳极,所述副边绕组Tk的另一端与所述准倍压二极管Dk的阴极之间连接有所述准倍压电容Ck;各所述准倍压结构上的所述准倍压二极管Dk依次串联后与所述输出电容Co并联;所述输出二极管Do串联在所述输出电容Co和相邻的所述准倍压二极管Dk之间,且所述输出二极管Do的阴极连接至所述所述输出电容Co;所述负载R并联在所述输出电容Co两端;
所述第一开关管S1和所述第二开关管S2的开关逻辑为互补开通。
进一步的,所述谐振电感Lr为所述多绕组变压器T的漏感。
与现有技术相比,本发明具有以下明显优势:1)由于使用了多个串联的准倍压结构,在第二开关管S2导通后,输出电压等于各个准倍压电容上的电压与副边绕组电压的和,在同等的输出电压下,每一个准倍压结构的增加,都会使对应的原副边匝数比减小。从而可以利用较低的变压器匝数比,实现了高电压增益。2)有源嵌位电路使得第一开关管S1和第二开关管S2可以实现零电压导通,此外,谐振电感与准倍压结构中的准倍压电容谐振,使得准倍压结构中的准倍压二极管可以零电流断开,使得所有功率管均实现软开关,提高了变换器的效率,可高频工作;3)原边开关管的导通和断开期间均向副边传递能量,有助于减小变压器体积,提升功率密度;4)降低了功率管上的电压应力,同时抑制了漏感引起的开关管上的电压尖峰;5)基本升压单元的模块化设计,灵活性强;6)较少的开关元件,电路结构简单。
附图说明
图1为新型多谐振网络单元的隔离型高增益直流变换器的原理图。
图2为新型多谐振网络单元的隔离型高增益直流变换器的等效原理图。
图3为第一开关管S1导通,第二开关管S2断开时的等效原理图。
图4为第一开关管S1断开,第二开关管S2导通时的等效原理图。
图5为电压增益与占空比D、匝数比n及准倍压结构的数量k之间的关系。
图6为采用本申请的直流变换器进行仿真的输入输出电压波形和二极管的电流波形。
图7为采用本申请的直流变换器进行仿真的二极管电压波形。
图8为采用本申请的直流变换器进行仿真的开关管电压波形和驱动信号波形。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
具体实施时:如图1所示,一种多谐振网络单元的隔离型高增益直流变换器,包括输入电源Vg,第一开关管S1,有源嵌位电路,多绕组变压器T,输出电容Co,输出二极管Do和负载R;所述多绕组变压器T包括一个原边绕组Tp,以及k个副边绕组T1~Tk,其中k为正整数,所述原边绕组Tp的匝数为np,所述副边绕组Tk的匝数为nk;所述原边绕组Tp的同名端连接至所述输入电源Vg,所述原边绕组Tp的另一端连接至所述第一开关管S1的漏极;所述输入电源Vg的另一端与所述第一开关管S1的源极相连并接地;
所述有源嵌位电路包括第一电容Cr,第二开关管S2,以及连接在所述输入电源Vg和所述原边绕组Tp的同名端之间的谐振电感Lr;所述第一电容Cr的一端连接在所述输入电源Vg和所述谐振电感Lr之间,另一端与所述第二开关管S2的漏极相连,所述第二开关管S2的源极连接至所述原边绕组Tp和所述第一开关管S1的漏极之间;
还包括连接在所述副边绕组Tk上的准倍压结构,所述准倍压结构包括准倍压电容Ck和准倍压二极管Dk,所述副边绕组Tk的同名端连接至所述准倍压二极管Dk的阳极,所述副边绕组Tk的另一端与所述准倍压二极管Dk的阴极之间连接有所述准倍压电容Ck;各所述准倍压结构上的所述准倍压二极管Dk依次串联后与所述输出电容Co并联;所述输出二极管Do串联在所述输出电容Co和相邻的所述准倍压二极管Dk之间,且所述输出二极管Do的阴极连接至所述所述输出电容Co;所述负载R并联在所述输出电容Co两端;
所述第一开关管S1和所述第二开关管S2的开关逻辑为互补开通。即第一开关管S1导通时,第二开关管S2断开;而第一开关管S1断开时,第二开关管S导通。
所述谐振电感Lr为所述多绕组变压器T的漏感。
如图2~图4所示,多绕组变压器T的副边侧的各个准倍压结构基本是对偶的结构,其副边绕组的匝数和准倍压结构中的准倍压电容的容值均相等。为便于分析,可取单个单元进行分析。
如图2所示,在该状态下,可以理解为谐振电感Lr(即漏感)与准倍压结构中的准倍压电容Ck进行谐振,其准倍压结构中的电压由低电压逐渐上升,直至上升其最大值。取第一个准倍压结构和第一个副边绕组T1进行分析,同时设定此时段,在t1时刻开始,t2时刻结束。由图2可知:
其中Lm为变压器的励磁电感,im为励磁电感上的电流,i1为原边电流,n等于副边绕组T1的匝数n1与原边绕组Tp的匝数np的比值。在该时段,计算化简可得:
其中,km1=1+(Lr/Lm),ω1为谐振时的角频率,Z1为谐振时的等效阻抗。
同理,当第一开关管S1断开,第二开关管S2导通时,此时电路状态如图3所示,在此状态,谐振电感Lr再次与准倍压结构中的准倍压电容Ck进行谐振,但其准倍压结构的准倍压电容上的电压由最大值开始下降,直至降低为最小值。同样取第一个准倍压结构进行分析,设定此时段,在t3时刻开始,t4时刻结束,由图3可知:
计算简化得:
根据电感(漏感和励磁电感)上的伏秒平衡可以得到:
同时,因为准倍压电容C1的电压Vc1在t1时刻和t4时刻为最低电压值,在t2和t3时刻为最高电压值,另外由于漏感相比于励磁电感较小,可以取Km1=1,然后联立以上各式并结合多个准倍压结构的输出电压,可以得到输入输电压关系式:
图5给出了多谐振网络单元的隔离型高增益直流变换器的电压增益与占空比D、匝比n及准倍压结构的数目k之间的关系。
图6~图8为本多谐振网络单元的隔离型高增益直流变换器的仿真波形,其中Vg=45V,Vo=380V,D=0.35,R=1200Ω,k=4,n=1.5,包括输入输出电压波形,开关管S1和S2的驱动电压波形和漏源电压波形,二极管上的电压波形和电流波形。从图6~图8中可以看出,二极管实现了零电流断开(ZCS),第一开关管S1和第二开关管S2均实现零电压导通(ZVS),且第一开关管S1和第二开关管S2上的电压应力(65V)和准倍压结构中的二极管的电压应力(95V)都远小于输出电压。
以上所述仅为本发明的较佳实施例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种多谐振网络单元的隔离型高增益直流变换器,其特征在于,包括输入电源Vg,第一开关管S1,有源嵌位电路,多绕组变压器T,输出电容Co,输出二极管Do和负载R;所述多绕组变压器T包括一个原边绕组Tp,以及多个副边绕组Tk,k为正整数;所述原边绕组Tp的同名端连接至所述输入电源Vg,所述原边绕组Tp的另一端连接至所述第一开关管S1的漏极;所述输入电源Vg的另一端与所述第一开关管S1的源极相连并接地;
所述有源嵌位电路包括第一电容Cr,第二开关管S2,以及连接在所述输入电源Vg和所述原边绕组Tp的同名端之间的谐振电感Lr;所述第一电容Cr的一端连接在所述输入电源Vg和所述谐振电感Lr之间,另一端与所述第二开关管S2的漏极相连,所述第二开关管S2的源极连接至所述原边绕组Tp和所述第一开关管S1的漏极之间;
还包括连接在所述副边绕组Tk上的准倍压结构,所述准倍压结构包括准倍压电容Ck和准倍压二极管Dk,所述副边绕组Tk的同名端连接至所述准倍压二极管Dk的阳极,所述副边绕组Tk的另一端与所述准倍压二极管Dk的阴极之间连接有所述准倍压电容Ck;各所述准倍压结构上的所述准倍压二极管Dk依次串联后与所述输出电容Co并联;所述输出二极管Do串联在所述输出电容Co和相邻的所述准倍压二极管Dk之间,且所述输出二极管Do的阴极连接至所述所述输出电容Co;所述负载R并联在所述输出电容Co两端;
所述第一开关管S1和所述第二开关管S2的开关逻辑为互补开通。
2.如权利要求1所述的多谐振网络单元的隔离型高增益直流变换器,其特征在于,所述谐振电感Lr为所述多绕组变压器T的漏感。
CN201711033739.2A 2017-10-30 2017-10-30 一种多谐振网络单元的隔离型高增益直流变换器 Active CN107659158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711033739.2A CN107659158B (zh) 2017-10-30 2017-10-30 一种多谐振网络单元的隔离型高增益直流变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711033739.2A CN107659158B (zh) 2017-10-30 2017-10-30 一种多谐振网络单元的隔离型高增益直流变换器

Publications (2)

Publication Number Publication Date
CN107659158A true CN107659158A (zh) 2018-02-02
CN107659158B CN107659158B (zh) 2020-03-13

Family

ID=61095599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711033739.2A Active CN107659158B (zh) 2017-10-30 2017-10-30 一种多谐振网络单元的隔离型高增益直流变换器

Country Status (1)

Country Link
CN (1) CN107659158B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237431A1 (zh) * 2021-05-14 2022-11-17 Oppo广东移动通信有限公司 谐振变换器、电源、终端和升压方法
CN115664225A (zh) * 2022-12-29 2023-01-31 中南大学 一种有源钳位隔离双向谐振型变换器及其调制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846682A (zh) * 2016-03-21 2016-08-10 南京航空航天大学 一种正反激变换器的新型混合控制方式
CN105896993A (zh) * 2016-05-30 2016-08-24 西安交通大学 一种多单元二极管电容网络高增益隔离型直流变换器
US20170025962A1 (en) * 2015-07-21 2017-01-26 Christopher Donovan Davidson Single stage isolated ac/dc power factor corrected converter
US20170070152A1 (en) * 2015-09-03 2017-03-09 Fairchild (Taiwan) Corporation Control circuits and methods for active-clamp flyback power converters
CN106550512A (zh) * 2017-01-13 2017-03-29 重庆理工大学 一种谐振软开关单级式led驱动电路
CN107017780A (zh) * 2017-05-31 2017-08-04 青岛大学 一种带上拉有源钳位支路的隔离型dc‑dc升压变换器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170025962A1 (en) * 2015-07-21 2017-01-26 Christopher Donovan Davidson Single stage isolated ac/dc power factor corrected converter
US20170070152A1 (en) * 2015-09-03 2017-03-09 Fairchild (Taiwan) Corporation Control circuits and methods for active-clamp flyback power converters
CN105846682A (zh) * 2016-03-21 2016-08-10 南京航空航天大学 一种正反激变换器的新型混合控制方式
CN105896993A (zh) * 2016-05-30 2016-08-24 西安交通大学 一种多单元二极管电容网络高增益隔离型直流变换器
CN106550512A (zh) * 2017-01-13 2017-03-29 重庆理工大学 一种谐振软开关单级式led驱动电路
CN107017780A (zh) * 2017-05-31 2017-08-04 青岛大学 一种带上拉有源钳位支路的隔离型dc‑dc升压变换器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B.-R. LIN ET AL.: "Active-clamp ZVS converter with step-up voltage conversion ratio", 《2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237431A1 (zh) * 2021-05-14 2022-11-17 Oppo广东移动通信有限公司 谐振变换器、电源、终端和升压方法
CN115664225A (zh) * 2022-12-29 2023-01-31 中南大学 一种有源钳位隔离双向谐振型变换器及其调制方法

Also Published As

Publication number Publication date
CN107659158B (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
CN106026645B (zh) 一种双向谐振变换器及其控制方法
CN106059306B (zh) 一种多单元二极管电容网络高增益全桥隔离型直流变换器
CN105958816B (zh) 一种多单元二极管电容网络和耦合电感高增益直流变换器
CN105846696B (zh) 一种两级式ac-dc变换器及其控制方法
CN106849681A (zh) 一种高增益隔离型有源箝位软开关dc‑dc变换器
TWI635697B (zh) 隔離型零電壓切換高升壓dc-dc轉換器
CN105245113B (zh) 一种抗直通软开关推挽llc谐振变换器
CN105896993A (zh) 一种多单元二极管电容网络高增益隔离型直流变换器
TWI594554B (zh) 交錯式高效率高升壓直流轉換器
CN106026657A (zh) 非隔离高增益dc-dc升压变换器
CN110649805B (zh) 一种高增益Boost变换器
CN208939829U (zh) 一种谐振变换器
CN103986330A (zh) 一种适用于高压大功率场合的谐振升压直/直变换器及其控制方法
CN105119496A (zh) 一种宽输入范围的三电平llc谐振变换器及电平切换控制方法
CN109039116A (zh) 一种交错并联式高频隔离型三相pwm整流器
CN106230264A (zh) 一种高效单向llc 谐振dc‑dc 变换电路拓扑结构
CN106712523B (zh) 一种升压三电平全桥变换器及其控制方法
CN107659158A (zh) 一种多谐振网络单元的隔离型高增益直流变换器
CN103337961A (zh) 一种高电压变比双向直流变换器及其控制方法
CN109327144A (zh) 一种宽输入电压范围的llc谐振变换器
CN109412420A (zh) 双向隔离dc/dc电路及其采用的控制方法
CN203466729U (zh) 一种多电平llc变换器
CN106655738B (zh) 一种无电解电容的准单级逆变器及其控制方法
TWI663816B (zh) 交錯式高升壓直流-直流轉換器
CN207743874U (zh) 一种高电位高压直流取能电源装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221116

Address after: 400054 no.73-22, Hongguang Avenue, Banan District, Chongqing

Patentee after: Chongqing Hongyi Electric Co.,Ltd.

Address before: No. 69, Hongguang Avenue, Banan District, Chongqing 400054 (Huaxi Campus)

Patentee before: Zhang Zhiguo

Effective date of registration: 20221116

Address after: No. 69, Hongguang Avenue, Banan District, Chongqing 400054 (Huaxi Campus)

Patentee after: Zhang Zhiguo

Address before: No. 69 lijiatuo Chongqing District of Banan City Road 400054 red

Patentee before: Chongqing University of Technology