CN107635751B - 使用增材制造技术来制造物体的方法 - Google Patents

使用增材制造技术来制造物体的方法 Download PDF

Info

Publication number
CN107635751B
CN107635751B CN201680027984.XA CN201680027984A CN107635751B CN 107635751 B CN107635751 B CN 107635751B CN 201680027984 A CN201680027984 A CN 201680027984A CN 107635751 B CN107635751 B CN 107635751B
Authority
CN
China
Prior art keywords
support
insert
additive manufacturing
substrate
torque application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680027984.XA
Other languages
English (en)
Other versions
CN107635751A (zh
Inventor
J·范埃斯彭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physicochemical Co ltd
Original Assignee
Physicochemical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Physicochemical Co ltd filed Critical Physicochemical Co ltd
Publication of CN107635751A publication Critical patent/CN107635751A/zh
Application granted granted Critical
Publication of CN107635751B publication Critical patent/CN107635751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/47Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明的实施例可以涉及支撑件和制造这种支撑件的方法,其减少从物体和/或基板移除支撑件的复杂性。在一些实施例中,本发明涉及基板和制造基板的方法,其减少将支撑件从基板移除的复杂性。

Description

使用增材制造技术来制造物体的方法
相关申请的交叉引用
本申请要求2015年4月3日提交的序列号为62/142,695的美国临时专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本申请大体涉及增材制造(例如三维打印)技术。特别地,本申请涉及被使用在增材制造技术中的支撑结构。
背景技术
使用能源来处理原始建筑材料的增材制造技术倾向于在制造过程期间产生热应力和应变以及机械应力和应变。这些应力和应变例如可以由原始建筑材料的加热和冷却引起,在制造期间,这导致该材料的膨胀和收缩。例如,当使用激光或其它能源从金属和金属粉末制造部件时,可能出现高的应力和应变。在制造期间或之后,在物体上的应力和应变可能使物体形变,或者在制造期间甚至可能阻碍构建过程继续进行。
在制造过程期间,支撑件可以被用于支撑正在被制造的物体。这些支撑件可以直接接触物体,并且可以防止应力和应变使物体形变或者扭曲、用作散热器、和/或提供竖直支撑(例如,克服重力),以将物体保持在特定的位置中。然而,这些支撑件可能会增加制造的时间和成本,这是由于需要额外的后处理来移除支撑件。
因此,在增材制造期间需要用于支撑物体的经改进的支撑结构。
发明内容
在一个实施例中,提供一种使用增材制造技术来制造物体的方法。该方法包括提供用于物体的支撑件,该支撑件被配置为在物体的增材制造期间至少部分地支撑物体。该方法还包括提供基板,其中支撑件被配置为在第一端部处与物体的第一部分耦合,并且在第二端部处与物体的第二部分、基板和另一物体中的一个耦合。该方法还包括在支撑件和基板中的至少一个上提供扭矩施加部分,扭矩施加部分被配置为允许施加旋转力以便于将支撑件的至少一部分从物体、其它物体、基板中的至少一个断开。
在一个实施例中,提供一种使用增材制造技术来制造物体的方法。该方法包括提供用于物体的支撑件,该支撑件被配置为在物体的增材制造期间至少部分地支撑物体。该方法还包括提供基板,其中支撑件被配置为在第一端部处与物体的第一部分耦合,并且在第二端部处与物体的第二部分、基板和另一物体中的一个耦合。该方法还包括在支撑件和基板中的至少一个上提供耦合元件的第一部分,耦合元件包括耦合元件的第一部分和耦合元件的第二部分,其中耦合元件的第一部分被配置为可拆卸地耦合到耦合元件的第二部分。该方法还包括在支撑件和基板中的至少一个上提供耦合元件的第二部分。
附图说明
图1图示了在此所描述的支撑件的各种示例,
图2图示了图1的实施例的经解耦的可拆卸耦合类型的支撑件的示例,
图3图示了图1的实施例的扭矩施加支撑件的示例,
图4A图示了图1的实施例的经耦合的可拆卸耦合类型的支撑件的示例,
图4B图示了耦合机构的示例,其可以结合图4A的实施例的可拆卸耦合类型的支撑件被使用,
图5图示了图1的实施例的滑动耦合类型的支撑件的示例,
图6A图示了包括本体部分和插入件的基板的示例,
图6B是图6A的基板的顶视图,
图7A图示了包括本体部分和插入件的基板的另一示例,
图7B图示了包括本体部分和插入件的基板的另一示例的顶视图,
图7C图示了物体从图7A的基板的分离,
图8描绘了用于使用支撑件和基板制造物体的示例过程的流程图,
图9描绘了用于使用支撑件和基板制造物体的另一示例过程的流程图,
图10描绘了用于使用支撑件和基板制造物体的另一示例过程的流程图,
图11描绘了示例的增材制造装置,其可以被配置为实施增材制造技术,
图12描绘了示例的计算设备,被配置为实施在此所描述的过程。
具体实施方式
下述的说明和附图涉及某些特定的实施例。在任何特定的上下文中说明的实施例不是旨在限制本公开到特定的实施例或任何特定的应用。本领域技术人员将认识到,所公开的实施例、方面和/或特征不限于任何特定的实施例。
增材制造技术
在此所描述的系统和方法可以使用各种增材制造和/或三维(3D)打印系统和技术来实施。通常,增材制造技术从有待成形的3D物体的数字表示开始。一般地,数字表示被划分到一系列的横截面层或者“切片”中,其被叠加以作为整体来形成物体。这些层表示3D物体,并且可以使用由计算设备执行的增材制造建模软件来生成。例如,该软件可以包括计算机辅助设计和制造(CAD/CAM)软件。关于3D物体的横截面层的信息可以作为横截面数据被存储。增材制造(例如3D打印)机器或者系统利用横截面数据,以用于在逐层的基础上构建3D物体的目的。因此,增材制造允许直接从被计算机生成的物体的数据,诸如计算机辅助设计(CAD)文档来制造3D物体。在没有工具并且没有对于组装不同部件的需要的情况下,增材制造提供用于快速制造简单部件和复杂部件两者的能力。
立体光刻术(SLA)是一种用于一次一层地“打印”3D物体的增材制造技术。SLA装置可以采用例如激光利用经发射的辐射来固化光反应性的物质。在一些实施例中,SLA装置引导激光跨越光反应性的物质的表面,诸如例如可固化的光聚合物(“树脂”),以便一次一层地构建物体。对于每个层,激光束追踪液体树脂的表面上的物体的横截面,其固化和凝固横截面并将其结合到下面的层。在一个层已经完成之后,SLA装置将制造平台降低等于单层厚度的距离,并且然后将未固化的树脂(或类似的光反应性的材料)的新的表面沉积在先前的层上。在这个表面上,追踪新的图案,因此形成了新的层。通过重复这个一次一层的过程,可以形成完整的3D部件。
选择性激光烧结(LS)是用于3D打印物体的另一增材制造技术。LS装置经常使用高功率的激光(例如二氧化碳激光)将塑料、金属、陶瓷或玻璃粉末的小颗粒“烧结”(即熔合)成3D物体。类似于SLA,LS装置可以使用激光依照CAD设计来扫描粉末床的表面上的横截面。也类似于SLA,LS装置可以在一层完成之后将制造平台降低一层厚度,并且添加一新层的材料以便可以形成新的层。在一些实施例中,LS装置可以预热粉末,以便使激光在烧结过程期间更容易升高温度。
选择性激光熔化(LM)是用于3D打印物体的又另一增材制造技术。类似于LS,LM装置通常使用高功率的激光,来选择性地熔化金属粉末的薄层,以用于形成固体金属物体。尽管相似,LM与LS不同,因为它通常使用具有熔点高得多的材料。当使用LM建造物体时,可以使用各种涂覆机构来分配金属粉末的薄层。像SLA和LS一样,制造表面上下移动,以便允许分别形成层。
熔融沉积建模(FDM)是另一增材制造技术,其中通过从挤出喷嘴挤出例如热塑性材料的小珠来形成层以产生3D物体。在典型的布置中,挤出喷嘴被加热用于在原始材料被挤出时熔化原始材料。然后原始材料在从喷嘴挤出后立即硬化。挤出喷嘴可以通过适当的机器在一个或多个维度上移动。类似于上面所提到的增材制造技术,挤出喷嘴遵循由CAD或CAM软件控制的路径。也类似的是,部件是从下到上一次一层地构建的。
电子束熔化(EBM)和直接金属激光烧结(DMLS)是用于3D打印物体的增材制造技术的其它示例。
物体可以由使用各种材料的增材制造装置形成,诸如(但不限于):聚丙烯,热塑性聚氨酯,聚氨酯,丙烯腈丁二烯苯乙烯(ABS),聚碳酸酯(PC),PC-ABS,PLA,聚苯乙烯,木质素,聚酰胺,具有诸如玻璃或金属颗粒的添加剂的聚酰胺,甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯共聚物,诸如聚合物-陶瓷复合材料的可再次吸收的材料,以及其它类似的合适的材料。在一些实施例中,可以使用能够在商业上获得的材料。这些材料可以包括:来自DSMSomos的DSM
Figure GDA0002225165500000051
系列的材料7100、8100、9100、9420、10100、111100、12110、14120和15100;来自Stratasys的ABSplus-P430、ABSi、ABS-ESD7、ABS-M30、ABS-M30i、PC-ABS,PC-ISO、PC、ULTEM 9085、PPSF和PPSU材料;来自3D-Systems的Accura Plastic,DuraForm,CastForm,Laserform和VisiJet系列材料;铝钴铬和不锈钢材料;马氏体时效钢;镍合金;钛;PA系列材料,PrimeCast和PrimePart材料以及EOS GmbH的Alumide和CarbonMide。
使用上述的增材制造技术形成的物体由于例如在制造3D物体期间发生的高应力和/或应变而具有从物体的设计尺寸扭曲的倾向。例如,在LM过程期间,热应力和/或机械应力和/或应变可能由于在生成3D物体中使用的能源、诸如激光的高温度而出现。更特别地,高温度梯度可能由于在LM过程中使用的诸如金属合金粉末的粉末熔化而存在,并且这些高梯度可能在制造期间引起物体上的热应力和/或应变。另外,内部的机械应力和/或应变可能由于所使用特定的材料的性质而引起。当材料被能源扫描时,这些机械应力和/或应变可能包括例如被用于形成物体的材料的收缩或膨胀。
在物体上的高应力和/或应变可能造成物体的某些部分在构建期间形变,这可能造成失败或“崩溃”的构建、或不准确和/或有缺陷的物体。例如,如果在任何层的处理期间,正在制造的物体的位于下部的层的部分向上或向侧部弯曲或卷曲,在LM机器中的粉末涂布机可能击中该形变部分。
在增材制造期间使用物体支撑件
物体支撑件(本文中也称为“支撑件”)可用于将物体或物体的一部分保持就位,并且防止在构建过程期间物体的形变。一般地,“物体支撑件”是在例如基板、内部物体结构(例如,物体的另一部分)或外部物体结构(例如,处于与该物体相同的构建过程期间的正在制造的另一物体)和正在制造的物体之间形成连接的结构。物体支撑件可以是几乎能够随同物体制造的任何形状和尺寸。并且在增材制造期间,基于物体设计和所选择的增材制造过程,可以通过各种不同形状和尺寸的物体支撑件来支撑给定的物体。例如,美国临时专利申请61/816,313和PCT专利申请号PCT/EP2014/058484,它们每个的内容通过引用整体并入本文,描述了可以在增材制造过程期间使用“混合支撑件”。
物体支撑件可以通过将每个层限制到其经设计的尺寸来改善在增材制造后所得到的物体的精度。此外,物体支撑件可以将热量背离物体层而传导到支撑结构和/或基板中,以便减少由增材制造过程引起的热应力和应变。
然而,为了完成物体的制造,通常需要从物体中移除支撑件。用于移除支撑件的过程可能是耗时且困难的。特别地,与本文所述的用于移除支撑件的比较过程包括使用带锯、线切割机(诸如EDM技术)、钳子、锤子和凿子来将支撑件从物体断开。支撑件的这种断开可能需要来自钳子、锤子和凿子施加到支撑件的大力,并且也需要精度。
类似地,支撑件可能需要从用于构建物体的基板移除。特别地,在移除支撑件之后,基板可以重复使用,以用于构建不同的物体。将支撑件从基板移除,以及重新调整底板以便重新使用,使用比较过程也可能是繁琐的。
因此,本发明的实施例可以涉及支撑件和制造这种支撑件的方法,其减少从物体和/或基板移除支撑件的复杂性。在一些实施例中,本发明涉及基板和制造基板的方法,其减少将支撑件从基板移除的复杂性。
在一些实施例中,在此所描述的支撑件可以包括两个部分(例如第一部分和第二部分),该部分通过可拆卸耦合机构(例如螺钉机构、闩锁机构、滑动配合机构等)可拆卸地互相耦合。可拆卸耦合机构可以允许支撑件的第一部分和支撑件的第二部分相对容易地从彼此拆开。在一些示例中,支撑件的第一部分可以附接到物体,并且支撑件的第二部分可以附接到基板、物体的另一部分(例如水平地在不同的平面中)或者附接到处于与该物体相同的构建过程中构建的另一物体(诸如在单个3D打印运行期间构建多个物体)。支撑件的第一部分可以包括耦合机构的第一部分,并且支撑件的第二部分可以包括耦合机构的第二部分。耦合机构的第一部分和耦合机构的第二部分可以直接彼此耦合,例如其中耦合机构包括闩锁、或者具有公和母连接器耦合的一些其它的机构的地方。在一些实施例中,耦合机构是滑动机构,其中耦合机构的第一部分滑动到耦合机构的第二部分中。滑动耦合机构可以允许支撑件彼此相对地在一个方向(例如相对于物体构建的水平方向)上的运动,而防止在另一方向(例如相对于物体构建的竖直方向)上的运动。
在一些其它的实施例中,耦合机构的第一部分和耦合机构的第二部分可以经由耦合机构的第三部分彼此耦合。例如,耦合机构可以是形成在大体筒形的支撑件上的一组纹线(例如,螺纹线)。纹线可以存在于支撑件的第一部分和第二部分两者上,并且两个部分可以是分开的。耦合机构的第三部分可以是具有与支撑件的第一部分和第二部分互补的纹线的设备(例如螺母),该设备旋拧在支撑件的第一部分和第二部分周围。耦合机构的第三部分的尺寸可以被设置为以用于同时围绕支撑件的第一部分和第二部分两者的纹线中的一些纹线,以便将它们保持在一起。耦合机构的第三部分可以被上下旋转(例如,旋拧),以便仅包围例如支撑件的部分中的一个,以便分离支撑件的部分。
在一些其它实施例中,在此所描述的支撑件可以包括具有元件(扭矩施加部分)的支撑件,该元件允许将旋转力施加到支撑件。例如,扭矩施加部分可以类似于形成在支撑件上的螺母,该螺母具有与扳手互补的形状(例如,六边形,正方形等)。然后可以使用扳手与扭矩施加部分相互作用,以向支撑件施加旋转力。如发明人已经发现的,旋转力更容易地将支撑件从与其连接的物体和/或基板断开。在一些示例中,扭矩施加部分包括形成在支撑件中的孔。诸如金属销的物体继而能够插入到孔中并转动来将旋转力施加到支撑件。在一些实施例中,支撑件的某些部分可以被弱化(例如由较少的材料制成),使得将力施加到扭矩施加部分造成支撑件在支撑件的弱化部分更加容易断开。
在一些实施例中,在此所描述的基板可以包括本体部分和配合到基板的本体部分中的插入件。支撑件可以被配置为附接到与基板的本体部分相对的插入件。例如,插入件可以包括扭矩施加部分(类似于关于支撑件所描述的),并且本体部分可以包括一定数目的被成形用于接纳插入件的凹部。通过将旋转力施加到插入件的扭矩施加部分,支撑件可以从本体部分移除。例如,插入件可以包括像螺栓或螺钉一样的具有头部的元件,该头部具有与扳手互补的形状(例如,六边形、方形等)。本体部分可以具有一定数目的通过基板的孔,该孔允许插入件配合到本体部分中。在一些实施例中,插入件和本体部分包括在各自上的互补的纹线,因此插入件能够被旋拧到本体部分中,以防止它们在运动期间掉出。
在一些其它实施例中,插入件可以是滑动机构的一部分,其中插入件是滑动机构的第一部分,该第一部分滑动到基板的本体中,该本体包括滑动机构的第二部分,该第二部分被成形为与插入件互补,以便接纳插入件。滑动机构可以允许插入件在一个方向(例如相对于物体构建的水平方向,诸如直线地或者旋转地)上运动,而防止在另一方向(例如相对于物体构建的竖直方向)上的运动。例如,插入件可以具有形状(诸如梯形),并且所述构建板的本体部分可以具有带有接纳插入件的类似形状的切入部或整体。
图1图示了在此所描述的支撑件的各种示例,特别地,第一支撑件105、第二支撑件110、第三支撑件115和第四支撑件120。支撑件105-120中的每个均被显示为将物体130支撑在基板140上。如在图1中所图示的,支撑件105-120中的每个均是不同的类型。此外,虽然支撑件在图1中被显示为笔直,但是各自可以具有适当的非笔直(例如成角度、弯曲)的形状,如在图3中所示。然而,这可以仅仅用于图示的目的。在一些示例中,对于给定过程的给定构建,可以使用仅一个类型的支撑件。
所示的第一支撑件105是可以被大体称为可拆卸耦合类型的支撑件的一个示例,并且更具体地称为纹线类型的支撑件。第一支撑件105包括第一部分152和第二部分154。第一部分152和第二部分154可以各自具有基本上筒形的形状。第一部分152和第二部分154中的每个的直径可以基本上相等。此外,给子的直径可以对于不同物体的不同构建而不同。例如,在一些示例中可以使用较少数目的较大直径的支撑件。在一些示例中,可以使用较多数目的较小直径的支撑件。
第一部分152和第二部分154中的每个可以具有在其上形成的外部的(公)纹线(类似于螺钉的纹线)。在一些示例中,在第一部分152和第二部分154中的每个上的纹线的方向(例如右旋或左旋)可以形成在相同的方向上,或者在一些示例中形成在相反的方向上。在3D打印期间,第一部分152和第二部分154可以被形成为分离的部分。因此,可以在第一部分152和第二部分154之间形成空间。在一些实施例中,可能不可行的是,在第一部分152和第二部分154之间3D打印一个实际的空间。因此,可能存在将第一部分152和第二部分154连接的某种材料,然而,该材料可以被3D打印机最小化为物理上可能的那样,以便于减小用于将第一部分152和第二部分154分离所需的力。
第一支撑件105还可以包括耦合部分156。耦合部分156可以包括螺母或者像螺母一样的具有内部(母)纹线的部件。耦合部分156可以具有内部的通道(例如腔),该通道具有内部纹线,该内部纹线具有类似于第一部分152和第二部分154的直径,以便于能够接纳第一部分152和第二部分154并与第一部分和第二部分耦合。因此,耦合部分156的纹线可以与第一部分152和第二部分154的纹线互补。耦合部分156可以被配置为如图1所示将第一部分152和第二部分154接合,将第一部分152和第二部分154两者如所示那样保持在一起。此外,当旋转时,由于互补的纹线,耦合部分156可以将第一部分152和第二部分154上下滑动。因此,耦合部分156能够沿着第一部分152和第二部分154运动,并且从第一部分152和第二部分154中的至少一个解除接合,从而所述部分是分离的,并且第一支撑件105如图2所示解耦到两个部件中。因此,耦合部分156可拆卸地将第一部分152耦合到第二部分154。耦合部分156以及第一部分152和第二部分154的纹线可以共同地形成可拆卸的耦合机构。
应当注意的是,尽管第一部分152和第二部分154以及耦合部分156之间的断开被示出在第一支撑件105的中部附近,但是在一些实施例中,断开和耦合部分156可以在沿着第一支撑件105的任何地方。此外,第一支撑件105可以存在两个以上的分离部分、以及因此将分离部分保持在一起的附加的耦合部分。
耦合部分156也可以在3D打印期间与第一部分152和第二部分154分离地形成,然而,在打印物体期间,所有部分可以在接合配置中一起打印。因此,在耦合部分156的纹线以及第一部分152和第二部分154的纹线之间可以存在空间。在一些实施例中,在纹线之间3D打印实际空间可能是不可行的。因此,可能存在将耦合部分156连接到第一部分152和第二部分154的某种材料,然而,可以通过3D打印机如在物理上可能的那样最小化该材料,以便减少沿着第一部分152和第二部分154旋转和移动耦合部分156所需的力。
所示的第二支撑件110是可以被称为扭矩施加支撑件的一个示例。第二支撑件110包括本体162。本体162可以具有基本上筒形的、矩形的或者多边形的形状。本体162的直径可以对于不同物体的不同构建而不同。例如,在一些示例中可以较少数目的较大直径的支撑件。在一些示例中,较多数目的较小直径的支撑件可以被用在一些其它的示例中。
第二支撑件110还包括扭矩施加部分164。在这个示例中,扭矩施加部分成形在本体162上。扭矩施加部分164的尺寸可以设置为并且被成形为:允许扳手、钳子或者其它适当的工具围绕扭矩施加部分164或者插入到该扭矩施加部分中,并向扭矩施加部分164施加旋转力。例如,扭矩施加部分164可以具有像六边形的螺母一样的形状、矩形的形状等。在另一示例中,扭矩施加部分可以是在本体162中的孔,该孔的尺寸被设置为并被成形为:允许笔、螺丝刀或者其它适当的工具插入到扭矩施加部分中,并向扭矩施加部分施加旋转力。例如,扭矩施加部分可以具有圆形的形状、六边形的形状、矩形的形状等。在3D打印期间,扭矩施加部分164和本体162可以被成形为单个的、经结合的部件。
本体162可以包括如图3所示的一个或多个弱化点166。所述弱化点166可以是这样的点:其中本体162的直径基本上被减小,或者本体162的部分材料被移除(例如弱化部分166可以包括一定数目的比彼此间隔开的本体162更小的支撑件)。因此,当旋转力施加到扭矩施加部分164(其也将旋转力给予到本体162上)时,弱化点166可以在本体162的其余部分断开之前断开。
应该注意的是,尽管扭矩施加部分164被显示在第二支撑件110的本体162的中部附近,但在一些实施例中,扭矩施加部分164可以被形成在沿着本体162的任何部分。例如,扭矩施加部分164可以被形成在如图3所示的弱化点166的附近。此外,可以在本体162上成形一个以上的扭矩施加部分164。
所示的第三支撑件115是可以被一般称为可拆卸耦合的类型的支撑件的一个示例,并且更具体地称为销孔应用支撑件。第三支撑件115包括第一部分172和第二部分174。第一部分172和第二部分174可以给子具有基本上筒形、矩形或者多边形的形状。第一部分172和第二部分174中的每个的直径可以基本上相等。此外,各自的直径可以对于不同物体的不同构建而不同。例如,在一些示例中使用较少数目的较大直径的支撑件。在一些示例中,可以使用较多数目的较小直径的支撑件。
如图4A和4B中所示,支撑件的第一部分172可以包括耦合机构176的第一部件,并且支撑件的第二部分可以包括耦合机构178的第二部件。所示的耦合机构176的第一部件和耦合机构178的第二部件中各自包括一个或多个互补的孔179,该孔179可以具有圆形的形状、六边形的形状、矩形的形状等。如图4B所示,耦合机构176的第一部件和耦合机构178的第二部件可以具有互补的形状(例如公-母类型的连接器),从而第一部件176被配置为滑动到第二部件178中并与第二部件178接合(或者反之亦然)。在一些实施例中,第一部件176和第二部件178可以基本上被防止在除了第一部件176滑动到第二部件178中的方向的所有的方向上运动。此外,第一部件176和第二部件178可以被配置为使得当被接合时,每个的孔179对齐。此外,第三支撑件115可以包括一个或多个销177,或者其它物体被配置为插入到孔179中,以将第一部分172和第二部分174锁定,以便防止彼此之间的运动。因此,销177可以被移除,以允许第一部分172和第二部分174分离。
在3D打印期间,第一部分172、第二部分174和销177可以被成形为分离的部分,然而在打印物体期间,所有的部分可以在接合配置中一起打印。因此,可以在第一部分172、第二部分174和销177之间形成空间。在一些实施例中,在第一部分172、第二部分174和销177之间3D打印一个实际的空间可能是不可行的。因此,可能存在将第一部分172、第二部分174和销177连接的某种材料,然而,可以通过3D打印机如在物理上可能的那样最小化该材料,以便减小分离第一部分172、第二部分174和销177所需的力。
应该注意的是,虽然耦合机构176的第一部件和耦合机构178的第二部件被显示在第三支撑件115的中部附近,但是在一些实施例中,耦合机构176的第一部件和耦合机构178的第二部件可以被成形在沿着第三支撑件115的任何地方。此外,第三支撑件115可以存在两个以上的分离部分,以及因此将分离部分保持在一起的附加耦合部分。
所示的第四支撑件120(也如图5所示)是可以被大体称为可拆卸耦合类型的支撑件的一个示例,并且更具体地称为滑动耦合类型的支撑件。第四支撑件120包括第一部分182和第二部分184。第一部分182和第二部分184可以给子具有基本上筒形、锥形、矩形、多边形或者任何其它规则的或者不规则的形状。第一部分182和第二部分184中的每个的直径可以基本上相等。此外,各自的直径可以对于不同物体的不同构建而不同。例如,在一些示例中可以使用较少数目的较大直径的支撑件。在一些其它的示例中,可以使用较多数目的较小直径的支撑件。
支撑件的第一部分182可以包括耦合机构186的第一部件,并且支撑件的第二部分184可以包括耦合机构188的第二部件。所示的耦合机构186的第一部件包括腔191(例如孔),腔191具有围绕腔191的壁。例如,耦合机构186的第一部件包括上壁192、下壁194和侧壁196。上壁192可以包括开口198。所示的开口198仅沿着腔191的部分延伸。然而,在一些示例中,开口198可以完全沿着腔191延伸。腔191可以是任何适当的形状,诸如矩形、钻石形、圆形、多边形等。耦合机构186的第一部件可以被形成在第一部分182的端部上。
耦合机构188的第二部件可以是固体形状,该固体形状被配置为配合到腔191中并且具有与其互补的形状。例如,耦合机构188的第二部件可以具有矩形、钻石形、圆形、多边形等。耦合机构188的第二部件可以被形成在第二部分184的端部上。耦合机构188的第二部件可以被配置为滑动到腔191中。此外,第二部分182的剩余的部分可以被配置为延伸穿过开口198。上壁192可以防止耦合机构188的第二部件以及因此第二部分184向着上壁192的方向运动(例如相对于物体构建竖直向上)。类似地,壁194-196防止在它们的相应的方向上的运动。因此,当耦合机构188的第二部件滑动到耦合机构186的第一部件中时,第一部分182和第二部分184被耦合,并且除了在腔191的方向滑动之外,不能够相对于彼此运动。耦合机构188的第二部分能够然后从耦合机构186的第一部分中滑动出来,因此将第一部分182和第二部分184解耦,因而它们能够相对于彼此运动。
第一部分182和第二部分184在3D打印期间可以被成形为分离的部分,然而在打印物体期间,所有的部分可以在接合配置中被一起打印。因此,可以在第一部分182和第二部分184之间形成空间。在一些实施例中,,在第一部分182和第二部分184之间3D打印一个实际的空间可能是不可行的。因此,可以存在将第一部分182和第二部分184连接的某种材料,然而,该材料可以被3D打印机最小化为在物理上可能的那样,以便于减小将第一部分182和第二部分184分离所需的力。
应该注意的是,虽然耦合机构186的第一部件和耦合机构188的第二部件被显示在第四支撑件120的中部附近,但是在一些实施例中,耦合机构186的第一部件和耦合机构188的第二部件可以在沿着第四支撑件120的任何地方。此外,第四支撑件120可以存在两个以上的分离部分以及因此将所述分离部分保持在一起的附加的耦合部分。
图6A-6B图示了基板600的示例,该基板包括本体部分605和配合到本体部分605中的插入件610。特别地,插入件610各自包括扭矩施加部分612和杆部分614。所示的扭矩施加部分612位于插入件610中的每个的端部处。然而,扭矩施加部分612可以被放置在沿着杆部分614的任何适当位置。
扭矩施加部分612的尺寸可以被设置为并被成形为:允许扳手、钳子或者其它适当的工具围绕扭矩施加部分612,并且向扭矩施加部分612施加旋转力。例如,扭矩施加部分612可以具有像六边形螺母一样的形状、矩形的形状等。在3D打印或者其它类型的传统的制造期间,扭矩施加部分612和杆部分614可以被成形为单个的、结合的部件。备选地,扭矩施加部分612和杆部分614可以被分离地成形,并且使用耦合部分来耦合。在一些实施方式中,施加部分612和杆部分614可以包括外部纹线,该外部纹线允许使用具有内部纹线的筒形的耦合部分来将施加部分612和杆部分614结合。
杆部分614可以具有基本上筒形的、矩形的或者多边形的形状。类似地,本体部分605可以包括多个腔620(例如孔),其具有基本上圆的形状,并且与尺寸被设置为与杆部分614的直径互补,以便允许杆部分614配合到腔620中并旋转。
在一些示例中,杆部分614可以具有在其上形成的外部的(公)纹线(类似于螺钉的纹线)。插入件610中的每个在其杆部分614上可以具有相同方向(例如右旋或者左旋)的纹线。在这样的示例中,腔620可以具有与所述杆部分614的纹线互补的内部的(母)纹线。因此,所述杆部分614可以被旋拧到腔620中,以用于将插入件610与所述本体部分605接合。
本体部分605还可以具有在与腔620相同的区域中的每个区域中的切口625(例如,沿着与腔620的中心相同的轴线)。切口625还可以具有基本上圆形或其它适当的形状。切口625中的每个均可以具有足够大的直径,以允许扭矩施加部分612配合到切口625中。直径还可以足够大,以允许工具与扭矩施加部分612相互作用,以便将旋转力施加到扭矩施加部分612。在本体部分605中的切口625的深度可以相比于扭矩施加部分612(和杆部分614在扭矩施加部分612外的任何部分)的深度相同或更大,以便当插入件610插入到本体部分605中时,防止插入件610从本体部分605突出。因此,腔620可以沿着本体部分605的深度的其余部分成形。此外,杆部分614的尺寸可以被设置为,使得当插入件610完全插入到本体部分605中时,它基本上与本体部分605齐平。
本体部分605和插入件610可以在构建(3D打印)物体之前被成形。插入件610可以被插入到本体部分605中,并且物体构建在基板600的顶部上。支撑件(例如任何支撑件类型,包括传统的支撑件)可以完全或部分地构建在插入件610的部分的顶部上,该部分暴露在基板600的顶部上。支撑件可以被构建具有或者没有一个或多个弱化点。在物体被构建之后,扭矩能够被施加(例如使用适当的工具)到具有构建在其上的支撑件的每个插入件610的扭矩施加部分612。施加扭矩造成插入件610旋转,并且因此插入件610可以从支撑件断开,或者支撑件本身可以旋转并且在诸如沿着支撑件的弱化点的另一点处断开。因此,基板600能够容易地从支撑件分离。此外,在一些示例中,插入件610可以使用容易制造的新的插入件610更换,并且基板600被重新使用,而不需要昂贵的重新调整。
图7A-7C图示了基板700的示例,该基板包括本体部分705和配合到本体部分705中的插入件710。插入件710可以被成形作为具有特别的形状、诸如矩形、钻石形、圆形、多边形等的固体本体。例如,插入件710被示出为具有梯形的形状。所示的插入件710是基本上笔直的块,沿着块的长度,该块具有梯形的形状。应该注意的是,插入件710可以备选地是如图7B所示具有特别形状的弯曲块(例如能够沿着具有固定半径的圆弧旋转的弯曲)。
本体部分705可以包括一个或多个腔720(例如孔),腔720具有围绕并且限定腔720的壁。例如,每个腔720可以被上壁722、下壁724和侧壁726围绕。上壁722可以包括开口728,该开口728使已插入的插入件710的上部分暴露。腔720可以是任何适当的形状,例如矩形、钻石形、梯形、圆形、多边形等,其与有待插入到腔720中的插入件710的形状互补。
插入件710和腔720可以被适当地成形并且尺寸被设置为,使得当被插入到腔720中时,插入件710的上部分基本上与本体部分705的顶部齐平。在一些示例中,如图7B所示,多个较小的插入件710可以被插入到相同的腔720中。因此,当插入件710被更换时,较小量的材料可能需要被更换。
通过将插入件720(例如相对于物体的构建水平地)滑动到腔720中,插入件710可以被插入到腔720中。上壁722可以防止插入件710在上壁722的方向运动(例如相对于物体的构建竖直向上)。类似地,壁724-726防止在它们的相应的方向上的运动。因此,当插入件710滑动(例如对于笔直的插入件直线地、并且对于弯曲的插入件旋转地)到腔720中时,除了对于沿着腔720的长度的滑动之外,插入件710不能够运动。
本体部分705和插入件710可以在构建(3D打印)物体之前被成形。插入件710可以被插入到本体部分705中,并且物体构建在基板700的顶部上。支撑件(例如任何支撑件类型,包括传统的支撑件)可以被构建在插入件710的部分的顶部上,该部分暴露在基板700的顶部上。支撑件可以构建有或者没有一个或多个弱化点。在物体被构建之后,如图7C中所示,具有附接的支撑件的插入件710能够从本体部分705滑动出来,以便将物体和支撑件从本体部分705解除接合。此外,在一些示例中,插入件710能够使用容易制造的新插入件710更换,并且基板700能够被重新使用,而不需要昂贵的重新调整。
图8是根据在此所描述的示例、用于使用支撑件和基板制造物体的过程800的示例。在块805处,提供基板。此外,在块810处,提供用于物体的支撑件,该支撑件至少部分地支撑物体。支撑件在第一端部处与物体的第一部分耦合,并且在第二端部处与物体的第二部分、基板和另一物体中的一个耦合。继续地,在块815处,耦合元件的第一部分被提供在支撑件和基板中的至少一个上。耦合元件可以包括耦合元件的第一部分和耦合元件的第二部分。耦合元件的第一部分可以可拆卸地耦合到耦合元件的第二部分。此外,在块820处,耦合元件的第二部分被提供在支撑件和基板中的至少一个上。
图9是根据在此所描述的示例、用于使用支撑件和基板制造物体的过程900的示例。在块905处,提供基板。此外,在块910处,提供用于物体的支撑件,该支撑件至少部分地支撑物体。支撑件在第一端部处与物体的第一部分耦合,并且在第二端部处与物体的第二部分、基板和另一物体中的一个耦合。继续地,在块915处,扭矩施加部分被提供在支撑件和基板中的至少一个上。扭矩施加部分允许施加旋转力以便于将支撑件的至少一部分从物体、所述其它物体、基板中的至少一个断开。
图10是根据在此所描述的示例、用于使用支撑件和基板制造物体的过程1000的示例。在块1005处,设计用于制造的物体。此外,在块1010处,选择基板以用于构建物体。基板可以是在此所描述的类型中的任何类型,或者标准基板(取决于所使用的支撑件的类型)。继续地,在块1015处,将支撑件放置在物体的设计中,以供在构建物体时使用。支撑件可以是在此所描述的类型中的任何类型,或者标准支撑件(取决于所使用的基板的类型)。接下来,在块1020处,使用增材制造装置(例如3D打印机),在具有支撑件的基板上作为单个构建来制造物体。继续地,在块1025处,基于所使用的支撑件或者基板的类型,使用在此所描述的技术,将支撑件的部分从基板和物体中的至少一个分离(例如被施加到支撑件或者插入件的旋转、将支撑件的部分从彼此解耦、将插入件从基板滑动出等)。
应该注意的是,过程800、900和1000的其它实施例可以包括附加的块、移除块、可以具有以不同的方式排序的块、或者其任何组合。
在此所描述的实施例使用增材制造有利地改善物体的制造。特别地,支撑件、基板和技术允许用于物体的支撑件被快速和有效地移除。
图11描绘了示例的增材制造装置1100,其可以被配置为实施诸如SLA、LS、DMLS、EBM和LM和本领域已知的其它技术的增材制造技术,以便利用关于图1至图7而在此所描述的的支撑件和/或基板,例如使用图8-图10中的一个或多个所描述的过程,或者按照在此描述的实施例中的一个或多个实施例中的其它的支撑件和/或基板和过程,来制造物体。
增材制造装置1100包括控制器1110,该控制器与发射器1120、扫描器1130和平台1140进行数据通信。
控制器1110可以例如是具有软件的计算机系统,以用于操作增材制造装置1100。在其它的实施例中,控制器1110可以被实现为通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑设备、离散门或晶体管逻辑、离散硬件部件或如本领域技术人员已知的设计用于执行在此所描述的功能的其任何适当的组合。
在图11中所描绘的控制器1110和发射器1120、扫描器1130和平台1140之间数据通信的线仅仅是代表性的。
控制器1110可以控制发射器1120。例如,控制器1110可以将数据信号发送到发射器1120,以便于给发射器通电和断电。附加地,控制器1110可以控制发射器1120的输出功率。在一些实施例中,控制器1110可以控制在相同的增材制造装置1100中的多个发射器1120(未示出)。在一些实施例中,发射器1120可以附加地将数据发送回到所述控制器1110。例如,发射器1120可以发送诸如输出功率、功率使用、温度和其它的如在本领域中已知的操作参数的操作参数。发射器1120的操作参数可以被控制器1110用于另外控制或者优化物体1150的处理,例如,按照在此所描述的实施例,在所选择的点处利用支撑件来处理物体。
控制器1110也可以控制扫描器1130。例如,控制器1110可以使得对光学元件1134进行选择、操纵、铰接、接合或者其它的使用。例如,控制器1110可以使聚焦透镜元件移动,以影响所得到的光束1136的尺寸或所得到的束斑1138的尺寸。此外,控制器1110可以使反射镜或相似的光学元件将所得到的光束1136重定向到不同的方向上和物体1150的不同位置上。作为又另一示例,甚至当发射器1120激活时,控制器1110可以引起梭或类似的光学元件遮蔽所得到的光束1136。
在一些实施例中,控制器1110可以接收从扫描器1130返回的数据。例如,扫描器1130可以发送操作参数,例如输出功率、功率使用、温度、光束大小选择、光束功率、光束方向、束斑位置、光学元件的位置、光学元件的状况和其它的如在本领域中已知的操作参数。发射器1120的操作参数可以被控制器1110使用,以另外地控制或者优化物体1150的处理。在一些实施例中,控制器1110可以是扫描器1130的一部分。
控制器1110也可以控制平台1140。例如,控制器1110可以使得平台1140在一个或多个维度中运动(例如上下地或者从一边到另一边地)。控制器1110可以从平台1140接收诸如位置、温度、重量、接近和其它的如本领域技术人员已知的操作数据。控制器1110可以使得平台1140在物体1150增量中一次一层地运动,使得扫描器1130能够处理材料的一层以便添加到物体1150。物体1150的层可以在三维设计图(例如3D CAD)中或者在一个或多个二维横截面图(例如2D CAD)中被定义。
在一些实施例中,控制器1110可以存储或者以其它方式使用诸如待被光学增材制造装置1100制造的物体的3D CAD的物体设计数据。例如,控制器1110可以是计算机系统的一部分,其还包括诸如CAD软件的物体设计软件和硬件。以这种方式,控制器1110可以使用物体设计数据,以便于控制发射器1120、扫描器1130和平台1140和制造物体1150。在其它的实施例中,控制器1110可以被通信路径连接到诸如图11中所示的数据库1160的设计数据的知识库、数据库等。物体设计数据可以包括物体的设计,按照在此所描述的实施例,该物体具有在所选择的点处的支撑件。
在一些实施例中,控制器1110可以从例如图12的计算设备1200接收物体的设计数据。以这种方式,控制器1110可以引导具有根据在此描述的实施例的支撑件的物体的增材制造。
发射器1120可以例如是激光发射器,诸如二极管激光器、脉冲激光器或纤维激光器、或其它类型的被本领域技术人员已知的激光器。在一些实施例中,发射器1120可以是紫外线激光器、二氧化碳激光器或镱激光器。发射器1120可以是其它类型的如本领域技术人员已知的放射的发射器。
发射器1120发射光束,例如激光束1122,其继而被扫描器1130处理。值得注意的是,尽管图11中未示出,诸如反射镜、透镜、棱镜、滤光器等的光学元件可以位于发射器1120和扫描器1130之间。
在一些实施例中,发射器1120可以是扫描器1130的一部分。
扫描器1130可以包括光学元件1134。例如,光学元件可以包括透镜、反射镜、滤光器、分离器、棱镜、扩散器、窗口、置换器以及本领域已知的其它元件。基于被扫描器1130或者控制器1110接收到的数据,光学元件1134可以固定或可移动。
扫描器1130也可以包括传感器(未示出),其在扫描器1130操作期间感测各种操作参数。一般而言,传感器可以向扫描器1130和/或控制器1110提供数据反馈,以便于改善光学的增材制造装置1100的校准和制造表现。
例如,扫描器1130可以包括位置传感器、热传感器、接近传感器等。附加地,扫描器1130可以包括一个或多个图像传感器。图像传感器可以被用于向光学增材制造装置1100的操作员提供视觉反馈。图像传感器还可以例如用于分析入射到被制造物体上的束斑的尺寸、焦点和位置,以用于校准和精确追踪。此外,图像传感器可以对热敏感(例如热图像传感器),并且用于确定位于下面的材料(例如树脂)在它正在被处理时的状态。例如,热图像传感器可以测量在束斑周围的局部加热和/或正在处理的材料的固化的水平。
平台1140用作移动的基部,以用于物体1150的制造可,该基部可以是定制鞋类。如上所述,平台1140可以在一个或多个方向上移动并且被诸如控制器1110的控制器控制。例如,在制造物体1150期间,平台1140可以被控制器1110控制,并且一次移动物体1150的一层或者一个横截面。
平台1140可以包括传感器,该传感器确定操作数据,并且将该数据传输给控制器1110或者光学增材制造装置1100的其它部件。
平台1140可以被包含制造材料(例如光敏树脂)的容器或者器皿(未示出)封闭,该制造材料被由扫描器1130引导的入射的束斑处理。例如,扫描器1130可以将光束引导到光敏的树脂的一层之上,其使得所述树脂固化并且形成物体1150的永久的层。
平台1140可以由具有足够强度和弹性的任何合适的材料制成,以用作诸如物体1150的物体的制造基部。
除了在平台1140周围的容器或者器皿,增材制造装置1100还可以包括制造材料分配元件。例如,在物体1150的每个相应的层被扫描器1130的动作完成之后,元件可以分配制造材料的新层。
物体1150由增材制造装置1100使用诸如SLA、SLS、SLM和其它被本领域技术人员已知的方法的各种方法形成。
图12描绘了示例的计算设备1200,例如可以被用于实施关于图8-图10所述的过程或其他过程中的一个或多个过程,以用于使用根据在此所描述的实施例中的一个或多个实施例的支撑件来制造物体。
计算设备1200包括处理器1210。处理器1210与各种计算机部件进行数据通信。这些部件可以包括存储器1220、输入设备1230和输出设备1240。在一些实施例中,处理器也可以与网络接口卡1260通信。尽管被单独地描述,但是应当领会的是,关于计算设备1200所描述的功能块不需要是单独的结构元件。例如,处理器1210和网络接口卡1260可以被实现在单个芯片或板中。
处理器1210可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑设备、离散门或晶体管逻辑、离散硬件部件或其设计用于执行在此所描述的功能的任何适当的组合。处理器也可以实施为计算设备的组合,例如DSP和一个微处理器的组合、多个微处理器的组合、一个或多个微处理器结合DSP核芯的组合,或者任何其它的这样的配置。
在一些实施例中,处理器1210可以是专业化的处理器,该处理器被配置为实施关于图8-图10所描述的过程中的一个或多个过程、或者用于使用依据在此所描述的实施例中的一个或多个实施例的支撑件来制造物体的其它过程。
处理器1210经由一个或多个数据总线可以被耦合,以从存储器1220读取信息或者将信息写入到该存储器1220。处理器可以附加地或者备选地包含诸如处理器寄存器的存储器。存储器1220可以包括处理器缓存,该缓存包括多级分级缓存,在其中,不同级具有不同容量和访问速度。存储器1220还可以包括随机访问存储器(RAM)、其它的易失性的存储设备或者非易失性的存储设备。存储器可以包括硬盘驱动器、诸如光碟(CD)或数字视频盘(DVD)的光盘、闪存、软盘、磁带、Zip驱动器、USB驱动器和如本领域已知的其它存储器。
关于图8-图10所描述的一个或多个过程或者使用根据在此所描述的实施例中的一个或多个的支撑件来制造物体的其它过程,可以作为一套指令存储在存储器1220中,并且当被处理器执行时使得处理器实施该过程。
处理器1210也可以耦合到输入设备1230和输出设备1240,以用于分别从计算设备1200的用户接收输入和提供输出给该用户。适当的输入设备包括但不限于键盘、滚球、按钮、键、开关、定点设备、鼠标、操纵杆、遥控器、红外检测器、语音识别系统、条形码阅读器、扫描器、摄像机(可能与视频处理软件耦合,以用于例如检测手部姿势或面部姿势)、运动检测器、麦克风(可能耦合到音频处理软件以例如检测语音命令)或能够将信息从用户传输到计算设备的其它设备。输入设备也可以采取与显示器相关联的触摸屏的形式,在这种情况中,用户通过触摸该屏幕来响应显示器上的提示。用户可以通过诸如键盘或触摸屏的输入设备来输入文本信息。适当的输出设备包括但不限于:包括显示器和打印机的视觉输出设备、包括扬声器、头戴式耳机、耳戴式耳机和报警器的音频输出设备,、增材制造设备和触觉输出设备。
处理器1210还可以耦合到网络接口卡1260。网络接口卡1260准备被处理器1210生成的数据,以用于根据一个或多个数据传输协议经由网络传输。网络接口卡1260也可以被配置为对经由网络所接收到的数据解码。在一些实施例中,网络接口卡1260可以包括发报机、接收器或者两者。取决于特定的实施例,发报机和接收器可以是单个集成的部件,或者它们可以是两个分离的部件。网络接口卡1260可以被实现为通用处理器、DSP、ASIC、FPGA或其它可编程逻辑设备、离散门或晶体管逻辑、离散硬件部件或其设计用于执行在此所描述的功能的任何适当的组合。
在此公开的本发明可以被实施为使用标准程序或者工程技术以生产软件、固件、硬件或者其任何组合的方法、装置或者制品。在此使用的术语“制品”是指在硬件或者诸如光学存储设备的非暂时的计算机可读的介质和易失性的或非易失性的存储设备或者诸如信号、载波等的暂时的计算机可读的介质中实施的代码或逻辑。这样的硬件可以包括但不限于FPGA、ASIC、复杂可编程逻辑设备(CPLD)、可编程逻辑阵列(PLA)、微处理器或其它类似的处理设备。
本领域技术人员将领会的是,在不脱离广泛描述的本发明的精神或范围的情况下,可以对本发明做出许多变化和/或修改。上述的实施例因此在所有方面被认为是说明性的和非限制性的。

Claims (18)

1.一种使用增材制造技术来制造物体(130)的方法,所述方法包括:
提供基板(600),所述基板包括本体部分(605)和至少一个插入件,所述插入件(610)包括扭矩施加部分(612);
使用增材制造技术来为所述物体(130)构建支撑件,所述支撑件被配置为在所述物体的增材制造期间至少部分地支撑所述物体,其中所述支撑件被配置为在第一端部与所述物体的第一部分耦合,以及在第二端部与所述至少一个插入件耦合,所述支撑件被构建在所述插入件的顶部之上,仅与所述插入件的顶表面接触;
使用增材制造技术来构建所述物体;
将旋转力施加到所述扭矩施加部分以使所述支撑件的至少一部分从所述物体断开,或使所述插入件从所述支撑件断开。
2.根据权利要求1所述的方法,其中所述插入件还包括杆部分(614)。
3.根据权利要求2所述的方法,其中所述扭矩施加部分和所述杆部分被形成为单个的、经结合的部件。
4.根据权利要求3所述的方法,其中所述本体部分包括至少一个腔,所述至少一个腔具有尺寸被设置为与所述杆部分的直径互补的直径。
5.根据权利要求4所述的方法,其中所述至少一个腔被配置为允许所述杆部分在所述至少一个腔内旋转。
6.根据权利要求5所述的方法,其中所述杆部分包括形成在外表面上的纹线,并且其中所述至少一个腔包括在内表面上的互补的纹线。
7.根据权利要求6所述的方法,其中所述杆部分被配置为旋拧到所述至少一个腔中,以将所述插入件与所述本体部分接合。
8.根据权利要求4所述的方法,其中所述本体部分还包括沿着与所述至少一个腔的中心相同的轴线的切口。
9.根据权利要求8所述的方法,其中所述切口具有足以配合在所述切口内的所述扭矩施加部分的直径。
10.根据权利要求9所述的方法,其中所述切口的直径还足以允许工具与所述扭矩施加部分相互作用。
11.根据权利要求1所述的方法,其中所述本体部分和所述插入件被配置为用于在增材制造设备内定位,并且其中所述增材制造设备被配置为在所述插入件暴露于所述基板的顶部之上的部分上构建所述支撑件。
12.根据权利要求1所述的方法,其中所述插入件被配置为在所述插入件暴露于所述基板的顶部之上的部分处从所述支撑件断开。
13.根据权利要求1所述的方法,其中所述支撑件被配置为:通过提供散热器功能、防扭曲功能和水平支撑功能中的至少一项来至少部分地支撑所述物体。
14.根据权利要求1所述的方法,还包括作为单个增材制造过程的一部分来构建所述支撑件、扭矩施加部分和物体。
15.根据权利要求1所述的方法,其中所述基板的所述本体包括至少一个孔,所述孔包括第一纹线部分,其中所述至少一个插入件包括螺栓,所述螺栓具有与所述第一纹线部分互补的第二纹线部分,并且其中所述至少一个插入件被配置为配合到所述至少一个孔中。
16.根据权利要求1所述的方法,其中所述至少一个插入件包括螺栓和帽。
17.根据权利要求1所述的方法,还包括在所述支撑件上提供弱化点,在所述弱化点处,所述支撑件被配置为当施加所述旋转力时断开。
18.根据权利要求1所述的方法,其中所述扭矩施加部分包括被配置为接纳旋转力施加物体的螺母和开口中的至少一个。
CN201680027984.XA 2015-04-03 2016-04-01 使用增材制造技术来制造物体的方法 Active CN107635751B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562142695P 2015-04-03 2015-04-03
US62/142,695 2015-04-03
PCT/US2016/025538 WO2016161276A1 (en) 2015-04-03 2016-04-01 Support structures in additive manufacturing

Publications (2)

Publication Number Publication Date
CN107635751A CN107635751A (zh) 2018-01-26
CN107635751B true CN107635751B (zh) 2020-07-28

Family

ID=55795183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680027984.XA Active CN107635751B (zh) 2015-04-03 2016-04-01 使用增材制造技术来制造物体的方法

Country Status (4)

Country Link
US (1) US10843412B2 (zh)
EP (1) EP3277484B1 (zh)
CN (1) CN107635751B (zh)
WO (1) WO2016161276A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3368311B1 (en) 2015-10-30 2022-09-14 Seurat Technologies, Inc. Additive manufacturing system
JP2017094540A (ja) * 2015-11-19 2017-06-01 ナブテスコ株式会社 三次元造形装置、三次元造形方法、プログラムおよび記録媒体
EP3411170A4 (en) * 2016-01-28 2020-02-12 Seurat Technologies, Inc. GENERATIVE PRODUCTION, SYSTEM AND METHOD FOR SPACIAL HEAT TREATMENT
US10384389B2 (en) 2016-03-08 2019-08-20 Beehex, Inc. Apparatus for performing three-dimensional printing
US10349663B2 (en) 2016-07-21 2019-07-16 Beehex Inc. System, apparatus and method for customizing and generating a 3D printed food item
US10178868B2 (en) 2016-07-21 2019-01-15 BeeHex, LLC 3D-print system with integrated CNC robot and automatic self-cleaning mechanism
US10286451B2 (en) * 2016-11-02 2019-05-14 General Electric Company Build plate for additive manufacturing systems
WO2018123023A1 (ja) * 2016-12-28 2018-07-05 三菱電機株式会社 積層造形支援装置、積層造形支援方法、および積層造形支援プログラム
DE102017200152A1 (de) * 2017-01-09 2018-07-12 Ford Global Technologies, Llc Additives Fertigungsverfahren
US20180361896A1 (en) * 2017-06-15 2018-12-20 GM Global Technology Operations LLC Seat support assembly formed by additive manufacturing
DE102017115989A1 (de) * 2017-07-17 2019-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur additiven Fertigung sowie Substrateinheit-System
EP3511164A1 (en) * 2018-01-16 2019-07-17 Siemens Aktiengesellschaft Support structure for three-dimensional printing
US10864602B2 (en) * 2018-02-06 2020-12-15 Warsaw Orthopedic, Inc. System and method of manufacture for spinal implant
US11117329B2 (en) 2018-06-26 2021-09-14 General Electric Company Additively manufactured build assemblies having reduced distortion and residual stress
US10571377B2 (en) * 2018-07-10 2020-02-25 Delavan Inc. Torsion testing machine and methods for additive builds
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
GB2577618A (en) * 2018-08-17 2020-04-01 Kolibri Metals Gmbh Thermal insulation fastening system
US10967580B2 (en) * 2018-09-18 2021-04-06 General Electric Company Support structures for additively-manufactured components and methods of securing a component to a build platform during additive manufacturing
US11179895B2 (en) 2018-10-05 2021-11-23 Raytheon Technologies Corporation Kinetic disassembly of support structure system for additively manufactured rotating components
US20200307107A1 (en) * 2019-03-27 2020-10-01 Hamilton Sundstrand Corporation Inserts in a build plate utilized in additive manufacturing
US11511485B2 (en) 2019-04-02 2022-11-29 Align Technology, Inc. 3D printed objects with selective overcure regions
US11351612B2 (en) 2019-05-22 2022-06-07 Caterpillar Inc. Manufacturing support and method for additive manufacturing process
DE102019117367A1 (de) * 2019-06-27 2020-12-31 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur additiven Herstellung eines dreidimensionalen Objekts
US11325305B2 (en) * 2019-07-26 2022-05-10 Arevo, Inc. Build plate with adhesive islands
EP3797973A1 (en) * 2019-09-30 2021-03-31 Siemens Energy Global GmbH & Co. KG Improved support structure
FR3102706B1 (fr) * 2019-10-30 2022-11-04 Safran Aircraft Engines Séparation d’une ébauche de pièce fabriquée par fabrication additive d’une embase par un éjecteur
EP4100190A4 (en) * 2020-02-06 2024-02-28 Postprocess Tech Inc METHOD AND SYSTEM FOR PRODUCING GENERATIVELY MANUFACTURED OBJECTS
CN111633207B (zh) * 2020-04-27 2022-05-17 鑫精合激光科技发展(北京)有限公司 一种散热装置及其应用
CN112092367B (zh) * 2020-09-03 2021-08-31 北京物喜堂科技有限公司 3d打印装置
US20230027624A1 (en) * 2021-05-04 2023-01-26 The United States Of America, As Represented By The Secretary Of The Navy 3d printed oxide reinforced titanium composites and methods
US20230021998A1 (en) * 2021-07-10 2023-01-26 The United States Of America, As Represented By The Secretary Of The Navy 3-d printed carbon nanotube reinforced titanium composites and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918198A (zh) * 2007-07-04 2010-12-15 想象科技有限公司 用于制造三维物体的方法和设备
CN102164696A (zh) * 2008-07-18 2011-08-24 Mtt科技有限公司 制造设备和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2920008B2 (ja) * 1991-09-25 1999-07-19 松下電工株式会社 三次元形状の形成方法
US6367791B1 (en) * 2000-07-07 2002-04-09 Stratasys, Inc. Substrate mounting system for a three-dimensional modeling machine
DE202011003443U1 (de) * 2011-03-02 2011-12-23 Bego Medical Gmbh Vorrichtung zur generativen Herstellung dreidimensionaler Bauteile
WO2013163585A1 (en) * 2012-04-26 2013-10-31 Northeastern University Device and method to additively fabricate structures containing embedded electronics or sensors
US20140303942A1 (en) * 2013-04-05 2014-10-09 Formlabs, Inc. Additive fabrication support structures
US9555582B2 (en) * 2013-05-07 2017-01-31 Google Technology Holdings LLC Method and assembly for additive manufacturing
GB201313926D0 (en) * 2013-08-05 2013-09-18 Renishaw Plc Additive manufacturing method and apparatus
US9993973B1 (en) * 2014-09-04 2018-06-12 Kenneth J. Barnhart Method using a mobilized 3D printer
US20160193785A1 (en) * 2015-01-02 2016-07-07 Voxel8, Inc. 3d printer for printing a plurality of material types

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918198A (zh) * 2007-07-04 2010-12-15 想象科技有限公司 用于制造三维物体的方法和设备
CN102164696A (zh) * 2008-07-18 2011-08-24 Mtt科技有限公司 制造设备和方法

Also Published As

Publication number Publication date
WO2016161276A1 (en) 2016-10-06
EP3277484A1 (en) 2018-02-07
US10843412B2 (en) 2020-11-24
CN107635751A (zh) 2018-01-26
EP3277484B1 (en) 2020-06-03
US20180086004A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
CN107635751B (zh) 使用增材制造技术来制造物体的方法
US10384263B2 (en) Hybrid support systems and methods of generating a hybrid support system using three dimensional printing
US20150045924A1 (en) Data processing
CN113242786B (zh) 三维打印装置、系统和方法
EP3519156B1 (en) Energy density mapping in additive manufacturing
US20150149126A1 (en) Systems and methods for forming and utilizing bending maps for object design
US20170252978A1 (en) Slice area distribution for obtaining improved performance in additive manufacturing techniques
EP3652676B1 (en) 3d printed identification labels
US20150273768A1 (en) Cylindrical coordinate method of calibration for cnc applications
US20150057785A1 (en) Three-dimensional printing apparatus and three-dimensional preview and printing method thereof
EP3341868B1 (en) Self supporting in additive manufacturing
Zhu et al. A new algorithm for build time estimation for fused filament fabrication technologies
US20220072765A1 (en) Apparatus, system and method for plug clearing in an additive manufacturing print head
WO2016033045A1 (en) Systems and methods for interlocking part avoidance in three dimensional nesting
WO2017044833A1 (en) Systems and methods for thermal cycle control in additive manufacturing environments
US20210205887A1 (en) Three dimensional (3d) printed molds having breakaway features
WO2016154849A1 (zh) 一种打印喷头、三维打印机及控制方法
KR20170054119A (ko) 3차원 프린터를 이용한 분산 인쇄 시스템 및 그 제어 방법
US20220032508A1 (en) Breakable three dimensional (3d) printed molds
KR102521957B1 (ko) 3d 프린팅 지지대 위치 지정 방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant