CN107636216B - 隔离半导体单壁纳米管或金属单壁纳米管及其方法 - Google Patents

隔离半导体单壁纳米管或金属单壁纳米管及其方法 Download PDF

Info

Publication number
CN107636216B
CN107636216B CN201680018223.8A CN201680018223A CN107636216B CN 107636216 B CN107636216 B CN 107636216B CN 201680018223 A CN201680018223 A CN 201680018223A CN 107636216 B CN107636216 B CN 107636216B
Authority
CN
China
Prior art keywords
swnts
supramolecular polymer
electrical type
swnt
supramolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680018223.8A
Other languages
English (en)
Other versions
CN107636216A (zh
Inventor
Z·鲍
I·波乔罗夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
Original Assignee
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leland Stanford Junior University filed Critical Leland Stanford Junior University
Publication of CN107636216A publication Critical patent/CN107636216A/zh
Application granted granted Critical
Publication of CN107636216B publication Critical patent/CN107636216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/20Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本公开的实施方式包括方法、聚合物和复合物。例如,方法实施方式包括提供包含拆解的超分子聚合物和破键剂的溶液;向该溶液添加抗溶剂以使超分子聚合物沉淀;以及使沉淀的超分子聚合物与破键剂隔离。隔离的超分子聚合物配置成从包含至少两种电类型的单壁碳纳米管(SWNT)的SWNT混合物中选择性地分散特定电类型的SWNT。

Description

隔离半导体单壁纳米管或金属单壁纳米管及其方法
背景
碳纳米管(CNT)是展现出有趣和实用性能且可用于各种装置的独特的分子结构。示例性的CNT包括单壁纳米管(SWNT)和多壁纳米管(MWNT)。SWNT具有由六边形排布的原子构成的圆筒板状单原子厚的壳体。
CNT因其制造和实施变得更加普遍而被用于数量和差异性不断增加的各种应用中。例如,高级电子应用正越来越多地考虑使用和/或联用SWNT。碳基SWNT是至少部分由碳原子组成的中空结构。SWNT可掺杂有其它元素,例如金属、硼和氮。SWNT正越来越多地被用作导体(例如纳米线),以及被用于形成电子组件,例如场效应晶体管(FET)、开关以及其它组件。
SWNT因具有各种手性(例如几何特征)而具有以展现出金属和半导体混合物的方式生长的倾向。例如,SWNT以成束半导体SWNT(S-SWNT)与金属SWNT(M-SWNT)的混合物的形态生长。M-SWNT显示出弹道特性,且可理想地为电子装置提供连接器与电极的传导。S-SWNT显示出高移动性,且可用于高电流和高速纳米管FET。相较而言,MWNT倾向于以金属MWNT的形态生长。
上述以及其它问题对各种应用中半导体和/或金属纳米管的隔离提出了挑战。
发明概述
本发明涉及克服上述和其它涉及上述装置类型和其它实施方式的挑战。本发明通过多种实施和应用方式来例示,其中的一些作为实施例总结于下文。
本公开的各方面包括使用和/或形成超分子聚合物。超分子聚合物包含多个非共价地连接以形成超分子聚合物的单体单元。利用脲基嘧啶酮部分(UPy)末端、碳侧链和骨架中的部分来表征这些单体单元。在各种特定的实施方式中,骨架中的部分包括:芴部分、噻吩部分、苯部分、苯并二噻吩部分、咔唑部分、噻吩并噻吩部分、苝二酰亚胺部分、异靛部分、吡咯并吡咯二酮部分、对映纯联萘酚部分和两个或更多个上述部分的低聚物或组合。在另一些特定的实施方式中,超分子聚合物以下式表征:
Figure BDA0001417777600000021
在各种实施方式中,超分子聚合物配置成从SWNT混合物中选择性地分散特定电类型的SWNT。本文所用的“SWNT混合物”包括捆绑在一起的第一电类型SWNT和第二电类型SWNT。例如,向SWNT混合物添加超分子聚合物以形成未分散的第一电类型SWNT和未分散的超分子聚合物的混合物以及包含第二电类型SWNT和超分子聚合物的分散的复合物。通过例如对混合物进行离心和/或过滤来从分散的复合物中除去未分散的第一电类型SWNT(和未分散的超分子聚合物)。为了隔离第二电类型SWNT,向分散的复合物添加破键剂。破键剂拆解超分子聚合物并从超分子聚合物中释放第二电类型SWNT。然后,例如通过离心和/或过滤来使第二电类型SWNT与拆解的超分子聚合物和破键剂隔离。
在各种实施方式中,设定和/或调整分散参数以选择所得到的第二电类型SWNT的纯度和收率。例如,在各种特定的实施方式中,调整了超分子聚合物与SWNT混合物之比、SWNT的浓度、声处理的功率以及声处理的时间。在一些特定的实施方式中,隔离的特定电类型的SWNT具有0.6~2.2纳米(nm)的直径和/或80~99.99%的纯度。
按照各种方面,超分子聚合物被重组和隔离。例如,提供了一种包含拆解的超分子聚合物和破键剂的溶液。在各种实施方式中,所提供的溶液包含除去的和/或尚未除去的特定类型的SWNT。向该溶液添加抗溶剂以使超分子聚合物沉淀。例如,诸如甲醇这样的抗溶剂从拆解的低聚物或单体单元重组超分子聚合物。通过例如对拆解的超分子聚合物和破键剂的混合物进行离心来使沉淀的超分子聚合物与破键剂隔离,以沉淀超分子聚合物并且从包含破键剂的溶液中过滤沉淀的超分子聚合物。重复利用所得到的隔离的超分子聚合物来从SWNT混合物中选择性地分散特定电类型的SWNT。
多个方面包括用于形成超分子聚合物的方法。例如,通过使碘代胞嘧啶与十二烷基异氰酸酯反应来形成乙烯基脲基嘧啶酮(乙烯基UPy)。然后,通过使乙烯基UPy与部分化合物(moiety compound)反应来形成超分子聚合物。所述部分化合物包括:芴部分、噻吩部分、苯部分、咔唑部分、异靛部分、苯并二噻吩部分、噻吩并噻吩部分、苝二酰亚胺部分、吡咯并吡咯二酮部分、对映纯联萘酚部分和所述骨架中的两个或更多个上述部分的低聚物或组合,其中的一些可未完全共轭。
另一些特定且相关的方面包括复合物和用于形成该复合物的方法。复合物包括如上所述的超分子聚合物和分散的第一电类型SWNT,其中,第一电类型包括S-SWNT或M-SWNT。在各种特定的实施方式中,所述复合物是混合物的一部分,所述混合物还包含未分散的第二电类型SWNT,其中,所述第二电类型包括S-SWNT或M-SWNT中的另一种。
在本公开的各种其它特定方面中,使用隔离的特定类型的SWNT来形成电子电路。电子电路包括晶体管、可伸缩电子器件、柔性电路、柔性晶体管、热电子器件、透明电子器件、显示屏、太阳能面板、加热器和扬声器以及其它电路。
上述概述并不旨在描述本发明所例示的每个实施方式或每个实现方式。以下附图和详细描述(且参考附件A~C,其在作为基础的临时申请中提交并全部纳入本文)更具体地例示了这些实施方式。
附图
通过考虑以下结合附图的详细描述,可以更全面地理解各示例性的实施方式,其中:
图1显示了根据各种实施方式的成束SWNT混合物的图示;
图2显示了根据各种实施方式的隔离S-SWNT的方法;
图3A~3C显示了根据各种实施方式的超分子聚合物的单体单元的例子;
图4图示了根据各种实施方式的用于合成超分子聚合物的示例性工艺;
图5A~5F图示了根据各种实施方式的隔离S-SWNT的例子;
图6A~6B图示了根据各种实施方式的超分子聚合物的光谱的例子;
图7A~7B图示了根据各种实施方式的用于形成超分子聚合物的化合物的光谱的例子;
图8A~8B图示了根据各种实施方式的用于形成超分子聚合物的化合物的光谱的例子;
图9A~9C图示了根据各种实施方式的所形成的超分子聚合物的扩散系数与分子量之间关系的例子;
图10A~10C图示了根据各种实施方式的SWNT混合物和使用超分子聚合物隔离的所得到的分散的SWNT的例子;
图11A~11B图示了根据各种实施方式对超分子聚合物与SWNT混合物之比的分散参数进行调整的结果的例子;
图12A~12B图示了根据各种实施方式对SWNT浓度的分散参数进行调整的例子;
图13A~13B图示了根据各种实施方式对声处理功率的分散参数进行调整的例子;
图14A~14B图示了根据各种实施方式对声处理时间的分散参数进行调整的例子;
图15图示了根据各种实施方式的隔离的特定电类型的SWNT的吸收光谱的例子;
图16图示了根据各种实施方式的在特定分散参数下隔离的特定电类型的SWNT的吸收光谱的例子;
图17A~17D图示了根据各种实施方式的原始的和选出的SWNT在各种激发波下的光谱的例子;和
图18图示了根据各种实施方式的SWNT和/或超分子聚合物的示例性用途。
尽管本文所述的各种实施方式适于各种修改和替代形式,其各方面通过举例方式显示在附图中,并被详细描述。但应当理解的是,本发明并不仅限于所述的具体实施方式。相反,本发明涵盖了所有落入包括权利要求书所限定的各方面在内的本发明范围内的修改、等效物和替代物。另外,本申请中使用的“例子”一词只作为说明,而非限制。
发明详述
据信,本公开的各方面适用于各种不同类型的涉及使用超分子聚合物隔离诸如半导体SWNT(S-SWNT)或金属SWNT(M-SWNT)这样的单壁碳纳米管(SWNT)的化合物、装置和方法。据信,本发明适用于各种不同类型的基于纳米管的装置,且发现本发明特别适合具有开关型应用的实施方式,例如场效应晶体管(FET)和可伸缩电子器件。在各种实施方式中,超分子聚合物选择性地分散特定电类型的SWNT,通过拆解成单体或低聚物单元来释放该特定电类型的SWNT,并且随后重组成超分子聚合物以用于再次分散或其它用途。尽管本发明无需受限于此应用,但通过上下文描述的各个例子的讨论可以理解本发明的各方面。
SWNT以两种不同电性能的成束SWNT—S-SWNT和M-SWNT—的混合物的形态生长。例如,S-SWNT或M-SWNT可用于各种应用中,例如薄膜晶体管、太阳能电池或生物成像。为了发挥它们的全部潜力,将M-SWNT和/或S-SWNT从SWNT混合物中分离。然而,S-SWNT和/或M-SWNT的选择性合成可展现出不希望的结果。令人意外的是,根据各种实施方式,使用一种(H键合的)超分子聚合物来选择性地分散S-SWNT或分散M-SWNT,其不需要选择性地沉淀特定电类型的SWNT。在多种实施方式中,超分子聚合物在添加H键破键剂后被拆解成单体单元,导致释放化学纯形态的S-SWNT或释放化学纯形态的M-SWNT。所得到的分散的特定电类型的SWNT所具有的直径和/或长度使得欧姆接触不难形成。此外,使M-SWNT与S-SWNT分离是一种完全分离,从而使用S-SWNT(或M-SWNT)形成的诸如FET或其它开关装置这样的电子装置不会发生开/关比的衰减。而且,根据各种实施方式,所得到的M-SWNT可能不会重新变得导电或重新变得导电的趋势下降,这可能会导致短路。例如,在电子装置加工经常包括的退火步骤中,可发生共价变换的恢复或功能化。而且,各种实施方式使用廉价的设备,且可放大至成百上千个基于纳米管的FET的应用。根据各种实施方式,使用超分子聚合物从SWNT混合物中分离M-SWNT和/或S-SWNT,且超分子聚合物是基本上隔离的。
S-SWNT因其具有出色的机械、光学、热和电子性能而引人瞩目,使其在大范围新兴技术中具有吸引力。对于S-SWNT的电子和光电子应用而言,通过与M-SWNT分离来得到纯S-SWNT具有优势。根据本公开的实施方式得到具有特定电性质(例如电类型)且为纯态的SWNT,例如纯S-SWNT或纯M-SWNT。各种实施方式使用超分子聚合物在不使用特殊设备的条件下分离特定电类型的SWNT,且得到高收率。另外,在各种实施方式中,特定电性能的纯SWNT与超分子聚合物隔离,并且重复利用(例如循环利用)该超分子聚合物。
根据各种实施方式,使用非共价连接的所谓超分子聚合物来分离特定电性能的SWNT。例如,使用超分子聚合物来可逆地分散S-SWNT或M-SWNT,所述S-SWNT或M-SWNT的直径(例如0.6纳米(nm)~2.2nm)大于HiPco SWNT的较小直径。在各种实施方式中,超分子聚合物可溶于非极性溶剂中,这会促进SWNT的选择性分散。另一方面,极性溶剂的使用促进了非选择性的SWNT分散,需要额外的步骤来除去M-SWNT。根据各种实施方式,如本文所示,H键合的超分子聚合物选择性地分散具有半导体纯度的大直径(例如0.8~2nm或更大)弧放电(AD)SWNT,并且在触发聚合物拆解后释放SWNT。在各种特定的实施方式中,以多个单体单元表征的超分子聚合物令人意外地能够将SWNT选择性地分散在非极性溶剂或极性溶剂中。例如,超分子聚合物可溶于非极性溶剂中,例如甲苯或氯仿,并且将M-SWNT和S-SWNT选择性地分散在非极性溶剂中。
定义
如本文所用,超分子聚合物是指单体单元通过非共价键固定在一起的聚合物。将超分子聚合物固定在一起的非共价键包括配位作用、π-π相互作用和氢键。
如本文所用,超分子聚合物的骨架包含一系列共价键合的原子,它们共同形成连续的分子链。如本文所用,部分(moiety)是指聚合物的一部分或官能团。末端是指聚合物和/或其它分子或化合物的端部或尾端。如本文所用,侧链是指聚合物骨架以外的分支(例如R基团)。
如本文所用,单体单元是指一种化合物,其分子结合在一起以形成超分子聚合物。单体单元彼此键合以形成重复的链状分子(例如超分子聚合物)。如本文所用,低聚物单元是指包含几个单体单元(但单体单元数量少于超分子聚合物)的分子复合物。
如本文所用,混合物是指两种或更多种物质混合在一起但并未化学结合在一起且能够彼此分离的化学组合物。如本文所用,复合物是指一种包含分子的实体,其中的成分更多地保持它们的化学特征。溶液是指包含两种或更多种物质的均匀混合物。例如,溶质是指溶于另一种被称为溶剂的物质中的物质。
如本文所用,沉淀是指从液体溶液中出现的不溶固体。分散体是指一种混合物,其中,一种物质的颗粒分散在另一种物质整体中。例如,分散包括将一种物质的分离颗粒散布在固体、液体或气体整体中。相比之下,如本文所用,未分散的物质包括被散布于其它物质整体中的物质。
现在参考附图,图1显示了一种成束的SWNT混合物100和特定电类型的SWNT 102的分离的图示。例如,SWNT混合物100中的SWNT包含聚集在一起形成束状物的第一电类型SWNT和第二电类型SWNT。在各种实施方式中,第一和第二电类型包括金属的和半导体的。
图2显示了一种根据各种实施方式的用于隔离特定电类型的SWNT的示例性工艺。如图2所示,向SWNT混合物206添加超分子聚合物204,所述SWNT混合物206包含聚集在一起形成束状物的M-SWNT和S-SWNT。如图进一步所示,使一种溶剂(例如甲苯或氯仿)与超分子聚合物204和SWNT混合物206结合,且对结合的混合物进行声处理(和/或经过声处理)。在各种实施方式中,所述声处理包括超声处理。超分子聚合物204的添加能够形成未分散的第一电类型SWNT(例如M-SWNT 201)和超分子聚合物204(例如未分散/沉淀的超分子聚合物)以及包含分散的第二电类型SWNT(例如S-SWNT)和超分子聚合物的分散的复合物208。即,在各种实施方式中,超分子聚合物的一部分(例如大部分)保持与未分散的第一电类型SWNT(例如M-SWNT201)一起沉淀。
为了便于说明,以下讨论一般将第一电类型SWNT称为M-SWNT 210,而将第二电类型SWNT称为S-SWNT 214。然而,如下文进一步详述,各实施方式并不受此所限,且第一电类型SWNT可包含S-SWNT,而第二电类型SWNT可包含M-SWNT。
在各种实施方式中,对混合物(例如分散的复合物208和未分散的M-SWNT 210和未分散的超分子聚合物)进行离心和/或过滤,以从分散的复合物208中除去非分散的M-SWNT210。这能够例如从被超分子聚合物204包裹的S-SWNT(例如分散的复合物208)(例如上层清液)除去M-SWNT。在一些实施方式中,分散的复合物208的特征在于分散的S-SWNT(或M-SWNT)具有0.6~2.2nm的直径。此外,分散的S-SWNT(或M-SWNT)具有80~99.99%的纯度。在各种实施方式中,复合物208的特征在于超分子聚合物204与SWNT混合物206之比为1~2。
向S-SWNT 214和超分子聚合物204的分散的复合物208(例如分散体)添加破键剂212,以拆解超分子聚合物204,并且从超分子聚合物204上释放S-SWNT 214。破键剂212破坏了键合超分子聚合物204的单体单元的氢键,以拆解超分子聚合物。超分子聚合物拆解216成例如低聚物或单体单元。在各种实施方式中,超分子聚合物包含至少25个单体单元,并且通过超分子聚合物204与破键剂212之间的相互作用而拆解成单体单元为4个或更少的低聚物单元(或拆解成单体单元)。在多种特定的实施方式中,超分子聚合物包含2200或更多个单体单元。
例如,在各种特定的实施方式中,破键剂212包含三氟乙酸(TFA)。在各种实施方式中,向溶液添加1%的TFA以导致聚合物拆解以及SWNT沉淀。这允许S-SWNT 214在过滤后以纯态隔离。S-SWNT与拆解的超分子聚合物216和破键剂212隔离。在一个具体的例子中,隔离包括从包含S-SWNT 214、拆解的超分子聚合物216和破键剂212的混合物中过滤S-SWNT214。替代地和/或附加地,隔离包括对混合物进行离心。
在多种实施方式中,超分子聚合物204被隔离。例如,提供包含拆解的超分子聚合物216和破键剂212的溶液。在各种特定的实施方式中,提供溶液包括提供(例如购买、接收或形成)包含超分子聚合物和S-SWNT的分散的复合物208和/或未分散的M-SWNT 210以及未分散的超分子聚合物。在各种实施方式中,提供溶液包括提供包含分散的复合物208和未分散的M-SWNT 210和未分散的超分子聚合物的混合物。如上所述,向分散的复合物208添加破键剂212以拆解超分子聚合物,且SWNT被隔离。在一些实施方式中,如前文所述,未分散的M-SWNT 210和未分散的超分子聚合物被除去,且S-SWNT随后被隔离。在另一些相关的实施方式中,通过使SWNT与SWNT混合物206隔离来提供溶液,如上所述,通过向SWNT混合物添加超分子聚合物204并使用破键剂212拆解超分子聚合物来提供溶液。
向包含拆解的超分子聚合物216和破键剂212的溶液添加抗溶剂来使超分子聚合物204沉淀。在各种实施方式中,抗溶剂包含甲醇。在各种实施方式中,超分子聚合物204通过沉淀与破键剂(以及抗溶剂)隔离。隔离包括例如对混合物(例如包含超分子聚合物216、破键剂212和抗溶剂的混合物)进行离心,以从包含破键剂212和抗溶剂的溶液中除去破键剂212以及/或者过滤出沉淀的超分子聚合物204。因为超分子聚合物204被隔离,超分子聚合物204可用作他用,例如再次用于SWNT隔离。
如前文所述,在各种实施方式中,超分子聚合物的一部分(例如大部分)保持与第一电类型SWNT(例如未分散的M-SWNT 201)和/或S-SWNT含量降低的SWNT一起沉淀。这部分超分子聚合物通过添加具有破键剂的溶剂来隔离,所述溶剂的添加导致超分子聚合物溶于溶液中,而未分散的第一电类型SWNT保持沉淀。从溶液中过滤出未分散的第一电类型SWNT以隔离第一电类型SWNT。利用抗溶剂沉淀超分子聚合物,并进行过滤以隔离该超分子聚合物。
替代地或附加地,根据本公开的各种实施方式,M-SWNT从SWNT混合物206中隔离。例如,向包含聚集在一起形成束状物的M-SWNT和S-SWNT的SWNT混合物206添加超分子聚合物204。使溶剂(例如甲苯或氯仿)与超分子聚合物204和SWNT混合物206结合,并对结合的混合物进行声处理。超分子聚合物204的添加能够形成未分散的S-SWNT和未分散的超分子聚合物204的混合物以及包含M-SWNT和超分子聚合物204的分散的复合物。对该混合物进行离心以从分散的复合物中除去未分散的S-SWNT。这可除去例如被超分子聚合物包裹的M-SWNT(例如上层清液)。
更具体而言,在各种实施方式中,向M-SWNT和超分子聚合物的分散的复合物添加破键剂,以拆解超分子聚合物并且从超分子聚合物上释放M-SWNT。破键剂破坏了键合超分子聚合物的单体单元的氢键,以拆解超分子聚合物。这允许M-SWNT在过滤后以其纯态隔离。例如M-SWNT与拆解的超分子聚合物216和破键剂212隔离。在一个具体的例子中,隔离包括从包含M-SWNT、拆解的超分子聚合物216和破键剂212的混合物中过滤M-SWNT和/或对混合物进行离心。
在各种特定的实施方式中,隔离的第二电类型SWNT通过基于分散参数的纯度和收率来表征。分散参数包括与声处理和/或离心有关的设定。示例性的分散参数包括超分子聚合物与SWNT混合物之比、SWNT的浓度、声处理的功率和声处理的时间以及其它参数,例如离心参数,包括离心的速度、温度和时间。在各种实施方式中,改变分散参数以调整隔离的SWNT的性能。例如,调节分散参数以选择SWNT分散体(例如隔离的第二电类型SWNT)的纯度和/或收率。在各种特定的实施方式中,通过使用1~2的超分子聚合物与SWNT混合物之比以及20分钟30%的声处理功率来使纯度最佳,尽管实施方式并不受此所限。
在另一些相关且特定的实施方式中,使用隔离的SWNT来形成各种电路。示例性的电路包括选自下组的电子电路:晶体管、可伸缩电子器件、柔性电路、柔性晶体管、热电子器件、透明电子器件、显示屏、太阳能面板、加热器和扬声器以及其它电路。例如,可通过添加诸如NMP这样的偶极非质子溶剂来使第二电类型SWNT重新分散。此外,可使用隔离的第二电类型SWNT来形成用于形成和/或制造电路的膜。且在一些实施方式中,可掺杂和/或使用隔离的第二电类型SWNT来形成电阻器,例如用于加热器和扬声器中的电阻器。在各种实施方式中,SWNT可掺杂有其它元素,例如金属、硼和氮。例如,经过掺杂的SWNT能够响应所施加的震动而改变电阻。
图3A~3C显示了根据另一些示例性实施方式的超分子聚合物的单体单元的例子。如图所示,超分子聚合物包含多个非共价地连接以形成超分子聚合物的单体单元(例如氟基单体单元)。
各单体单元通过脲基嘧啶酮部分(UPy)末端、骨架中的部分和碳侧链来表征。UPy末端通过炔键或烯键连接至骨架。在各种实施方式中,骨架中的部分包括芴部分、噻吩部分、苯部分、咔唑部分、异靛部分、苯并二噻吩部分、噻吩并噻吩部分、苝二酰亚胺部分、吡咯并吡咯二酮部分、对映纯联萘酚部分和所述骨架中的两个或更多个上述部分的低聚物或组合,其中的一些可未完全共轭。例如,使用骨架中的噻吩、苯、咔唑、异靛部分来隔离各种选择性的S-SWNT。在一些实施方式中,使用骨架中的对映纯联萘酚部分来隔离对映异构体富集的S-SWNT。骨架中具有对映纯联萘酚部分的超分子聚合物可包含螺旋手性的超分子聚合物。此外,在一些实施方式中,超分子聚合物在一部分聚合物上包含极性基团,其用于隔离M-SWNT。例如,极性基团是骨架的一部分以及/或者从单体单元骨架中的部分分支出去。示例性的极性基团包括esolene、氨基、亚磺酸基以及其它带电基团(charged group)。
在各种实施方式中,利用多个单体单元表征的超分子聚合物令人意外地能够选择性地将SWNT分散在非极性或极性溶剂中。例如,超分子聚合物可溶于诸如甲苯或氯仿这样的非极性溶剂中,并且选择性地将特定电类型的SWNT分散在非极性溶剂中。在多种实施方式中,超分子聚合物从含有聚集在一起形成束状物的至少两种电类型的SWNT(例如M-SWNT和S-SWNT)的SWNT混合物中分散特定电类型的SWNT。此外,超分子聚合物能够通过拆解成低聚物或单体单元来释放特定电类型的SWNT,并随后在特定SWNT隔离后重组成超分子聚合物。作为一个具体的例子,超分子聚合物从SWNT混合物中选择性地分散特定电类型的SWNT,通过与破键剂相互作用而拆解成低聚物单元或单体单元,以释放特定电类型的SWNT,并随后通过拆解的低聚物或单体单元与抗溶剂的相互作用而重组成超分子聚合物。
如图3A所示,在各种实施方式中,超分子聚合物的单体单元320包含芴部分324骨架。例如,单体单元320利用以下特征来表征:
1)末端2-脲基-6[1H]-嘧啶酮部分(UPy)322-1、322-2,其通过(很高)的二聚常数来自联,即使在低单体浓度下也能够形成高分子量的超分子聚合物。这可具有益处,因为具有多于约25个芴单元的低聚物单元可用于实现稳定的SWNT分散体。另一方面,在各种实施方式中,由于聚合物降解成具有少于4个芴单元的组件,发生SWNT的释放,这可通过添加三氟乙酸(TFA)来实现,TFA是一种能够有效破坏氢键的试剂;
2)骨架中的芴部分324,以提高S-SWNT与M-SWNT之间的选择性,或者,如上所述,骨架可通过芴、苯、咔唑、异靛或对映纯联萘酚部分以及其它部分来表征;
3)长C12H25侧链326-1、326-2,以增强聚合物的溶解度和SWNT分散体的收率;以及
4)平面分子表面,以促进SWNT的π-π相互作用。
如图3B所示,在各种实施方式中,超分子聚合物的单体单元330、332包含对映纯联萘酚部分骨架。如前文所述,使用骨架中的对映纯联萘酚部分来隔离对映异构体富集的S-SWNT。骨架中具有对映纯联萘酚部分的超分子聚合物包含螺旋手性的超分子聚合物。从而,如图3B所示,对映纯联萘酚部分包含R 322(例如右旋)、S 330(例如左旋)或它们的组合(例如外消旋)。即,在一些实施方式中,超分子聚合物是基于联萘酚的螺旋手性的超分子聚合物。
根据多种实施方式,M-SWNT从SWNT混合物中隔离。在这些实施方式中,如图3C所示,超分子聚合物的单体单元在聚合物的一部分上包含一个或更多个极性基团338-1、338-2,例如在单体单元的骨架340中。
根据各种特定的实施方式,超分子聚合物在隔离特定电类型的SWNT之后重组和隔离。例如,向SWNT混合物添加超分子聚合物,以形成未分散的第一电类型SWNT和未分散的超分子聚合物的混合物和分散的复合物,由此隔离SWNT。在诸如甲苯或氯仿这样的溶剂中使超分子聚合物与SWNT混合物结合,并对结合的混合物进行声处理。分散的复合物包含与超分子聚合物捆绑在一起的第二电类型SWNT。除去未分散的第一电类型SWNT(例如与分散的复合物和未分散的超分子聚合物分离),并且向分散的复合物添加破键剂。在各种实施方式中,破键剂包含TFA。破键剂拆解超分子聚合物,以从超分子聚合物上释放第二电类型SWNT,且第二电类型SWNT与拆解的聚合物和破键剂的溶液隔离。
在隔离第二电类型SWNT之后,通过向拆解的超分子聚合物和破键剂的溶液添加抗溶剂来使超分子聚合物沉淀。在各种实施方式中,抗溶剂为甲醇。例如,抗溶剂与拆解的超分子聚合物反应,以将超分子聚合物从拆解的低聚物单元或单体单元重组成超分子聚合物(例如在单体单元和/或低聚物单元之间形成非共价连接)。沉淀的超分子聚合物与破键剂和抗溶剂隔离。例如,隔离包括进行离心,所述离心包括对拆解超分子聚合物和破键剂(以及抗溶剂)进行离心,以从溶液中除去含有破键剂和抗溶剂的溶液,并且/或者从溶液中过滤出沉淀的超分子聚合物。
在各种实施方式中,附加地和/或替代地,超分子聚合物与包含非分散的第一电类型SWNT和未分散的超分子聚合物的残留物隔离。如前文所述,在一些实施方式中,超分子聚合物的一部分(例如大部分)保持与未分散的第一电类型SWNT(例如M-SWNT和/或S-SWNT含量降低的S-SWNT)一起沉淀。这部分未分散的超分子聚合物通过添加具有诸如TFA这样的破键剂的溶液来隔离,所述溶液的添加导致超分子聚合物溶于溶液中,而未分散的第一电类型SWNT保持沉淀。过滤未分散的SWNT以隔离第一电类型SWNT。添加诸如甲醇这样的抗溶剂并进行过滤,以隔离超分子聚合物,由此沉淀和隔离在破坏聚合物键的试剂溶液中的超分子聚合物。
图4图示了根据另一种示例性实施方式的用于合成超分子聚合物450的示例性工艺。例如,图4顶行图示了一种用于合成乙烯基UPy 446的示例性工艺,而中间行图示了合成二碘代芴448。图4的底行图示了合成超分子聚合物450。如图所示,超分子聚合物450的合成可通过乙烯基UPy 446与二碘代芴448在2g规模下的赫克偶联(Heck coupling)来实现。
例如,通过形成乙烯基UPy 446来形成超分子聚合物450。通过使碘代胞嘧啶447与十二烷基异氰酸酯反应来形成乙烯基UPy 446。在各种实施方式中,在多步工艺中由碘代胞嘧啶447来合成乙烯基UPy 446。例如,碘代胞嘧啶447与十二烷基异氰酸酯反应生成碘代UPy 449。并且,碘代UPy 449通过与三丁基(乙烯基)锡烷的斯蒂尔偶联(Stille coupling)而转化成乙烯基UPy 446。关于形成碘代UPy 449和部分448的其它具体的普通信息,请参考作为基础的临时申请的标题为《辅助信息》(Supporting Information)的附件C,Maki,M.S.;Pfeifer,T.;Studer,A.,Chem.Eur.J.,2010,16,5872以及Wierenga,W.;Skulnick,H.I.;Stringfellow,D.A.;Weed,S.D.;Renis,H.E.;Eidson,E.E,J.Med.Chem.,1980,23,237。
此外,乙烯基UPy 446与部分448反应。如上所述,该部分包含芴部分、噻吩部分、苯部分、咔唑部分、异靛部分以及对映纯联萘酚部分中的一种。例如,在各种实施方式中,使乙烯基UPy 446与部分448反应包括使UPy和部分448悬浮于极性溶剂中。在各种实施方式中,极性溶剂包括二甲基甲酰胺(DMF)。此外,在各种实施方式中,乙烯基UPy 446和部分448在N2气氛下悬浮在DMF和三乙胺(TEA)中。通过对包含所述乙烯基UPy 446、部分448和极性溶剂的混合物进行脱气和加热来形成固体。在各种特定的实施方式中,通过对混合物进行脱气、向该混合物添加Pd(AOc)2和三(邻甲苯基)磷烷、搅拌该混合物并加热一段时间、然后趁热过滤并在真空中进行浓缩来形成固体。此外,通过将固体溶于另一种溶剂中并利用450甲醇(MEOH)使超分子聚合物沉淀来形成超分子聚合物450。在各种实施方式中,所述另一种溶剂包含氯仿。在各种实施方式中,过滤沉淀的超分子聚合物,并用甲醇对其进行洗涤。在各种实施方式中,重复进行再沉淀的程序以形成超分子聚合物450。
如前文所述,所得到的超分子聚合物450配置成从SWNT混合物中选择性地分散特定电类型的SWNT。在各种实施方式中,超分子聚合物450分散直径为0.6~2.2nm且纯度为80~99.99%的特定电类型的SWNT。此外,超分子聚合物配置成在破键剂的存在下解聚,以形成低聚物或单体单元,并且/或者通过拆解的低聚物或单体单元与抗溶剂的相互作用而重组成超分子聚合物。
更具体的/实验性的实施方式
图5A~5F图示了根据本公开的各种实施方式的隔离SWNT的例子。在各种更具体的/实验性的实施方式中,利用扩散排序核磁共振(NMR)光谱法(DOSY)在CDCl3中对在溶液中形成超分子聚合物的能力进行评估。DOSY技术使得能够测量扩散系数,其与被考察实体的分子量成反比。尽管参照化合物(例如图4所示的乙烯基UPy 446)(以氢键二聚物的形式存在)的相对扩散系数D/D(CDCl13)在浓度范围内是常数,双官能团化合物(例如图4所示的超分子聚合物450)的D/D(CDCl13)随着浓度的增加而减小,表明聚合特性,如图5A所示。图5A图示了超分子聚合物和乙烯基UPy在CDCl3中的相对扩散系数随它们浓度的变化情况。因此,当c=50毫摩尔(mM)时,超分子聚合物生成粘稠溶液,此时的分子量为M≈2600000克摩尔(摩尔)-1,这对应于N约等于2200单体单元的相联。由于从超分子聚合物释放分散的SWNT有必要使其拆解成单体或低聚物单元,在各种实施方式中,观察TFA的添加是否会导致超分子聚合物的解聚。例如,添加少量的TFA导致D/D(CDCl13)增加至0.16。该数值对应于M≈1308克摩尔-1的分子量,这与超分子聚合物单体单元的分子量M=1224克摩尔-1相一致。
在各种实验性实施方式中,在制备和表征超分子聚合物之后,确定超分子聚合物分散S-SWNT的能力。使用诸如P2-SWNT这样的SWNT混合物。分散在甲苯中进行,因为甲苯本身不会分散S-SWNT。在各种实施方式中,在给定的声处理功率下对超分子聚合物/SWNT混合物进行给定时间的尖头声处理(tip-sonicate),然后在17000转/分钟(rpm)下离心30分钟。除去溶液(例如S-SWNT上层清液),并利用吸收光谱进行分析,这提供了关于所得到的SWNT分散体的收率和纯度信息。因为超分子聚合物被从分散的SWNT(参见下文)中除去,基于所释放的SWNT的质量及其与吸收峰的关联性测量一定量的SWNT分散体的收率。在各种实施方式中,尽管可能无法通过吸收光谱得到S/M-SWNT比的绝对定量值,但使用φ值作为S-SWNT纯度的相对量度。从而,φ值越高代表总SWNT含量越高,且与更高的S-SWNT纯度相关联,0.40的φ值归因于高于99%的S-SWNT含量。
对包括超分子聚合物/SWNT混合物之比、SWNT浓度、声处理功率和声处理时间在内的分散参数的改动会影响所得到的SWNT分散体的收率和纯度。如图5B所示,对所得到的φ/收率配对作图,显示这些量值之间具有相反的关系。图5B显示利用针对纯度进行了优化的分散参数而得到的吸收光谱(5毫克(mg)AD SWNT,5mg超分子聚合物,以30%功率进行20分钟的声处理),φ=0.47,且收率为0.9%。800~1200nm范围内的峰(例如S22)对应于S-SWNT的转化。600~800nm范围内无峰(例如M11)归因于M-SWNT的转化,支持试样的S-SWNT纯度。事实上,0.47的φ值显著高于市售可得的99.9%S-SWNT的φ值(例如,如图16所示)。
在各种实施方式中,利用拉曼光谱确认更高的φ值下发生了S-SWNT的富集:利用785nm激光探测的100~200厘米(cm)-1区域内的M-SWNT径向呼吸模式(RBM)峰基本上未出现在被超分子聚合物分散的SWNT试样中,如图5C所示。图5C图示了原始AD-SWNT以及被超分子聚合物分散的AD-SWNT在RBM区域中的拉曼光谱。记录了光致发光-激发(PLE)分布图,以对分散的SWNT的单体手性指数进行分配,如图5D所示。图5D图示了甲苯中的超分子聚合物/AD-SWNT分散体的光致发光-激发PLE分布图。至少12个SWNT帮助形成了总光谱。最强的两个信号姑且分配给(15,4)和(11,7)管,如图5D所示。丰度最高的5个SWNT的示例性直径在1.28~1.39nm的范围内,而所有被识别的12个SWNT的示例性直径范围为1.25~1.52nm。
单官能的UPy化合物(例如,如图4所示的化合物446)以及短的低聚物芴衍生物无法分散SWNT。这归因于超分子聚合物分散SWNT的能力及其作为超分子聚合物存在。相比于对应的常规聚合物,聚(9,9-二-正十二烷基芴)(PFDD),超分子聚合物在相同的分散条件(5mg的SWNT、5mg的聚合物、以70%功率进行30分钟的声处理、超分子聚合物的φ=0.31,而PFDD的φ=0.27,如图15所示)下能够实现大约或大致高7倍的SWNT分散体收率和更高的S-SWNT纯度。
通过向超分子聚合物/SWNT分散体添加1%的TFA来实现富集了的S-SWNT的释放,导致SWNT的沉淀。相比之下,SWNT从PFDD/SWNT分散体中的沉淀甚至在添加3%的TFA后也不会发生。因此,由TFA辅助的SWNT从超分子聚合物的释放可归因于超分子聚合物被拆解成单体单元。在0.2μm聚四氟乙烯(PTFE)膜上过滤沉淀的SWNT,用甲苯进行洗涤,在空气中干燥。滤液的吸收光谱显示了由超分子聚合物产生的信号,而没有SWNT信号,表示从超分子聚合物释放的SWNT是定量的,如图5E所示。图5E图示了吸收光谱,其证明了利用超分子聚合物分散后S-SWNT的富集以及利用TFA拆解超分子聚合物后S-SWNT的定量分离。在各种实施方式中,通过利用甲醇沉淀来重新隔离超分子聚合物,允许其在以后的SWNT分散中被重新利用。可将过滤的SWNT重新分散于NMP中,NMP是一种在没有任何表面活性剂的条件下非选择性地分散SWNT的溶剂。相比于原始AD SWNT试样在N-甲基-2-吡咯烷酮(NMP)中的吸收光谱,释放的SWNT试样在600~800nm区域内未显示和/或显示出最小的金属SWNT信号,如图5E所示。所释放的试样还在320~450nm的超分子聚合物区域内未显示/显示出最小的信号,证明聚合物的除去是定量的。还可通过X射线光电子能谱(XPS)来图示超分子聚合物的定量除去:在释放的SWNT试样中不再出现归因于超分子聚合物中的N原子的N 1s峰,如图5F所示。图5F图示了超分子聚合物分散和释放的SWNT试样的XPS。
根据各种实施方式,H键合的超分子聚合物选择性地分散并随后释放S-SWNT,展现出相对于共价聚合物的显著益处。得到纯态S-SWNT的能力允许使用其它分散剂将S-SWNT重新分散于其它溶剂中,使得S-SWNT比被聚合物包裹的SWNT更加通用。同时,可通过交叉偶联化学机制方便地使UPy前体依附于卤代的π-共轭系统。
在各种实施方式中,超分子聚合物的合成包括制备前体乙烯基UPy。在多步工艺中由碘代胞嘧啶(图4所示的化合物447)来合成乙烯基UPy。例如,碘代胞嘧啶(图4所示的化合物447)与十二烷基异氰酸酯反应以生成碘代UPy。并且,碘代UPy通过与三丁基(乙烯基)锡烷的斯蒂尔偶联而转化成乙烯基UPy。
在各种实验性实施方式中,使用各种不进行进一步纯化就使用的试剂纯的化学试剂来合成超分子聚合物。例如,通过向溶液通入30分钟的N2来对溶剂进行脱气。在多种实施方式中,在Mercury 400或Inova 600光谱仪上在298K下记录1H NMR和13C NMR谱图,且残余溶剂的峰被用作内部对照。在各种实施方式中,在Waters Micromass AutoSpec Ultima光谱仪上测量质谱,例如高分辨率电子轰击质谱。例如,可在Varion Ionspec Ultima MALDI-FTICR质谱仪上使用3-羟基吡啶-2-羧酸(3-HPA)作为基质,或者在Bruker DaltonicsUltraflex II MALDI-TOF质谱仪上使用(2-[(2E)-3-(4-叔丁基苯基)-2-甲基丙基-2-亚丁烯基]丙二腈)(DCTB)作为基质,测量高分辨率基质辅助激光解吸离子化质谱。在多种特定的实施方式中,在Bruker Daltonics maXis光谱仪上测量高分辨率电喷雾电离质谱。
以下是合成以下式表示的超分子聚合物的一个示例性实施方式:
1,1'-(((1E,1'E)-(9,9-双十二烷基-9H-芴-2,7-二基)二(乙烯-2,1-二基))二(6-甲基-4-氧基-1,4-二氢嘧啶-5,2-二基))二(3-十二烷基尿素)。
例如,使UPy化合物(1.7g,4.7毫摩尔)和芴(1.6g,2.1毫摩尔)在N2气氛下悬浮于DMF(100毫升(mL))和TEA(30mL)的混合物中。对该混合物进行脱气,并添加[Pd(AOc)2](48mg,0.21毫摩尔)和三(邻甲苯基)磷烷(130mg,0.42毫摩尔)。在95℃下对该混合物进行16小时的搅拌,然后在玻璃绒上趁热过滤该混合物。在真空下对亮橙色的溶液进行浓缩。将剩余的固体溶于CHCl3(70mL)/TFA(1mL)中,并用甲醇(120mL)沉淀。滤出沉淀并用甲醇进行洗涤。在各种特定的实验性实施方式中,重复进行该再沉淀程序以提供作为黄色固体的化合物450(1.9g,74%)。超分子聚合物(如图4所示的化合物450)在氯仿中缓慢溶解且少量溶于甲苯中,但其在向两种溶剂中添加少量三氟乙酸(TFA)后快速溶解。以下包括示例性的质谱结果:1H NMR(600MHz,CDCl3):δ=0.53–0.74(m,4H),0.86(dt,J=13.1,7.0,12H),0.96–1.54(m,72H),1.72(s,4H),1.95(d,J=31.6,4H),2.49(s,6H),3.33(s,4H),6.98(d,J=16.4,2H),7.40(s,2H),7.47(s,2H),7.64(d,J=8.3,2H),7.81(d,J=14.9,2H),10.29(s,2H),11.96(s,2H),13.25(s,2H)。13C NMR(151MHz,CDCl3):δ=14.36,18.38,24.07,27.32,29.44,29.57,29.61,29.66,29.86,29.87,29.92,29.95,30.41,32.13,32.18,40.44,55.19,115.04,119.09,120.01,121.16,125.66,134.58,137.18,140.93,144.21,151.69,152.59,156.95,171.32,如图6A和6B所示。图6A~6B图示了根据各种实施方式的超分子聚合物的光谱的例子。例如,图6A图示了CDCl3中超分子聚合物在298K下的氢(H)NMR。图6B图示了CDCl3中超分子聚合物在298K下的碳(C)NMR。
在各种实施方式中,通过使化合物2-氨基-5-碘代-6-甲基嘧啶-4(3H)-酮(干燥THF中为12.4g,49.4毫摩尔)(500mL)悬浮而合成了表征为1-十二烷基-3-(5-碘代-6-甲基-4-氧基-1,4-二氢嘧啶-2-基)脲的碘代UPy。添加十二烷基异氰酸酯(20.2mL,84.0毫摩尔),在90℃下对该混合物进行8天的搅拌。使混合物冷却至25℃,滤出形成的沉淀,并用CH2Cl2进行洗涤以提供作为白色固体的碘代UPy(22.0g,96%)。以下包括示例性的质谱结果:1HNMR(600MHz,CDCl3):δ=0.87(t,J=7.0,3H),1.17–1.40(m,18H),1.59(q,J=7.2,2H),2.47(s,3H),3.24(q,J=6.6,2H),9.83(s,1H),11.60(s,1H),13.41(s,1H)。13C NMR(151MHz,CDCl3):δ=14.30,22.92,25.46,27.20,29.42,29.59,29.85,29.89,29.92,32.16,40.45,82.63,150.48,154.32,156.50,169.35。HR-ESI-MS:m/z(%):485.1361(100,[M+Na]+,对C18H30IN4O2Na+计算:485.1378),如图7A和7B所示。图7A~7B图示了根据各种实施方式的用于形成超分子聚合物的化合物的光谱的例子。例如,图7A图示了CDCl3中碘代UPy在298K下的H NMR。图7B图示了CDCl3中碘代UPy在298K下的C NMR。
在各种实施方式中,通过将碘代UPy(4.0g,8.7毫摩尔)、[Pd(PPh3)2Cl2](304mg,433毫摩尔)和2,6-二叔丁基苯酚(37mg,0.17毫摩尔)溶于甲苯(60mL)中来合成以1-十二烷基-3-(6-甲基-4-氧基-5-乙烯基-1,4-二氢嘧啶-2-基)脲表征的乙烯基UPy(图4所示的化合物446)。添加三丁基(乙烯基)锡烷(3.0mL,10毫摩尔),对该混合物进行脱气,并将其加热至100℃,保持16小时。在棉塞上趁热过滤该混合物,随后在硅藻土(Celite)上趁热过滤。使所得到的黄橙色溶液冷却至25℃,导致晶体的形成。滤出所形成的晶体,用少量甲苯进行洗涤并干燥,以提供作为白色固体的乙烯基UPy(2.49g,79%)。以下包括示例性的质谱结果:1H NMR(400MHz,CDCl3):δ=0.85–0.91(m,3H),1.25(s,18H),1.53–1.73(m,2H),2.34(s,3H),3.25(td,J=7.2,5.3,2H),5.46(dd,J=11.7,2.2,1H),6.09(dd,J=17.6,2.2,1H),6.53(dd,J=17.6,11.7,1H),10.18(s,1H),11.86(s,1H),13.12(s,1H)。13C NMR(151MHz,CDCl3):δ=14.33,18.02,22.91,27.26,29.42,29.58,29.81,29.87,29.90,32.14,40.35,114.89,119.89,127.98,144.44,152.85,156.88,171.30。HR-ESI-MS:m/z(%):363.2748(100,[M+H]+,对C20H35N4O2+计算:363.2755),如图8A~8B所示。图8A~8B图示了根据各种实施方式的用于形成超分子聚合物的化合物的光谱的例子。例如,图8A图示了CDCl3中乙烯基UPy在298K下的H NMR。图8B图示了CDCl3中乙烯基UPy在298K下的C NMR。
图9A~9C图示了根据各种实施方式的所形成的超分子聚合物的扩散系数与分子量之间关系的例子。在各种实施方式中,DOSY扩散系数与超分子聚合物的分子量之间存在关联。例如,在滴定实验的实施方式中,具有单官能链终止剂的超分子聚合物(例如乙烯基UPy 446部分)中,超分子聚合物的相对扩散系数与其分子量之间存在关联(图9A)。例如,图9A图示了超分子聚合物的相对扩散系数随单官能链终止剂(例如乙烯基UPy)的增加摩尔分数x而变化的情况。因此,在各种实施方式中,该关联通过在足够高的链终止剂(例如乙烯基UPy部分)摩尔分数x下指示来应用,聚合度N以下式描述:
N=2/x。
另一方面,随N而变化的平均分子量M为:
M=(N-1)×M(1)+2×M(2)。
其中,给定的N表示N-1单体的线性主链,一个末端被两个单官能链终止剂封端。假设D与M之间的指数关系为:
D=p×Mq。
绘制
log D=log p+q log M,
在各种实施方式中,会得到具有斜率q且y轴截距为log p的直线。图9B图示了这种图线的一个例子,显示了提取的参数log p和q,它们用于计算聚合物1的随其浓度而变化的M和N。图9C显示了随浓度而变化的分子量M和聚合度N。
在各种实验性和/或更具体的实施方式中,改变了分散参数。例如,考察了包括超分子聚合物1/SWNT之比、SWNT浓度、声处理功率和声处理时间在内的各种分散参数对所得到的SWNT分散体的收率和纯度的影响。SWNT分散体收率定义为分散的SWNT的质量相对于存在于所使用的SWNT试样中的SWNT的质量的质量百分比。除了实际的SWNT,SWNT试样通常含有金属催化剂、无定形碳和石墨杂质。因此,使用所使用的SWNT混合物(P2-SWNT)中已知的SWNT含量来得到SWNT分散体收率。在各种实施方式中,因为超分子聚合物令人意外地能够选择性地分散特定电类型的SWNT,并且能够被从分散的SWNT中除去,SWNT分散体的收率可通过测量所释放的SWNT的质量来直接定量。在各种实施方式中,分散体收率生成了相对大量的分散的SWNT,以减小特定分散条件的称重误差。然后,将所得到的收率与吸收光谱数据一起使用,以计算其它分散条件下的SWNT分散体收率。本文将进一步描述该程序。尽管无法通过吸收光谱得到S/M-SWNT比的绝对定量值,但使用φ值作为S-SWNT纯度的相对量度。
在各种实验性实施方式中,使用诸如具有0.7cm声处理尖头的Cole Parmer–CP750超声仪这样的超声仪在甲苯中进行分散实验。例如,使聚合物与SWNT在试管中结合,添加20mL甲苯,并且在给定的声处理功率下对该混合物进行给定时间的声处理。使用外部循环器在设定为22摄氏度(℃)的浴温下使该试管冷却。然后,在17000rpm和16℃下对经过声处理的试样进行30分钟的离心,用注射器除去上层清液,并且利用吸收光谱进行分析。
图10A~10C图示了根据各种实施方式的SWNT混合物和使用超分子聚合物隔离得到的分散的SWNT的例子。在多种特定的实施方式中,使用TGA分析或吸收光谱来测定所使用的SWNT混合物(例如试样)中SWNT的含量。在各种实验性实施方式中,对于通过激光蒸发和等离子体得到的SWNT,所述含量分别测定为33%和53%。对于P2-SWNT,根据近红外分析(图10A),混合物中的SWNT分数在70%左右,而石墨纳米颗粒对应于总纳米碳含量的剩余30%。图10A图示了P2-SWNT的近红外分析,图10B图示了P2-SWNT的TGA分析。根据TGA分析,残余的催化剂杂质占总SWNT混合物质量的7%(图10B)。由该数据算得SWNT混合物中的SWNT含量为65%。
根据多种实验性实施方式,测定了分散的SWNT的吸光系数和收率。例如,在20mL甲苯中以70%的功率对超分子聚合物(26.6mg)和AD-SWNT(26.0mg)进行30分钟的声处理,同时利用温度设置为22℃的浴进行外部冷却。以17000在16℃下对该混合物进行30分钟的离心。吸收光谱揭示,对于d=0.1cm的小池,λ=1016nm处的峰值吸收A=0.312。用0.15mL的TFA处理15mL上述溶液,导致SWNT沉淀。在0.2微升(uL)PTFE膜(用微量天平预先测定其质量)上过滤SWNT,用20mL的TFA溶液(甲苯中1%)洗涤,然后用10mL甲苯洗涤,并且进行干燥。对PTFE膜和SWNT进行称重,得到SWNT的质量为0.90mg,其对应于20mL原始分散体中的1.20mg。根据朗勃-比尔定律(A=εcd),这对应于消光系数ε=52mL mg-1cm-1,其与使用间接方法测定的值ε=48.3mL mg-1cm-1接近。假设原始SWNT混合物中的SWNT含量为65%,该混合物的SWNT分散体收率总计为7.1%(图10C)。图10C图示了通过在20mL甲苯中以70%的功率对对超分子聚合物和AD-SWNT(26.0mg)进行30分钟声处理而得到的SWNT分散体(例如隔离的S-SWNT)的吸收光谱。根据这些信息,由λ=1016nm处的各吸收最大值计算利用其它分散条件得到的SWNT分散体的收率。
在各种实施方式中,确定分散参数对SWNT分散体收率和纯度的影响。例如,根据一些例子,SWNT分散体收率和S-SWNT纯度都随聚合物/SWNT之比的升高而升高,但随后在约1.5的比例处持平。图11A~11B图示了根据各种实施方式对超分子聚合物与SWNT混合物之比的分散参数进行调整的例子。图11A图示了在聚合物量为5毫克的条件下使用各种聚合物与SWNT混合物的比例(并且以40%功率进行了30分钟声处理)得到的诸如隔离的S-SWNT这样的SWNT分散体的吸收光谱。例如,使光谱对1016nm的最大值归一化。图11B图示了显示SWNT分散体收率和提取自图11A所示吸收光谱的φ值的图线。
另一方面,尽管SWNT分散体的收率随输入的SWNT浓度w(SWNT)的升高而降低,S-SWNT的纯度略有升高。图12A~12B图示了根据各种实施方式对SWNT浓度这一分散参数进行调整的例子。例如,图12A图示了在聚合物与SWNT混合物之比为1的条件下使用各种SWNT浓度(并且以70%功率进行了30分钟声处理)得到的诸如隔离的S-SWNT这样的SWNT分散体的吸收光谱。例如,使光谱对1016nm的最大值归一化。图12B图示了显示SWNT分散体收率和提取自图12A所示吸收光谱的φ值的图线。
此外,较低的声处理功率或较短的声处理时间会导致较低的SWNT收率,但会导致显著更高的S-SWNT纯度。图13A~13B图示了根据各种实施方式对声处理功率这一分散参数进行调整的例子。例如,图13A图示了在聚合物重量为5mg且聚合物与SWNT混合物之比为1的条件下使用各种声处理功率(并且进行了30分钟声处理)得到的诸如隔离的S-SWNT这样的SWNT分散体的吸收光谱。例如,使光谱对1016nm的最大值归一化。图13B图示了显示SWNT分散体收率和提取自图13A所示吸收光谱的φ值的图线。
图14A~14B图示了根据各种实施方式对声处理时间这一分散参数进行调整的例子。例如,图14A图示了在聚合物重量为5mg且聚合物与SWNT混合物之比为1的条件下使用各种声处理时间(并且以30%的功率进行声处理)得到的诸如隔离的S-SWNT这样的SWNT分散体的吸收光谱。例如,使光谱对1016nm的最大值归一化。图14B图示了显示SWNT分散体收率和提取自图14A所示吸收光谱的φ值的图线。
在多种实验性实施方式中,在相同的分散条件(5mg分散剂、5mg的AD-SWNT、以70%功率进行30分钟的声处理)下,将超分子聚合物分散SWNT的能力与相应的常规聚合物聚(9,9-二-正十二烷基芴)(PFDD)和单官能UPy化合物(例如乙烯基UPy)进行比较。示例性的超分子聚合物(例如聚合物1)展现出约高7倍的分散体收率和纯度(聚合物1的φ=0.31,PDDD的φ=0.27)。此外,乙烯基UPy未显示出(或显示出最低)的分散SWNT的能力。图15图示了根据各种实施方式的隔离的特定电类型SWNT的吸收光谱的一个例子,其通过使用超分子聚合物和聚(9,9-二-正十二烷基芴)(PFDD)以及作为分散剂的乙烯基UPy在相同的分散条件(5mg的分散剂、5mg的AD-SWNT、以70%功率进行30分钟的声处理时间)下得到。
其它比较包括对在针对高纯度而最优化了的分散参数(5mg的聚合物1、5mg的AD-SWNT、以30%功率进行20分钟的声处理)下得到的聚合物/SWNT试样与商业聚合物/SWNT试样进行比较。该比较针对的是可实现的最大SWNT纯度。图16图示了根据各种实施方式的在特定分散参数下隔离的特定电类型的SWNT的吸收光谱的例子。如图16所示,将上述分散参数下的超分子聚合物/SWNT混合物的吸收光谱与商业聚合物/SWNT混合物进行比较。
在多种实验性的实施方式中,在共焦拉曼系统(购自堀场科学仪器事业部(HoribaJobin Yvon)的LabRam Aramis)上记录放大100倍的532nm、638nm和785nm激发的拉曼光谱。通过将聚合物1/SWNT溶液(挑选的SWNT)滴涂在Si基材上来制备挑选的SWNT试样。原始的SWNT试样通过滴涂NMP中的SWNT分散体来制备。分散体通过以下方式得到:以70%声处理功率对20mL NMP中的1.7mg AD-SWNT进行30分钟的声处理,随后以16000rpm进行30分钟的离心。通过对在不同位置处测得的nince光谱求平均来处理数据。图17A~17D图示了根据各种实施方式的原始的和在各种激发波下挑选的SWNT的光谱的例子。拉曼光谱的特征区域示于图17A~D。
在各种实施方式中,对光致发光与激发(PLE)分布图进行比较。PLE光谱是在近红外光谱仪上在1150~2100nm区段内测得的。激发源是150W的无臭氧氙灯(奥利尔仪器有限公司(Oriel)),其通过单色仪(奥利尔仪器有限公司)色散以产生15nm带宽的激发线。700~1050nm范围内的激发光线聚焦在试样上,并被1100nm的短通(short-pass)过滤器(托儿实验仪器有限公司(Thorlabs))过滤。使用1100nm的长通过滤器收集1150~2100nm发射范围内的发射。将发射收集入配置有液氮冷却铟镓砷一维探测器(Princeton OMA-V)的光谱仪(Acton SP2300i)内。对PLE进行后收集作图,以使用MATLAB查明探测器的灵敏度、过滤器的消光特征以及激发的功率。
图18图示了根据各种实施方式的SWNT和/或超分子聚合物的用途的例子。例如,在各种实施方式中,使用超分子聚合物从SWNT混合物中对SWNT进行挑选,得到了三种或更多种不同的SWNT最终产物和重组的超分子聚合物1878。在各种实施方式中,SWNT最终产物包含聚合物分散的S-SWNT 1872、S-SWNT 1874、表面活性剂分散的S-SWNT 1877和S-SWNT含量降低的SWNT1876。虽然图18图示了S-SWNT的选择性分散,但实施方式并不受此所限,包括M-SWNT的选择性分散。
结合图2如前文所述,向SWNT混合物1870添加超分子聚合物1871。添加诸如甲苯这样的溶剂,并对结合的混合物进行声处理和离心。其产物为聚合物分散的S-SWNT 1872和包含沉淀的超分子聚合物和S-SWNT含量降低的SWNT(例如M-SWNT和减少的S-SWNT)的残余物1873。在各种实施方式中,如前文所述,聚合物分散的S-SWNT 1872是分散的复合物。
在多种实施方式中,调整分散参数以选择所得到的隔离的S-SWNT,例如SWNT的纯度和收率。声处理的示例性分散参数包括超分子聚合物与SWNT混合物之比、SWNT的浓度、声处理功率和声处理时间。离心的示例性分散参数包括速度、温度和时间。
如前文所述,在各种实施方式中,超分子聚合物的一部分(例如大部分)保持与SWNT、未分散的第一电类型SWNT(例如S-SWNT含量降低的SWNT)一起沉淀。来自残余物1873的这部分超分子聚合物通过添加具有诸如TFA这样的破键剂的溶液来隔离,所述溶液的添加导致超分子聚合物溶于溶液(例如聚合物-TFA溶液1875)中,而未分散的SWNT保持沉淀。从残余物1873中滤出未分散的SWNT,以生产S-SWNT含量降低的SWNT 1876。在各种实施方式中,SWNT含量降低的SWNT 1876销售用于机械性能应用1879。向聚合物-TFA溶液1875添加诸如甲醇这样的抗溶剂并进行过滤,以隔离超分子聚合物1878,由此沉淀和隔离聚合物-TFA溶液1875中的超分子聚合物。如上所述,在各种实施方式中,将隔离的聚合物1878进行循环并作为聚合物1871重复利用,以选择性地隔离S-SWNT。即,在各种实施方式中,隔离的超分子聚合物1878与聚合物1871在结构上相同,并且/或者具有相同的化学性能。
此外,通过添加诸如1%的TFA这样的溶剂在超分子聚合物保持溶解的同时使S-SWNT沉淀来使S-SWNT 1874与聚合物分散的S-SWNT 1872隔离。然后,通过过滤来隔离沉淀的S-SWNT。在各种实施方式中,隔离的S-SWNT 1874分散在表面活性剂中,以形成表面活性剂分散的S-SWNT 1877。如本文所用,表面活性剂是指能够降低两种液体之间或液体与固体之间表面张力的化合物。在各种实施方式中,表面活性剂是双亲性的(例如含有亲水性基团和疏水性基团)。
与超分子聚合物从残余物1873的上述沉淀和隔离相似的是,溶剂的添加和S-SWNT的过滤得到聚合物-TFA溶液1875。通过向聚合物-TFA溶液1875添加诸如甲醇这样的抗溶剂来沉淀聚合物,并对沉淀的聚合物进行过滤以隔离超分子聚合物1878。在各种实施方式中,将隔离的聚合物1878进行循环,并作为聚合物1871重复利用,以选择性地隔离S-SWNT。
按照作为基础的临时申请(系列号62/137599)来实施各种实施方式,本申请要求上述临时申请的优先权,并通过引用将其全文纳入本文。例如,可以各种程度(包括完全)结合本文所述的实施方式和/或所述临时申请(包括其中的附件)。还可参考作为基础的临时申请中提供的实验性教导和作为基础的参照,包括构成所述临时申请一部分的附件。附件中所讨论的实施方式不以任何方式旨在限制总体技术公开或所要求保护的方法的任何部分,除非另有说明。
作为基础的临时申请的附件通过引用全文纳入本文,以参考其总体和具体教导。标题为《用于选择性分散以及随后释放大直径半导体单壁碳纳米管的H键合超分子聚合物》(H-bonded Supramolecular Polymer for the Selective Dispersion and SubsequentRelease of Large Diameter Semiconducting Single-Walled Carbon Nanotubes)的附件A、标题为《利用超分子聚合物对纳米管进行挑选》(Nanotube Sorting with ASupramolecular Polymer)的附件B以及标题为《辅助信息》(Supporting Information)的附件C总体且具体地描述了化合物、使用方法和合成方法,包括超分子聚合物的制备和SWNT的隔离,如本文所述。这些文件通过引用全文纳入本文,以参考它们的教导(包括本文所引用的背景参考,其公开了有益于本公开各方面的应用),总体上以及具体参考其中所述和所示的结构、工艺、化学试剂和用途。
基于上述的讨论和例示,本领域的技术人员会容易认识到可以在不严格遵循本文示例和描述的示例性实施方式和应用的条件下对本发明作出各种修改和改变。例如,所示和所述的超分子聚合物可被不同排布(例如,包括不同的碳侧链和/或骨架中的不同部分)的聚合物替代。这些修改没有偏离本发明的真谛和包括所述权利要求在内的范围。
根据本公开的各种实施方式包括一种方法,所述方法包括:提供包含拆解的超分子聚合物和破键剂的溶液;向所述溶液添加抗溶剂以使所述超分子聚合物沉淀;以及使所述沉淀的超分子聚合物与所述破键剂隔离,其中,隔离的超分子聚合物配置成从包含至少两种电类型的SWNT的SWNT混合物中选择性地分散特定电类型的单壁碳纳米管(SWNT)。在多种实施方式中,上述方法还包括以下各项的各种组合:提供包含所述超分子聚合物和特定电类型的单壁碳纳米管(SWNT)的分散的复合物;以及向所述分散的复合物添加破键剂以拆解所述超分子聚合物并且隔离所述SWNT;隔离所述SWNT包括从所述溶液过滤特定类型的SWNT;提供所述溶液包括通过以下方式使单壁碳纳米管(SWNT)从SWNT混合物中隔离:向所述SWNT混合物添加超分子聚合物以形成未分散的第一电类型SWNT和所述超分子聚合物的混合物以及包含第二电类型SWNT和所述超分子聚合物的分散的复合物;除去所述未分散的SWNT;以及使用所述破键剂拆解所述超分子聚合物以从所述超分子聚合物上释放所述第二电类型SWNT;使所述沉淀的超分子聚合物与所述破键剂隔离包括从包含所述破键剂的所述溶液过滤所述沉淀的超分子聚合物;使所述沉淀的超分子聚合物与所述破键剂隔离包括对包含所述拆解的超分子聚合物和所述破键剂的混合物进行离心,以除去含有所述破键剂的溶液;使所述沉淀的超分子聚合物与所述破键剂隔离包括:对包含所述拆解的超分子聚合物和所述破键剂的混合物进行离心,以使所述超分子聚合物沉淀;以及从包含所述破键剂的溶液过滤所述沉淀的超分子聚合物;向所述溶液添加所述抗溶剂包括向所述溶液添加甲醇,以从所述拆解的超分子聚合物重组所述超分子聚合物,所述拆解的超分子聚合物包含低聚物或单体单元;向所述SWNT混合物添加所述超分子聚合物包括在溶剂中使所述超分子聚合物与所述SWNT混合物结合,并且对结合的混合物进行声处理;以及/或者向所述SWNT混合物添加所述超分子聚合物包括在甲苯或氯仿中使所述超分子聚合物与所述SWNT混合物结合,并且添加破键剂包括添加三氟乙酸(TFA)。
根据本公开的各种实施方式包括一种方法,所述方法包括:向单壁碳纳米管(SWNT)混合物添加超分子聚合物,所述SWNT混合物包含第一电类型SWNT和第二电类型SWNT,其中,向所述SWNT混合物添加所述超分子聚合物形成未分散的第一电类型SWNT和未分散的超分子聚合物的混合物以及包含所述第二电类型SWNT和所述超分子聚合物的分散的复合物;从所述分散的复合物中除去所述未分散的第一电类型SWNT;向所述分散的复合物添加破键剂,所述破键剂配置成拆解所述超分子聚合物并且从所述超分子聚合物中释放所述第二电类型SWNT;以及使所述第二电类型SWNT与所述拆解的超分子聚合物和所述破键剂隔离。
在多种实施方式中,上述方法还包括以下各项的各种组合:添加所述破键剂包括破坏键合所述超分子聚合物的单体单元的氢键以拆解所述超分子聚合物,其中,所述第一电类型SWNT包含金属SWNT(M-SWNT),且所述第二电类型SWNT包含半导体SWNT(S-SWNT);添加所述破键剂包括破坏键合所述超分子聚合物的单体单元的氢键以拆解所述超分子聚合物,其中,所述第一电类型SWNT包含半导体SWNT(S-SWNT),且所述第二电类型SWNT包含金属SWNT(M-SWNT);还包括向包含所述拆解的超分子聚合物和所述破键剂的溶液添加抗溶剂,以使所述超分子聚合物沉淀,以及使所述沉淀的超分子聚合物与所述破键剂隔离;从所述分散的复合物中除去所述未分散的第一电类型SWNT包括对所述未分散的第一电类型SWNT和所述分散的复合物的混合物进行离心;使所述第二电类型SWNT与所述拆解的超分子聚合物和所述破键剂隔离包括从包含拆解的超分子聚合物和所述破键剂的溶液过滤所述第二电类型SWNT;使所述第二电类型SWNT与所述拆解的超分子聚合物和所述破键剂隔离包括对包含所述第二电类型SWNT、所述拆解的超分子聚合物和所述破键剂的混合物进行离心,以除去所述第二电类型SWNT;使所述第二电类型SWNT与所述拆解的超分子聚合物和所述破键剂隔离包括对包含所述第二电类型SWNT、所述拆解的超分子聚合物和所述破键剂的混合物进行离心,以及从包含所述拆解的超分子聚合物和所述破键剂的溶液过滤所述第二电类型SWNT;所述抗溶剂是甲醇,且所述破键剂是三氟乙酸(TFA);利用基于分散参数的纯度和收率来表征所述第二电类型SWNT,所述分散参数包括超分子聚合物与SWNT混合物之比、所述SWNT的浓度、声处理功率和声处理时间;还包括调整所述分散参数,以选择所述第二电类型SWNT的纯度和收率;所述分散参数包括超分子聚合物与SWNT混合物之比为1~2和20分钟30%的声处理功率;还包括向所述第二电类型SWNT添加偶极非质子溶剂(NMP)以使所述SWNT重新分散;还包括使用所述第二电类型SWNT以形成选自下组的电子电路:晶体管、可伸缩电子器件、柔性电路、柔性晶体管、热电子器件、透明电子器件、显示屏、太阳能面板、加热器和扬声器;还包括使用所述第二电类型SWNT来形成膜;以及/或者还包括掺杂所述第二电类型SWNT以及使用所述经过掺杂的SWNT来形成电阻器。
根据本公开的各种实施方式包括一种超分子聚合物,其包含:多个单体单元,所述单体单元非共价地连接以形成所述超分子聚合物,其中,利用脲基嘧啶酮部分(UPy)末端、碳侧链和骨架中的部分来表征所述多个单体单元。
在各种实施方式中,上述聚合物还包含以下各项的各种组合:所述骨架中的部分选自下组:芴部分、噻吩部分、苯部分、苯并二噻吩部分、咔唑部分、噻吩并噻吩部分、苝二酰亚胺部分、异靛部分、吡咯并吡咯二酮部分、对映纯联萘酚部分和所述骨架中的两个或更多个上述部分的低聚物或组合,其中的一些可未完全共轭;所述单体单元进一步以平面分子表面为特征,以促进与单壁碳纳米管(SWNT)的π-π相互作用;所述碳侧链配置成增强所述超分子聚合物的聚合物溶解性;所述超分子聚合物溶于非极性溶剂中,且配置成选择性地使单壁碳纳米管(SWNT)分散于所述非极性溶剂中;所述超分子聚合物溶于极性溶剂中,且配置成选择性地使单壁碳纳米管(SWNT)分散于所述极性溶剂中;所述多个单体单元以下式表征:
Figure BDA0001417777600000281
所述骨架中的部分包含极性基团;极性基团选自下组:甘菊环、氨和磺酸盐/酯;所述超分子聚合物配置成从包含至少两种电类型的SWNT的SWNT混合物中选择性地分散特定电类型的单壁碳纳米管(SWNT);以及/或者所述超分子聚合物配置成通过与破键剂相互作用而拆解成低聚物单元,从而从包含特定电类型和另一种电类型的单壁碳纳米管(SWNT)的SWNT混合物中释放特定电类型的SWNT,且所述超分子聚合物还配置成通过所述低聚物单元与抗溶剂相互作用而重组成所述超分子聚合物。
根据本公开的各种实施方式包括一种方法,所述方法包括:通过使碘代胞嘧啶与十二烷基异氰酸酯反应来形成乙烯基脲基嘧啶酮(乙烯基UPy);以及通过使乙烯基UPy与部分化合物反应来形成超分子聚合物;所述超分子聚合物包含多个单体单元,所述单体单元非共价地连接以形成所述超分子聚合物,其中,利用UPy的末端、碳侧链和骨架中的部分化合物来表征所述多个单体单元。
在多种实施方式中,上述方法还包括以下各项的各种组合:形成所述超分子聚合物包括使所述乙烯基UPy与选自下组的所述部分化合物反应:芴部分、噻吩部分、苯部分、咔唑部分、异靛部分、苯并二噻吩部分、噻吩并噻吩部分、苝二酰亚胺部分、吡咯并吡咯二酮部分、对映纯联萘酚部分和所述骨架中的两个或更多个上述部分的低聚物或组合,其中的一些可未完全共轭;使碘代胞嘧啶与十二烷基异氰酸酯反应形成碘代UPy,且形成乙烯基UPy还包括通过与三丁基(乙烯基)锡烷偶联来将碘代UPy转化成乙烯基Upy;通过使所述乙烯基UPy与所述部分化合物反应来形成所述超分子聚合物还包括:使所述乙烯基UPy和所述部分化合物悬浮于极性溶剂中,通过对包含所述乙烯基UPy、所述部分化合物和所述极性溶剂的混合物进行脱气和加热来形成固体,以及通过将所述固体溶于另一种溶剂中并利用甲醇使所述超分子聚合物沉淀来形成所述超分子聚合物;所述超分子聚合物配置成从包含至少两种电类型的SWNT的SWNT混合物中选择性地分散特定电类型的单壁碳纳米管(SWNT),其中,所述分散的SWNT具有0.6~2.2纳米的直径;所述超分子聚合物配置成隔离特定电类型的SWNT,所述SWNT具有80~99.99%的纯度;所述超分子聚合物配置成在破键剂的存在下发生解聚,以形成低聚物或单体单元;以及/或者所述超分子聚合物配置成通过与破键剂相互作用而拆解成低聚物或单体单元,并且通过所述拆解的低聚物或单体单元与抗溶剂相互作用而重组成所述超分子聚合物。
根据本公开的各种实施方式包括一种复合物,其包含超分子聚合物和分散的第一电类型单壁碳纳米管(SWNT),所述超分子聚合物包含多个单体单元,所述单体单元非共价地连接以形成所述超分子聚合物,其中,利用脲基嘧啶酮部分(UPy)末端、碳侧链和骨架中的部分化合物来表征所述多个单体单元;所述第一电类型包括半导体SWNT(S-SWNT)或金属SWNT(M-SWNT)。
在多种实施方式中,上述复合物还包含以下各项的各种组合:所述骨架中的所述部分化合物包含选自下组的化合物:所述骨架中的芴部分、噻吩部分、苯部分、咔唑部分、异靛部分和对映纯联萘酚部分;所述复合物是混合物的一部分,所述混合物还包含未分散的第二电类型SWNT,其中,所述第二电类型包括S-SWNT或M-SWNT中的另一种;所述分散的所述第一电类型SWNT包含直径为0.6~2.2纳米的半导体SWNT;所述超分子聚合物配置且排布成从包含所述第一电类型SWNT和第二电类型SWNT的SWNT混合物中选择性地分散所述第一电类型SWNT;所述复合物的特征在于超分子聚合物与SWNT混合物之比为1~2;所述分散的所述第一电类型SWNT包含特征为具有80~99.99%纯度的S-SWNT。

Claims (16)

1.一种隔离单壁碳纳米管(SWNT)的方法,所述方法包括:
向单壁碳纳米管(SWNT)混合物添加超分子聚合物,所述添加包括在包含甲苯或氯仿的溶剂中混合超分子聚合物和SWNT混合物,所述SWNT混合物包含第一电类型SWNT和第二电类型SWNT,其中,向所述SWNT混合物中添加所述超分子聚合物形成未分散的第一电类型SWNT和未分散的超分子聚合物的混合物以及包含所述第二电类型SWNT和所述超分子聚合物的分散的复合物,所述第一电类型SWNT选自金属SWNT(M-SWNT)或半导体SWNT(S-SWNT),所述第二电类型SWNT选自M-SWNT或S-SWNT中的另一种;
从所述分散的复合物中除去所述未分散的第一电类型SWNT;
向所述分散的复合物添加破键剂,所述破键剂配置成拆解所述超分子聚合物并且从所述超分子聚合物上释放所述第二电类型SWNT;以及
使所述第二电类型SWNT与所述拆解的超分子聚合物和所述破键剂隔离,其中添加所述破键剂包括破坏键合所述超分子聚合物的单体单元的氢键以拆解所述超分子聚合物,每个单体单元用脲基嘧啶酮部分(UPy)末端、碳侧链和用骨架中的部分表征,以提高S-SWNT与M-SWNT之间的选择性,且所述骨架中的部分选自下组:芴部分、噻吩部分、苯部分、苯并二噻吩部分、咔唑部分、噻吩并噻吩部分、苝二酰亚胺部分、异靛部分、吡咯并吡咯二酮部分、对映纯联萘酚部分和所述骨架中的两个或更多个上述部分的低聚物或组合。
2.如权利要求1所述的方法,其特征在于,添加所述破键剂包括破坏键合所述超分子聚合物的单体单元的氢键以拆解所述超分子聚合物,其中,所述溶剂包括甲苯。
3.如权利要求1所述的方法,其特征在于,所述单体单元以下式表征:
Figure FDA0003051982850000011
4.如权利要求1所述的方法,其特征在于,还包括:
向包含所述拆解的超分子聚合物和所述破键剂的溶液添加抗溶剂,以使所述超分子聚合物沉淀;以及
使沉淀的超分子聚合物与所述破键剂隔离。
5.如权利要求1所述的方法,其特征在于,从所述分散的复合物中除去所述未分散的第一电类型SWNT包括对所述未分散的第一电类型SWNT和所述分散的复合物的混合物进行离心。
6.如权利要求1所述的方法,其特征在于,使所述第二电类型SWNT与所述拆解的超分子聚合物和所述破键剂隔离包括从包含拆解的超分子聚合物和所述破键剂的溶液过滤所述第二电类型SWNT。
7.如权利要求1所述的方法,其特征在于,使所述第二电类型SWNT与所述拆解的超分子聚合物和所述破键剂隔离包括对包含所述第二电类型SWNT、所述拆解的超分子聚合物和所述破键剂的混合物进行离心,以除去所述第二电类型SWNT。
8.如权利要求1所述的方法,其特征在于,使所述第二电类型SWNT与所述拆解的超分子聚合物和所述破键剂隔离包括:
对包含所述第二电类型SWNT、所述拆解的超分子聚合物和所述破键剂的混合物进行离心;以及
从包含所述拆解的超分子聚合物和所述破键剂的溶液过滤所述第二电类型SWNT。
9.如权利要求4所述的方法,其特征在于,所述抗溶剂是甲醇,且所述破键剂是三氟乙酸(TFA)。
10.如权利要求4所述的方法,其特征在于,利用基于分散参数的纯度和收率来表征所述第二电类型SWNT,所述分散参数选自超分子聚合物与SWNT混合物之比、所述SWNT的浓度、声处理功率和声处理时间。
11.如权利要求10所述的方法,其特征在于,还包括调整所述分散参数,以选择所述第二电类型SWNT的纯度和收率。
12.如权利要求10所述的方法,其特征在于,所述分散参数包括超分子聚合物与SWNT混合物之比为1~2和20分钟30%的声处理功率。
13.如权利要求1所述的方法,其特征在于,还包括向所述第二电类型SWNT添加偶极非质子溶剂(NMP)以使所述SWNT重新分散。
14.如权利要求1所述的方法,其特征在于,还包括使用所述第二电类型SWNT以形成选自下组的电子电路:晶体管、可伸缩电子器件、柔性电路、柔性晶体管、热电子器件、透明电子器件、显示屏、太阳能面板、加热器和扬声器。
15.如权利要求1所述的方法,其特征在于,还包括使用所述第二电类型SWNT来形成膜。
16.如权利要求1所述的方法,其特征在于,还包括掺杂所述第二电类型SWNT以及使用所述经过掺杂的SWNT来形成电阻器。
CN201680018223.8A 2015-03-24 2016-03-24 隔离半导体单壁纳米管或金属单壁纳米管及其方法 Active CN107636216B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562137599P 2015-03-24 2015-03-24
US62/137,599 2015-03-24
PCT/US2016/024072 WO2016154468A1 (en) 2015-03-24 2016-03-24 Isolating semiconducting single-walled nanotubes or metallic single-walled nanotubes and approaches therefor

Publications (2)

Publication Number Publication Date
CN107636216A CN107636216A (zh) 2018-01-26
CN107636216B true CN107636216B (zh) 2021-08-24

Family

ID=56973939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680018223.8A Active CN107636216B (zh) 2015-03-24 2016-03-24 隔离半导体单壁纳米管或金属单壁纳米管及其方法

Country Status (3)

Country Link
US (1) US10395804B2 (zh)
CN (1) CN107636216B (zh)
WO (1) WO2016154468A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209817A2 (en) * 2016-03-08 2017-12-07 Massachusetts Institute Of Technology Dynamic resonant circuits for chemical and physical sensing with a reader and rfid tags
CN109761221B (zh) * 2017-11-09 2020-09-29 北京华碳元芯电子科技有限责任公司 分离提纯半导体单壁碳纳米管的有机物、方法及应用
CN109809392B (zh) * 2017-11-21 2020-09-11 北京华碳元芯电子科技有限责任公司 通过溶液分层来实现半导体性单壁碳纳米管的提纯方法
CN109809393B (zh) * 2017-11-21 2020-09-11 北京华碳元芯电子科技有限责任公司 半导体性单壁碳纳米管的提纯方法
CN109867274A (zh) * 2017-12-01 2019-06-11 北京华碳元芯电子科技有限责任公司 半导体性单壁碳纳米管的提纯方法及其薄膜的制备方法
KR102386452B1 (ko) 2018-05-02 2022-04-14 삼성디스플레이 주식회사 표시 장치
US11532789B2 (en) 2018-05-29 2022-12-20 Samsung Electronics Co., Ltd. Organic thin film including semiconducting polymer and elastomer configured to be dynamic intermolecular bonded with a metal-coordination bond and organic sensor and electronic device including the same
US11075348B2 (en) 2019-08-07 2021-07-27 Samsung Electronics Co., Ltd. Thin film transistor and thin film transistor array and electronic device
US20230227314A1 (en) * 2020-05-14 2023-07-20 Nano-C, Inc. Carbon nanostructure compositions and methods for purification thereof
CN112174118B (zh) * 2020-10-14 2022-04-22 西安交通大学 一种大直径半导体性单壁碳纳米管的分离方法
CN112877014B (zh) * 2021-01-19 2021-11-16 清华大学 一种环氧树脂热熔胶及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136981A1 (ja) * 2013-03-08 2014-09-12 国立大学法人九州大学 金属性単層カーボンナノチューブと半導体性単層カーボンナノチューブとの分離方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838621B2 (en) * 2003-11-04 2010-11-23 Suprapolix B.V. Preparation of supramolecular polymer containing quadruple hydrogen bonding units in the polymer backbone
US7737188B2 (en) * 2006-03-24 2010-06-15 Rensselaer Polytechnic Institute Reversible biogel for manipulation and separation of single-walled carbon nanotubes
US7771691B2 (en) * 2006-07-25 2010-08-10 Institut Catala D'investigacio Quimica Compound and method for the selective extraction of higher fullerenes from mixtures of fullerenes
WO2008148168A1 (en) * 2007-06-07 2008-12-11 The University Of Western Australia Processes for the preparation of calixarene derivatives
US8414792B2 (en) * 2008-09-09 2013-04-09 Sun Chemical Corporation Carbon nanotube dispersions
EP2608874A1 (en) * 2010-08-27 2013-07-03 Yeda Research and Development Co. Ltd. Separation of nanoparticles
US9502152B2 (en) * 2010-11-01 2016-11-22 Samsung Electronics Co., Ltd. Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
US8866265B2 (en) * 2011-10-03 2014-10-21 The Board Of Trustees Of The Leland Stanford Junior University Carbon-based semiconductors
WO2014072764A1 (en) * 2012-11-12 2014-05-15 Fonds De L'espci- Georges Charpak Universally dispersible particles containing hydrogen bonds
EP3215566A4 (en) 2014-08-12 2018-07-18 Basf Se Sorting of carbon nanotubes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136981A1 (ja) * 2013-03-08 2014-09-12 国立大学法人九州大学 金属性単層カーボンナノチューブと半導体性単層カーボンナノチューブとの分離方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H‑Bonded Supramolecular Polymer for the Selective Dispersion and Subsequent Release of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes;Igor Pochorovski et al;《JACS》;20150327;第137卷;4328-4331 *
Non-Destructive Extraction of Semiconducting Single Walled Carbon Nanotubes by Wrapping with Flexible Porphyrin Polypeptides and the Supramolecular Photodynamics;Kenji Saito et al;《ECS Transactions》;20071231;第2卷(第12期);157-165 *
Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry;Fumiyuki Toshimitsu et al;《NATURE COMMUNICATIONS》;20141003;1-9 *

Also Published As

Publication number Publication date
WO2016154468A1 (en) 2016-09-29
US10395804B2 (en) 2019-08-27
US20160280548A1 (en) 2016-09-29
CN107636216A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
CN107636216B (zh) 隔离半导体单壁纳米管或金属单壁纳米管及其方法
EP2702005B1 (en) Graphene nanoribbons, methods of making same, and uses thereof
Wang et al. Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors
US9502152B2 (en) Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
Tuncel Non-covalent interactions between carbon nanotubes and conjugated polymers
Imin et al. Supramolecular functionalization of single-walled carbon nanotubes (SWNTs) with dithieno [3, 2-b: 2′, 3′-d] pyrrole (DTP) containing conjugated polymers
EP3036024A1 (en) Process for purifying semiconducting single-walled carbon nanotubes
Rice et al. Effect of induction on the dispersion of semiconducting and metallic single-walled carbon nanotubes using conjugated polymers
Fukumaru et al. Effects of the chemical structure of polyfluorene on selective extraction of semiconducting single-walled carbon nanotubes
KR102113219B1 (ko) 단일벽탄소나노튜브의 선택적 분리를 위한 공액 고분자
Kanimozhi et al. Structurally analogous degradable version of fluorene–bipyridine copolymer with exceptional selectivity for large-diameter semiconducting carbon nanotubes
Liang et al. Selective dispersion of single-walled carbon nanotubes with electron-rich fluorene-based copolymers
Daugaard et al. Poly (ethylene-co-butylene) functionalized multi walled carbon nanotubes applied in polypropylene nanocomposites
CN108602941B (zh) 可降解的共轭聚合物
US20120059120A1 (en) Carbon Nanotube Grafted with Low-Molecular Weight Polyaniline and Dispersion Thereof
CN109244228B (zh) 一种有机复合热电薄膜及其制备方法
US20090020732A1 (en) Method of selectively separating carbon nanotubes, electrode comprising metallic carbon nanotubes separated by the method and oligomer dispersant for selectively separating carbon nanotubes
Baibarac et al. Vibrational and photoluminescence properties of the polystyrene functionalized single-walled carbon nanotubes
Bodnaryk et al. Influence of regiochemistry in the selective dispersion of metallic carbon nanotubes using electron poor conjugated polymers
KR100652861B1 (ko) 탄소나노튜브의 표면 개질방법
US8592612B1 (en) Water soluble carbon nanotubes
Imit et al. π-Conjugated polymers with pendant coumarins: design, synthesis, characterization, and interactions with carbon nanotubes
Cruikshank Influence of Electron-Poor Conjugated Polymers on the Selective Dispersion of Carbon Nanotubes
Ghislandi et al. Functionalization of carbon nanofibers (CNFs) through atom transfer radical polymerization for the preparation of poly (tert‐butyl acrylate)/CNF materials: Spectroscopic, thermal, morphological, and physical characterizations
KR101054254B1 (ko) 폴리스티렌/탄소나노튜브 복합체의 제조방법 및 폴리스티렌매트릭스 내에 상기 폴리스티렌/탄소나노튜브 복합체가 균일하게 분산된 나노복합체의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant