CN107615721B - 传输软件定义网络-逻辑链路聚合成员信令的系统和方法 - Google Patents

传输软件定义网络-逻辑链路聚合成员信令的系统和方法 Download PDF

Info

Publication number
CN107615721B
CN107615721B CN201680029401.7A CN201680029401A CN107615721B CN 107615721 B CN107615721 B CN 107615721B CN 201680029401 A CN201680029401 A CN 201680029401A CN 107615721 B CN107615721 B CN 107615721B
Authority
CN
China
Prior art keywords
layer
network layer
physical
network
physical layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680029401.7A
Other languages
English (en)
Other versions
CN107615721A (zh
Inventor
彼得·艾斯伍德·史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN107615721A publication Critical patent/CN107615721A/zh
Application granted granted Critical
Publication of CN107615721B publication Critical patent/CN107615721B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • H04L41/122Discovery or management of network topologies of virtualised topologies, e.g. software-defined networks [SDN] or network function virtualisation [NFV]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/26Route discovery packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/64Routing or path finding of packets in data switching networks using an overlay routing layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本文公开了一种传输软件定义网络(SDN)控制器,包括:接收器,用于从物理层网元(NE)接收通告消息,每个通告消息指示物理层NE端口和相邻网络层NE之间的映射;以及处理器,耦合到该接收器。该SDN控制器用于确定逻辑拓扑和物理拓扑之间的关系,监测网络层链路聚合组(LAG)请求,该请求指示出第一网络层NE正在请求修改与第二网络层NE的LAG,并且基于物理拓扑和逻辑拓扑之间的关系,修改与所述第一网络层NE相邻的物理层NE和与所述第二网络层NE相邻的第二物理层NE之间的物理层连接来实现LAG修改。

Description

传输软件定义网络-逻辑链路聚合成员信令的系统和方法
技术领域
本发明涉及一种用于传输网络通信的系统和方法,并且尤其涉及一种用于逻辑链路聚合成员信令的系统和方法。
背景技术
传统的计算机网络由大量的网络设备,例如路由器、交换机和/或其他硬件构建成。大型网络的管理可能是复杂和昂贵的。相信可以通过用集中式协议替换用于传统路由器中的控制和数据转发的完全分布式协议来解决所述的复杂性。例如,在中央控制的网络中,数据转发(例如数据面)可以与诸如路由、资源、管理和其他管理功能的控制决策(例如控制面)解耦合。该解耦合还允许数据面和控制面在不同的硬件上、在不同的运行时环境中和/或使用不同的型号操作。在中央控制的网络中,网络智能在逻辑上集中在基于软件的控制器中。因此,网络设备成为由中央控制器管理和控制的分组转发设备。
发明内容
本文公开了一种传输软件定义网络(SDN)控制器。在一个实施例中,该传输SDN控制器可以包括:接收器,用于从物理层网元(NE)接收通告消息,每个通告消息指示物理层NE端口和相邻网络层NE之间的映射;以及耦合到所述接收器的处理器。该处理器可以用于使得传输SDN控制器基于从物理层NE接收的物理层邻接发现消息来确定物理拓扑,基于从网络层NE接收的网络层邻接发现消息来确定逻辑拓扑,并基于来自所述物理层NE的所述通告消息,确定所述逻辑拓扑和所述物理拓扑之间的关系。该处理器可以用于进一步使传输SDN控制器监测网络层链路聚合组(LAG)请求,该请求指示第一网络层NE正在请求与第二网络层NE的网络层LAG链路成员。基于物理拓扑和逻辑拓扑之间的关系,并且基于监测网络层LAG请求,处理器可以用于进一步使传输SDN控制器在第一网络层NE的第一相邻物理层NE端口和第二网络层NE的第二相邻物理层NE端口之间建立物理层连接,以实现所请求的网络层LAG链路成员。
在另一个实施例中,本公开包括由传输SDN控制器实现的添加LAG成员链路的方法。该方法可以包括从物理层NE接收指示物理层端口邻接信息的物理层邻接发现消息,基于所述物理层邻接发现消息来确定物理拓扑,从网络层NE接收网络层邻接发现消息,并基于所述网络层邻接发现消息来确定逻辑拓扑。该方法还可以包括从物理层NE接收通告消息,每个通告消息指示物理层NE端口和相邻网络层NE之间的映射,基于所述通告消息确定逻辑拓扑和物理拓扑之间的关系,以及监测网络层LAG请求,该请求指示第一网络层NE正在请求与第二网络层NE的网络层LAG链路成员。该方法还可以包括基于物理拓扑和逻辑拓扑之间的关系,并且基于被监测的网络层LAG请求,在第一网络层NE的第一相邻物理层NE端口和第二网络层NE的第二相邻物理层NE端口之间建立物理层连接,以实现所请求的网络层LAG链路成员。
在另一个实施例中,本公开包括通过传输软件定义网络控制器(T-SDNC)移除链路聚合组成员链路的另一种方法。该方法可以包括基于从物理层NE接收的物理层邻接发现消息来确定物理拓扑,基于从网络层NE接收的网络层邻接发现消息来确定逻辑拓扑,并基于来自物理层NE的通告消息,确定逻辑拓扑和物理拓扑之间的关系。每个通告消息指示物理层NE端口和相邻网络层NE之间的映射。该方法还可以包括接收网络层LAG请求,该请求指示第一网络层NE正在请求移除与第二网络层NE的网络层LAG链路成员,并且基于该网络层LAG请求以及物理拓扑和逻辑拓扑之间的关系,移除第一网络层NE和第二网络层NE之间的物理层连接。
通过结合附图和权利要求的以下详细描述,将可更清楚地理解这些和其他特征。
附图说明
为了更完整地理解本公开,现在参考结合附图和详细描述的以下简要描述,其中相同的附图标记表示相同的部分。
图1为通信网络的实施例的示意图。
图2为通信网络的另一实施例的示意图。
图3为用于监测网络层广播消息的物理层网元的实施例的示意图。
图4为NE的实施例的示意图。
图5为添加LAG成员链路的方法的实施例的流程图。
图6为移除LAG成员链路的方法的实施例的流程图。
具体实施方式
首先应该理解,虽然下面提供了一个或多个实施例的说明性实施方式,但是可以使用任何数量的技术,无论当前是否已知或存在,来实现所公开的系统和/或方法。本公开不应以任何方式限于以下所示的说明性实施例,附图和技术,包括本文示出和描述的示例性设计和实施例,而是可以在所附权利要求的范围及其等同物的全部范围内进行修改。
在一些网络中,以定义网络中的数据流的方式放置和配置路由器和交换机。对路由器和/或交换机的后续改变可能是昂贵的,因为物理位置和/或硬件改变可能需要手动配置。SDN是一种网络范例,其中的数据流(例如控制面)和数据传送(例如数据面)的管理被解耦,通过动态管理和控制来创建灵活的网络。在SDN网络中,网络设备(例如路由器和/或交换机)由一个或多个SDN控制器(SDNC)控制和管理。SDNC是用于控制和管理SDN域的任何设备。SDNC做出路由和/或交换决策,然后将决策传送到网络设备。例如,SDNC基于网络拓扑信息计算用于将分组从一个节点路由到另一个节点的最佳路径,然后沿着该最佳路径,向所有网络设备发送路由表、交换表和/或流表。网络设备根据从SDNC接收的路由表执行数据转发功能。SDNC还动态地修改SDN网络的行为以适应网络中的变化(例如基础设施变化、新应用、新服务部署和/或业务需求变化)。
SDN可以根据开放系统互连(OSI)网络或其他协议层范例在逻辑上划分为多个层。例如,路由和/或交换功能可以分别由OSI层3和层2设备执行,本文统称为网络层。OSI层1(例如同步光网络(Sonet)/同步数字体系(SDH)和光传输网络(OTN))和层0(例如密集波分复用(DWDM)、光电子)在本文统称为传输层。因此,网络SDNC(N-SDNC)管理在OSI层3和/或2上操作的设备的网络功能,而传输SDNC(T-SDNC)管理在OSI层1和0上操作的设备的功能。N-SDNC和T-SDNC不可用于直接交互,这就要求在网络层和传输层分别实现SDN改变。
SDN采用链路聚合来连接各NE。链路聚合允许在逻辑上聚合多个并行链路以创建LAG。分配给LAG的任何链路被称为LAG链路和/或LAG成员。然后,出于网络管理目的,网络可以将LAG视为单个链路。LAG包括的总容量(例如最大带宽)等于LAG链路成员的单独容量之和。为LAG添加或删除链路相应地改变LAG的容量。在传输层,通过在支持链路执行相关联的数据传输的NE上分配光端口,可以将链路分配给LAG。在一些实施例中,这样的光端口可以采用波分和/或频分复用。在这种情况下,要向LAG分配链路,可以通过分配被称为兰姆达(λ)的特定光波长和/或λ的时分部分来支持数据传输。同样,为了修改网络层LAG,可能需要管理员单独地修改传输层的端口和/或波长分配,这可能导致人员时间的巨大成本并且产生配置错误的潜在源头。
本文公开了用于自动配置传输层连接以实现网络层LAG链路成员添加或移除的机制。当请求网络层LAG修改时,请求在网络层邻接发现消息、网络层维护消息和/或网络层LAG请求消息中编码,并在网络层NE之间发送。例如,网络层LAG请求消息可以是链路状态通告(LSA)消息。该请求被复用到比特流上,并且经由物理层NE在网络层NE之间转发。物理层NE在比特流中监测LAG请求。当物理层NE接收到LAG请求时,该物理层NE监测来自该LAG请求的报头信息,并向T-SDNC发送通告消息,该通告信息包括从网络层LAG请求中监测出的信息。基于Peter Ashwood-Smith于2015年5月12日提交的申请号为14/709697的美国正式申请“传输软件定义网络(SDN)-从逻辑拓扑到物理拓扑的发现”,(通过引用结合于此)中所讨论公开的机制,T-SDNC知道网络的物理拓扑、网络的逻辑拓扑以及物理拓扑和逻辑拓扑的关系。T-SDNC分配NE端口λ和/或λ的时隙部分,以支持基于所通告的网络层LAG信息和拓扑信息来创建所请求的网络层LAG。或者,T-SDNC可以直接接收和监测网络层LAG请求消息,例如被动监听T-SDNC的物理被动接口。然后,T-SDNC基于拓扑信息分配适当的物理资源以实现LAG变更。
图1为通信网络100的实施例的示意图。网络100包括物理层NE 104、105和106,网络层NE 102和103,以及T-SDNC 110,该T-SDNC 110包括用于与第三方115,例如系统管理员,通信的应用编程接口(API)111。物理层NE 104-106经由光链路通信地相耦合。T-SDNC110通过光链路、电链路或其组合通信地耦合到物理层NE 104-106。网络层NE 102-103经由光链路、电链路或其组合通信地耦合到物理层NE 104-106。
网络层NE 102-103可以是用于对数据信号/比特流执行数据分组转发功能的任何物理和/或逻辑设备(例如路由器)。网络层NE 102-103在OSI模型的网络层(例如,层2,3和/或4)上操作。图1中所示的连接和/或其他链路包括物理连接,例如光纤链路、电链路、无线链路和/或逻辑连接。该连接可以包括用于在网络设备之间传输数据的单个链路、一系列并行链路、多个互连节点和/或其各种组合。
物理层NE 104-106可以是用于根据SDN域中的T-SDNC 110指定的SDN路由来执行数据转发功能的任何物理设备(例如交换机)。物理层NE 104-106分别包括网络分组接口卡(NPIC)130、131和132,还包括物理端口和处理器。处理器耦合到NPIC,并且用于执行各种功能。在一个实施例中,物理层NE 104执行光交换机的功能。例如,物理层NE 104可以包括由T-SDNC提供的将上行端口映射到下行端口的映射,以允许物理层NE 104执行数据转发。可以从网络层NE102接收信号并将其转发到物理层NE105。可以通过NPIC 130转发信号,以允许NPIC 130监测在信号中编码的消息,诸如广播消息120。该信号可以通过物理链路被转发到物理层NE 104和105,并且分别经由NPIC 131和132被转发到目的地,例如经由网络层NE103到达。NPIC 130-132和相关联的处理器不可用于修改在信号中编码的消息中所包含的报头信息。换句话说,物理层NE 104-106可以在网络100上通过执行波长和/或端口交换来转发编码的数据分组和/或数据帧,而不对信号中编码的消息上所编码的报头和/或数据进行修改。
NPIC 130-132接收包括广播消息120(例如邻接发现消息、网络层维护消息和网络层LAG请求消息)的比特流/信号。邻接发现消息可以是开放最短路径优先(OSPF)消息、中间系统到中间系统(IS-IS)消息、边界网关协议(BGP)消息或其他类型的邻接发现消息中的任一个。邻接发现消息可以是网络层邻接发现消息和/或物理层邻接发现消息中的任一个。网络层邻接发现消息在通信耦合的网络层NE 102-103之间进行广播,并且包括网络层NE102-103邻接的信息,其中该网络层NE 102-103在OSI模型的网络层进行操作。物理层邻接发现消息在通信耦合的物理层NE 104-106之间广播,并且包括物理层NE 104-106邻接的信息,其中该物理层NE 104-106在开放系统互连模型的物理层进行操作。
类似于邻接发现消息,网络层LAG请求消息可以在OSPF消息、IS-IS消息、BGP消息或其他类型的网络层LAG请求消息中的任一个中承载。例如,当网络层NE(例如网络层NE102或103)用于添加或移除具有另一网络层NE(例如网络层NE 103或102)的LAG链路成员时,则网络层NE 102或103在网络层LAG请求消息中分别发送具有其他网络层NE的网络层LAG链路成员的添加或移除请求。网络层LAG请求消息请求在两个网络层NE之间添加或移除LAG链路成员。多个并行LAG链路成员可以在两个网络层NE之间操作。LAG作为单个连接进行操作,其具有的容量等于多个LAG链路成员容量的和。网络层LAG请求消息在通信耦合的网络层NE102-103之间广播,而其中网络层NE 102-103在OSI模型的网络层进行操作。网络层LAG请求消息请求在两个网络层NE之间添加或移除LAG链路成员。或者,也可监视链路利用率,并且自动生成网络层LAG请求,例如通过监视应用、N-SDNC等进行。例如,当两个网络层NE之间的链路利用率上升到第一阈值的一定百分比以上时,例如百分之五十以上,则生成添加LAG链路成员的新LAG请求;当两个网络层NE之间的链路利用率下降到第二阈值的一定百分比以下时,例如百分之二十以下,则生成用于移除LAG链路成员的新LAG请求等。在一个另选实施例中,周期性地发送/广播LAG请求以维持网络100中的LAG。在这种情况下,采用附加的和/或更新的LAG请求来创建新LAG并向现有LAG添加新的链路成员。进一步的,若有省略之前周期中接收的LAG请求,则可以视为是移除相关联的LAG和/或LAG链路成员的请求。
NPIC 130-132监测广播消息120,例如经由侦听实用程序(spooning utility)审查广播消息的内容。在这里,“监测”(inspecting)是指审查通过接口的分组的内容而不改变该分组。网络层NE 102-103之间的网络层邻接发现消息可以在OSPF问候消息、IS-IS问候消息或其他类型的邻接发现消息中编码。网络层邻接发现消息的报头包括相邻网络层NE102和103的信息。NPIC 130-132确定哪个本地物理端口接收到网络层邻接发现消息,然后将物理层NE的物理端口映射到相邻网络层NE的L2/L3地址(例如介质访问控制(MAC)/互联网协议(IP)地址),以有助于将物理拓扑映射到网络拓扑。这种邻接映射在通告消息中被转发到T-SDNC 110以支持连接的创建/移除,从而支持LAG的修改。在一个实施例中,该通告消息可以是OSPF LSA消息。例如,NPIC 130或物理层NE 104可以将映射信息附加到OSPF LSA消息。映射信息或通告消息可以包括物理层NE104的标识、物理端口标识和相邻网络层NE102的标识。
T-SDNC 110是用于控制和管理SDN域的传输层的任何设备。每个T-SDNC 110物理地和/或逻辑地位于SDN域内。第三方115可以通过API 111访问T-SDNC 110。T-SDNC 110执行各种控制面功能,包括生成和获得路由信息、网络拓扑和/或网络状态信息。例如,T-SDNC110生成并广播(例如经由通告消息)T-SDNC 110管理和/或支持的SDN域的SDN特定拓扑信息。因此,T-SDNC 110可以接收由其他SDNC 110支持和/或管理的其他SDN域的SDN特定拓扑信息。每个T-SDNC 110例如通过向物理层NE 104-106发送流表来配置T-SDNC 110管理的SDN域中的物理层NE 104-106。每个T-SDNC110通过控制器设备接口与物理层NE 104-106进行通信,可以使用任何标准协议(例如OpenFlow协议)。应当注意,每个T-SDNC 110还可以广播在任何内部网关协议(IGP)中常用的任何链路状态信息。
T-SDNC 110从物理层NE 104-106接收物理层邻接发现消息。物理层邻接发现消息指示物理层NE 104-106的物理端口之间的邻接。例如,物理层邻接发现消息包括第一物理层NE 104的标识、作为第一物理层NE 104的一部分的第一物理端口的标识、第二物理层NE105的标识和/或作为第二物理层NE 105的一部分的第二物理端口的标识。第一和第二物理端口在物理层上相邻,并且第一和第二物理层NE 104-105在物理层上相邻。物理拓扑由T-SDNC 110基于物理层邻接发现消息来确定。例如,T-SDNC 110可以基于物理层邻接发现消息中的物理端口的标识和物理层NE 104-106来构建物理拓扑。T-SDNC 110可以确定如图2所示的物理拓扑。物理层邻接发现消息可以包括其他物理层约束,并且T-SDNC 110可以习得其他物理层约束。应当指出,T-SDNC 110还可以基于网络层通告确定逻辑拓扑,并将逻辑拓扑映射到物理拓扑,这在Peter Ashwood-Smith的题为“传输软件定义网络(SDN)-从逻辑拓扑到物理拓扑的发现”的美国非临时申请中进行了探讨。这种物理到逻辑拓扑的映射可以用于支持配置物理层连接以实现网络层LAG链路成员添加或移除。
图2为通信网络200的另一实施例的示意图。网络200包括网络层NE 202、203、204和205,物理层NE 210、211、212和213,T-SDNC 230和广播消息220,可以基本上分别类似于网络层NE 102和103,物理层NE 104、105和106,T-SDNC 110和广播消息120。T-SDNC 230接收广播消息220,包括网络层邻接发现消息、物理层邻接发现消息和/或网络层LAG请求消息。物理层NE 210-213接收比特流,包括广播消息220(例如邻接发现消息、网络层LAG请求消息和网络层维护消息)。在一个实施例中,广播消息220中的至少一些可以是网络层消息,在这种情况下,这样的消息对物理层通常是不透明的。物理层组件可以被动地侦听和监测不透明数据,但不可用于修改不透明数据或传输直接响应于不透明数据的网络层消息。
邻接发现消息可以是OSPF消息、IS-IS消息、BGP消息或其他类型的邻接发现消息中的任一个。邻接发现消息可以是网络层邻接发现消息或物理层邻接发现消息中的任一个。网络层邻接发现消息在通信耦合的网络层NE 202-205之间进行广播,并且包括网络层NE 202-205的邻接的信息,其中网络层NE 202-205在OSI模型的网络层进行操作。物理层邻接发现消息在通信耦合的物理层NE 210-213之间广播,并且包括物理层NE 210-213邻接的信息,其中物理层NE 210-213在OSI模型的物理层进行操作。类似地,网络层LAG请求消息可以是OSPF消息,IS-IS消息,BGP消息或另一类型的LAG请求消息中的任一个。网络层邻接发现消息在通信耦合的网络层NE 202-205之间广播。
网络层邻接发现消息包括相邻网络层NE 202-205的标识。类似于物理拓扑由T-SDNC 230确定,逻辑拓扑由T-SDNC 230基于接收到的网络层邻接发现消息来确定。例如,T-SDNC 230可以确定网络层NE 202-205在网状拓扑中逻辑相连。此外,在T-SDNC 230处接收来自物理层NE 210-213的通告消息。例如,由物理层NE210发送的通告消息包括这样的信息,即物理层NE210的端口215与网络层NE204相邻。由物理层NE 212发送的通告消息包括这样的信息,即物理层NE 212的端口216与网络层NE 205相邻。类似的通告消息由物理层NE211和213发送。通告消息由T-SDNC 230接收。因此,物理拓扑和逻辑拓扑的关系/映射由T-SDNC 230基于所确定的物理拓扑、所确定的逻辑拓扑和/或所接收的通告消息来确定。
网络层LAG请求消息包括请求相对于现有LAG 240添加、移除或维持网络层LAG链路成员的网络层NE(例如网络层NE 204和205)的标识。网络层LAG请求消息可以是OSPF LSA消息。T-SDNC 230可以例如通过被动地侦听T-SDNC 230的物理被动接口来接收网络层LAG请求消息。T-SDNC 230例如通过监测网络层LAG请求消息的报头来监测网络层LAG请求消息,以获得网络层LAG请求信息。T-SDNC 230基于从物理拓扑到逻辑拓扑的映射,确定对物理层NE端口215和216之间的物理层连接的添加或移除,可以实现网络层NE 204和205之间的网络层LAG链路成员的添加或移除。然后,T-SDNC 230即建立或移除物理层NE端口215和216之间的物理层连接。在添加或移除物理层NE端口215和216之间的物理层连接之后,T-SDNC 230可以向网络层NE 204和205中的每一个发送确认消息,也可不发送。在一个实施例中,T-SDNC 230可以接收标识现有LAG和/或LAG链路成员的周期性网络层LAG请求消息,并请求刷新这样的LAG和/或LAG链路成员。T-SDNC 230可以采用与每个网络层LAG请求消息相关联的定时器或类似机制。在定时器期满(例如超时)时,若未收到刷新LAG请求,则T-SDNC230可以将之视为移除相关联的LAG或链路成员的请求。然后,T-SDNC 230可以相应地移除LAG/链路成员。LAG/成员链路可以在没有刷新的情况下存在的持续时间可以由T-SDNC 230设置,或者可以由网络层用信号通知(例如在LAG请求中作为LAG请求信息)并由T-SDNC 230监测。
另选地,网络层LAG请求消息可以由物理层NE,例如由物理层NE 210和212,接收,然后由物理层NE通告/广播。例如,物理层NE 210和212例如通过监测网络层LAG请求消息的报头来监测网络层LAG请求消息,以获得网络层LAG请求信息。物理层NE 210和212然后在物理层发送的通告消息中广播网络层LAG请求信息,这类似于物理层NE 210-213广播物理端口到相邻网络层的映射。如此,T-SDNC 230确定网络层NE 204要请求在与网络层NE 205的LAG 240连接中添加、移除或维持网络层LAG链路成员。T-SDNC 230还确定对物理层NE端口215和216之间的物理层连接的添加、移除或刷新实现网络层NE 204和205之间的网络层LAG链路成员的添加、移除或刷新。然后,T-SDNC 230即建立物理层NE端口215和216之间的物理层连接。例如,T-SDNC 230要创建连接来实现对LAG 240添加LAG链路成员,则会分配一对物理层NE端口215和216、在物理层NE端口215和216之间创建新的λ、在物理层NE端口215和216之间分配部分λ、在端口之间添加额外的时隙、或者执行任何其他功能以在物理层NE端口215和216之间建立物理连接。进一步地,T-SDNC 230通过释放一对物理层NE端口215和216、移除物理层NE端口215和216之间的λ、释放物理层NE端口215和216之间的部分λ、移除端口之间的时隙来移除连接以实现从LAG 240中删除LAG链路成员,或者执行任何其他功能以移除物理层NE端口215和216之间的物理连接。在添加或移除物理层NE端口215和216之间的物理层连接之后,T-SDNC 230可以向网络层NE 204和205中的每一个和/或N-SDNC发送确认消息,也可以不发送。
图3是物理层NE 306-307的实施例的示意图300,该物理层NE 306-307用于监测由网络层NE 302-303发送的网络层广播消息320。网络300包括网络层NE 302和303以及物理层NE 306和307,可以基本上分别类似于网络层NE 102和103以及物理层NE 104,105和106。分别地,端口310是物理层NE 306的一部分,端口311是物理层NE 307的一部分。网络层NE302向网络层NE 303发送广播消息320。网络层NE 302和303经由物理层NE 306和307通信耦合。当消息穿过物理层NE时,物理层NE 306和物理层NE 307可以各自监测广播消息320。广播消息320可以是网络层邻接发现消息或网络层LAG请求消息,例如是OSPF问候消息、IS-IS问候消息、BGP问候消息等,或者可以是网络层维护消息。物理层NE 306和物理层NE 307可以分别监测通过端口310和端口311转发的广播消息320的报头信息。
通过监测网络层邻接发现消息(例如,广播消息320)的报头信息,物理层NE 306确定端口310与网络层NE 302相邻,并且物理层NE 307确定端口311与网络层NE 303相邻。然后,物理层NE 306在物理层发送通告消息,例如LSA,其中包括物理层NE306的标识信息、端口310的标识信息和/或网络层NE302的标识信息。类似地,物理层NE307在物理层发送通告消息,其中包括物理层NE307的标识信息、端口311的标识信息和/或网络层NE303的标识信息。通告可以由T-SDNC,例如T-SDNC 110或230,来用以支持物理层拓扑到网络层拓扑映射的创建。
通过监测网络层LAG请求消息的报头信息,物理层NE 306确定网络层NE 302正在请求添加、移除或刷新与网络层NE 303网络层LAG链路成员。然后,物理层NE 306在物理层发送通告消息,例如LSA,其中包括新的LAG链路成员请求、网络层NE 302的标识信息和/或网络层NE 303的标识信息。类似地,物理层NE 307在物理层发送通告消息,其中包括新的LAG链路成员请求、网络层NE 303的标识信息和/或网络层NE 302的标识信息。通告可以由T-SDNC,例如T-SDNC 110或230,来用以支持物理层连接的创建或移除,以实现网络层LAG链路成员的添加或移除。
图4为网元(NE)400的实施例的示意图,该网元400可以在SDN域中充当SDNC(例如T-SDNC 110和/或230)或网络设备(例如物理层NE 104-106、210-213、306-307或网络层NE102-103、202-205或302-303等)。取决于实施例,NE 400可以用于确定SDN域中对其他互连的SDN域可见的路由和/或链路、生成SDN特定的拓扑信息、向互连的SDN域通告SDN特定的拓扑信息、将逻辑拓扑映射到物理拓扑、和/或配置网络层LAG链路成员。NE 400可以在单个节点中实现,或者NE 400的功能可以在多个节点中实现。本领域技术人员将认识到,术语“NE”涵盖广泛范围的设备,其中NE 400仅是示例。为了清楚地详述的目的,包括了NE 400,但绝不意味着将本公开的应用限制于特定NE实施例或一类特定NE实施例。本公开中描述的至少一些特征/方法可以在诸如NE 400的网络设备或组件中实现。例如,本公开中的特征/方法可以使用硬件、固件和/或安装为在硬件上运行的软件来实现。
如图4所示,NE 400包括收发器(Tx/Rx)410,可以是发送器、接收器或其组合。Tx/Rx 410耦合到多个下行端口420,用于从其他节点发送帧和/或接收帧,并且Tx/Rx 410耦合到多个上行端口450,用于分别从其他节点发送和/或接收帧。处理器430耦合到Tx/Rx 410以处理帧和/或确定将帧发送到哪些节点。处理器430可以包括一个或多个多核处理器和/或用作数据存储、缓冲等的存储器设备432。处理器430可以实现为通用处理器或者可以是一个或多个专用集成电路(ASIC)和/或数字信号处理器(DSP)。
处理器430包括LAG配置模块433,可以实现LAG添加方法500和/或LAG移除方法600,下文将对此更全面地详述。在另选实施例中,LAG配置模块433可以被实现为存储在存储器设备432中的由处理器430执行的指令。存储器设备432可以包括用于临时存储内容的高速缓存,例如随机存取存储器(RAM)。另外,存储器设备432可以包括用于相对更长时间存储内容的长期存储器,例如只读存储器(ROM)。例如,高速缓存和长期存储器可以包括动态随机存取存储器(DRAM)、固态驱动器(SSD)、硬盘或其组合。
应当理解,通过编程和/或将可执行指令加载到NE 400上,将可改变处理器430和/或存储器设备432中的至少一个,从而将NE 400部分地转换成具有本公开所教导的新颖功能的特定机器或装置,例如物理拓扑和/或逻辑拓扑管理系统。通过将可执行软件加载到计算机中可以实现的功能,可以通过公知的设计规则转换为硬件实现,这对于电气工程和软件工程领域来说是很基本的。在软件与硬件之间实现概念之间的决策通常取决于设计的稳定性和要生产的单元的数量的考虑,而不是从软件域转换到硬件域涉及的任何问题。通常,尚需频繁改变的设计可优选地在软件中实现,因为重新进行硬件实现比重新进行软件设计更昂贵。通常,可大量生产的稳定的设计可优选地在硬件中实现,例如在ASIC中,因为对于大批量生产,硬件实现可能比软件实现更便宜。通常,可以以软件形式开发和测试设计,并且随后通过公知的设计规则将设计转换成ASIC中的等效硬件实现,该ASIC用硬件实现软件的指令。由新ASIC控制的机器是特定的机器或装置,类似地,已经被编程和/或加载有可执行指令的计算机同样可以被视为特定的机器或装置。
图5是用于添加LAG成员链路的方法500的实施例的流程图,其可以在诸如T-SDNC110或230的T-SDNC中实现。当监视应用和/或管理员决定要增加现有网络层链路的容量和/或添加新的网络链路时,可以启动方法500。在步骤502,方法500从物理层NE(例如物理层NE104-106、210-213或306-307)接收物理层邻接发现消息(例如广播消息120、220或320),该物理层邻接发现消息指示物理层端口邻接信息。在步骤504,方法500基于物理层邻接发现消息确定物理拓扑。在步骤506,方法500从网络层NE(例如网络层NE 102-103、202-205或302-303)接收网络层邻接发现消息。在步骤508,方法500基于网络层邻接发现消息确定逻辑拓扑。在步骤510,方法500从物理层NE接收通告消息,每个通告消息指示物理层NE端口(例如物理层NE端口215-216或310-311)与相邻网络层NE之间的映射。在步骤512,方法500基于通告消息,确定逻辑拓扑和物理拓扑的关系。在步骤514,方法500监测网络层LAG请求,该请求指示第一网络层NE正在请求与第二网络层NE的LAG链路成员。在步骤516,方法500基于物理拓扑和逻辑拓扑之间的关系以及基于对网络层LAG请求的监测,在相邻物理层NE和/或物理层NE端口之间建立一个或多个物理层连接,以实现所请求的网络层LAG链路成员。
图6是用于移除LAG链路成员的方法600的实施例的流程图,其可以在诸如T-SDNC110或230的T-SDNC中实现。当监视应用和/或管理员决定要降低现有网络层链路的容量和/或移除网络链路时,可以启动方法600。在步骤602,方法600基于从物理层NE(例如物理层NE104-106、210-213或306-307)接收的物理层邻接发现消息来确定物理拓扑。在步骤604,方法600基于从网络层NE(例如网络层NE 102-103、202-205或302-303)接收的网络层邻接发现消息来确定逻辑拓扑。在步骤606,方法600基于来自物理层NE的通告消息确定逻辑拓扑和物理拓扑之间的关系,每个通告消息指示物理层NE端口(例如物理层NE端口215-216或310-311)和相邻网络层NE之间的映射。在步骤608,方法600接收网络层LAG请求,其指示第一网络层NE正在请求移除与第二网络层NE的网络层LAG链路成员。在另选实施例中,方法600可以接收周期性网络层LAG请求消息,其指示网络层LAG链路成员应当被刷新。在这种情况下,方法600可能在步骤608未能接收到网络层LAG请求,并且可能将这种未能及时接受网络层LAG请求视为隐含请求以移除相关联的LAG链路成员。在任一情况下,在步骤610,方法600基于网络层LAG请求以及物理拓扑和逻辑拓扑之间的关系,移除第一网络层NE和第二网络层NE之间的物理层连接。
虽然在本公开中提供了若干实施例,但是应当理解,在不脱离本公开的精神或范围的情况下,所公开的系统和方法可以以许多其他具体形式实施。本示例被认为是说明性的而不是限制性的,并且本发明不限于本文给出的细节。例如,各种元件或组件可以组合或集成在另一个系统中,或者某些特征可以省略或不实现。
另外,在不脱离本公开的范围的情况下,在各种实施例中描述和示出为独立或单独的技术、系统、子系统和方法可以与其他系统、模块、技术或方法组合或集成。被示出或详述为彼此耦合或直接耦合或彼此通信的其他项目可以通过一些接口、设备或中间组件间接地以无论是电的、机械的还是其他的形式来耦合或通信。可以由本领域技术人员确定对其他示例的改变、替换和变更,并且在不脱离本文公开的精神和范围的情况下做出上述改变、替换和变更。

Claims (20)

1.一种传输软件定义网络SDN控制器,包括:
接收器,用于从物理层网元NE接收通告消息,每个通告消息指示物理层NE端口和相邻网络层NE之间的映射;和
处理器,耦合到所述接收器,且用于:
基于来自所述物理层NE的所述通告消息,确定逻辑拓扑和物理拓扑之间的关系;
监测网络层链路聚合组LAG请求,所述请求指示第一网络层NE正在请求修改与第二网络层NE的LAG;和
基于所述物理拓扑和所述逻辑拓扑之间的关系,并基于被监测的网络层LAG请求,修改与所述第一网络层NE相邻的第一物理层NE端口和与所述第二网络层NE相邻的第二物理层NE端口之间的物理层连接,以实现请求的LAG修改。
2.根据权利要求1所述的传输SDN控制器,其中所述网络层LAG请求是增加LAG的容量的请求,并且其中修改所述物理层连接包括创建所述第一物理层NE端口和所述第二物理层NE端口之间的连接。
3.根据权利要求2所述的传输SDN控制器,其中创建所述连接包括:分配所述第一物理层NE端口和所述第二物理层NE端口,以支持所述第一网络层NE和所述第二网络层NE之间的通信。
4.根据权利要求2所述的传输SDN控制器,其中创建所述连接包括:分配所述第一物理层NE端口和所述第二物理层NE端口之间的波长,以支持所述第一网络层NE和所述第二网络层NE之间的通信。
5.根据权利要求2所述的传输SDN控制器,其中创建所述连接包括:分配所述第一物理层NE端口和所述第二物理层NE端口之间的波长的时分复用部分,以支持所述第一网络层NE和所述第二网络层NE之间的通信。
6.根据权利要求1所述的传输SDN控制器,其中所述网络层LAG请求是减少LAG的容量的请求,并且其中修改所述物理层连接包括移除所述第一物理层NE端口和所述第二物理层NE端口之间的连接。
7.根据权利要求6所述的传输SDN控制器,其中移除所述连接包括:释放所述第一物理层NE端口和所述第二物理层NE端口对所述第一网络层NE和所述第二网络层NE之间的通信的支持。
8.根据权利要求6所述的传输SDN控制器,其中移除所述连接包括:释放所述第一物理层NE端口和所述第二物理层NE端口之间的波长对所述第一网络层NE和所述第二网络层NE之间的通信的支持。
9.根据权利要求6所述的传输SDN控制器,其中移除所述连接包括:释放所述第一物理层NE端口与所述第二物理层NE端口之间的波长的时分复用部分对所述第一网络层NE和所述第二网络层NE之间的通信的支持。
10.根据权利要求1所述的传输SDN控制器,其中所述被监测的网络层LAG请求包括所述第一网络层NE的网络层地址和所述第二网络层NE的网络层地址,并且其中基于所述物理拓扑和所述逻辑拓扑之间的关系来实现请求的LAG修改包括:
基于所述物理拓扑和所述逻辑拓扑之间的所述关系,确定所述第一网络层NE的所述网络层地址与所述第一物理层NE端口相邻;
基于所述物理拓扑和所述逻辑拓扑之间的所述关系,确定所述第二网络层NE的所述网络层地址与所述第二物理层NE端口相邻;和
基于对所述物理层NE端口和所述网络层NE的邻接的所述确定,选择要修改的连接。
11.根据权利要求1所述的传输SDN控制器,其中所述处理器还用于:
基于从物理层NE接收的物理层邻接发现消息,确定所述物理拓扑;和
基于从网络层NE接收的网络层邻接发现消息,确定所述逻辑拓扑。
12.一种由传输软件定义网络SDN控制器实现的方法,所述方法包括:
确定逻辑拓扑和物理拓扑之间的关系;
从物理层网元NE接收第一网络层链路聚合组LAG请求,所述第一网络层LAG请求指示第一网络层NE正在请求修改与第二网络层NE的第一网络层LAG;和
基于所述物理拓扑和所述逻辑拓扑,并基于所述接收的第一网络层LAG请求,修改与所述第一网络层NE相邻的第一物理层NE端口和与所述第二网络层NE相邻的第二物理层NE端口之间的物理层连接,以实现请求的LAG修改。
13.根据权利要求12所述的方法,还包括:
从物理层NE接收指示物理层端口邻接信息的物理层邻接发现消息;
基于所述物理层邻接发现消息,确定所述物理拓扑;
从网络层NE接收网络层邻接发现消息;
基于所述网络层邻接发现消息,确定所述逻辑拓扑;和
从所述物理层NE接收通告消息,每个通告消息指示物理层NE端口和相邻网络层NE之间的映射,
其中所述逻辑拓扑与所述物理拓扑的所述关系是根据所述物理层NE端口与所述相邻网络层NE之间的所述映射来确定的。
14.根据权利要求12所述的方法,还包括:向所述第一网络层NE和所述第二网络层NE发送确认消息,以指示已完成通过修改所述物理层连接以实现被请求的LAG修改。
15.根据权利要求12所述的方法,其中,所述第一网络层LAG请求指示超时持续时间,并且其中所述方法还包括:若在所述超时持续时间内未能接收到刷新所述第一网络层LAG请求的第二网络层LAG请求,则移除所述物理层连接,以实现隐式的网络层LAG删除请求。
16.一种由传输软件定义网络SDN控制器实现的方法,所述方法包括:
确定逻辑拓扑和物理拓扑之间的关系;
监测网络层广播消息的报头,以获得第一网络层链路聚合组LAG请求,所述第一网络层LAG请求指示第一网络层NE正在请求修改与第二网络层NE的网络层LAG;和
基于所述物理拓扑和所述逻辑拓扑,并基于接收的第一网络层LAG请求,修改与所述第一网络层NE相邻的第一物理层NE端口和与所述第二网络层NE相邻的第二物理层NE端口之间的物理层连接,以实现请求的LAG修改。
17.根据权利要求16所述的方法,其中从网络层开放最短路径优先OSPF消息、中间系统到中间系统IS-IS消息或边界网关协议BGP消息中监测所述第一网络层LAG请求。
18.根据权利要求16所述的方法,其中所述传输SDN控制器用于管理开放系统互连OSI层1和OSI层0网络通信功能,并且其中所述传输SDN控制器不用于管理OSI层2-4网络通信功能,其中所述OSI层1和OSI层0包括在传输层中,并且所述OSI层2-4包括在网络层中。
19.根据权利要求16所述的方法,其中所述第一网络层LAG请求指示超时持续时间,并且其中所述方法还包括:若在所述超时持续时间内未能接收到刷新所述第一网络层LAG请求的第二网络层LAG请求,则移除所述物理层连接,以实现隐式的网络层LAG删除请求。
20.根据权利要求16所述的方法,还包括:
从物理层NE接收指示物理层端口邻接信息的物理层邻接发现消息;
基于所述物理层邻接发现消息,确定所述物理拓扑;
从网络层NE接收网络层邻接发现消息;
基于所述网络层邻接发现消息,确定所述逻辑拓扑;和
从所述物理层NE接收通告消息,每个通告消息指示物理层NE端口和相邻网络层NE之间的映射,
其中所述逻辑拓扑与所述物理拓扑之间的所述关系是根据所述物理层NE端口与所述相邻网络层NE之间的所述映射来确定的。
CN201680029401.7A 2015-05-21 2016-04-08 传输软件定义网络-逻辑链路聚合成员信令的系统和方法 Active CN107615721B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/718,949 US10015053B2 (en) 2015-05-21 2015-05-21 Transport software defined networking (SDN)—logical link aggregation (LAG) member signaling
US14/718,949 2015-05-21
PCT/CN2016/078863 WO2016184272A1 (en) 2015-05-21 2016-04-08 Transport software defined networking (sdn) –logical link aggregation (lag) member signaling

Publications (2)

Publication Number Publication Date
CN107615721A CN107615721A (zh) 2018-01-19
CN107615721B true CN107615721B (zh) 2020-02-14

Family

ID=57319472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680029401.7A Active CN107615721B (zh) 2015-05-21 2016-04-08 传输软件定义网络-逻辑链路聚合成员信令的系统和方法

Country Status (5)

Country Link
US (1) US10015053B2 (zh)
EP (1) EP3289733B1 (zh)
JP (1) JP6515206B2 (zh)
CN (1) CN107615721B (zh)
WO (1) WO2016184272A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3523934A1 (en) * 2016-10-04 2019-08-14 Telefonaktiebolaget LM Ericsson (PUBL) Physical path control in hierarchical networks
WO2018221329A1 (ja) * 2017-05-29 2018-12-06 日本電気株式会社 隣接関係検出装置、システム、方法および記録媒体
CN108390821B (zh) * 2018-02-27 2020-11-27 盛科网络(苏州)有限公司 一种openflow交换机实现双活的方法及系统
US10944633B2 (en) * 2018-06-15 2021-03-09 Vmware, Inc. Methods and apparatus to configure virtual and physical networks for hosts in a physical rack
CN110875824B (zh) * 2018-08-30 2023-10-13 华为技术有限公司 一种故障多层链路恢复方法和控制器
US11477289B2 (en) * 2018-10-09 2022-10-18 Nokia Solutions And Networks Oy Supporting a routing protocol with a transport layer protocol
US20210234795A1 (en) * 2020-01-28 2021-07-29 Comcast Cable Communications, Llc Systems & methods for detecting communication link breaks

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540183B2 (ja) * 1999-01-21 2004-07-07 株式会社東芝 マルチリンク通信装置
JP2001060956A (ja) * 1999-08-23 2001-03-06 Nippon Telegr & Teleph Corp <Ntt> トランスポート層マルチリンク通信方法
US6757258B1 (en) 2000-05-04 2004-06-29 Cisco Technology, Inc. Method and apparatus for reducing OSPF flooding
JP4433624B2 (ja) 2001-02-28 2010-03-17 日本電気株式会社 通信ネットワーク、集中制御装置、通信ノード装置及びそれらに用いる状態通知情報相互交換方法
US6636654B2 (en) * 2001-03-30 2003-10-21 Optical Research Associates Programmable optical switching add/drop multiplexer
EP1593287B1 (en) 2002-10-04 2012-10-31 Nortel Networks Limited Apparatus, method and program for network topology discovery utilizing data link layer services
JP4518487B2 (ja) * 2004-11-25 2010-08-04 Kddi株式会社 光ネットワークを用いたl2転送システム
US20060221865A1 (en) 2005-03-30 2006-10-05 Tellabs Operations, Inc. Method and system for autonomous link discovery and network management connectivity of remote access devices
CN101400005B (zh) 2007-09-30 2012-08-08 华为技术有限公司 一种节点信息发布方法、系统和装置
US8077613B2 (en) * 2007-12-03 2011-12-13 Verizon Patent And Licensing Inc. Pinning and protection on link aggregation groups
US8243594B1 (en) * 2007-12-10 2012-08-14 Force10 Networks, Inc. Coordinated control of multiple parallel links or link aggregations
US8014278B1 (en) * 2007-12-17 2011-09-06 Force 10 Networks, Inc Adaptive load balancing between ECMP or LAG port group members
US7903554B1 (en) * 2008-04-04 2011-03-08 Force 10 Networks, Inc. Leaking component link traffic engineering information
JP5490517B2 (ja) * 2009-12-24 2014-05-14 日本電信電話株式会社 光通信システム、光通信方法およびolt
US8446914B2 (en) 2010-06-08 2013-05-21 Brocade Communications Systems, Inc. Method and system for link aggregation across multiple switches
US8452867B2 (en) * 2010-08-02 2013-05-28 Hewlett-Packard Development Company, L.P. Systems and methods for network and server power management
US9059940B2 (en) * 2010-08-04 2015-06-16 Alcatel Lucent System and method for transport control protocol in a multi-chassis domain
CN101938377B (zh) 2010-09-14 2012-06-27 华为数字技术有限公司 链路聚合故障保护方法、设备和系统
EP2642699A1 (en) * 2010-11-16 2013-09-25 Fujitsu Limited Method of controlling communication system, communication system, communication device
CN102158348A (zh) 2011-01-30 2011-08-17 北京星网锐捷网络技术有限公司 网络拓扑发现方法、装置及网络设备
US20120230185A1 (en) * 2011-03-09 2012-09-13 Futurewei Technologies, Inc. System and Method for Advertising a Composite Link in Interior Gateway Protocol and/or Interior Gateway Protocol-Traffic Engineering
US10484299B2 (en) 2011-06-10 2019-11-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for configuring quality of service
US8942256B1 (en) * 2012-01-06 2015-01-27 Juniper Networks, Inc. Advertising with a layer three routing protocol constituent link attributes of a layer two bundle
CN102594664B (zh) 2012-02-02 2015-06-17 杭州华三通信技术有限公司 流量转发方法和装置
WO2013118873A1 (ja) 2012-02-10 2013-08-15 日本電気株式会社 制御装置、通信システム、通信方法およびプログラム
US9071541B2 (en) 2012-04-25 2015-06-30 Juniper Networks, Inc. Path weighted equal-cost multipath
US8942089B2 (en) * 2012-05-08 2015-01-27 Cisco Technology, Inc. Method and apparatus for adaptive fast start in link aggregation
WO2013174445A1 (en) * 2012-05-25 2013-11-28 Telefonaktiebolaget L M Ericsson (Publ) A method of and apparatus for configuring a link in a label switching communication network
EP2858316A4 (en) 2012-05-25 2016-01-06 Nec Corp PACKET TRANSFER SYSTEM, CONTROL DEVICE, PACKET TRANSFER METHOD, AND CORRESPONDING PROGRAM
US8971323B2 (en) * 2012-06-15 2015-03-03 Citrix Systems, Inc. Systems and methods for dynamic routing in a cluster
JP2015530768A (ja) * 2012-10-03 2015-10-15 日本電気株式会社 制御装置、その制御方法及びプログラム
EP2720420B1 (en) 2012-10-12 2018-11-21 Alcatel Lucent Method for exchanging information for establishing a path between two nodes of a communication network
US9215093B2 (en) 2012-10-30 2015-12-15 Futurewei Technologies, Inc. Encoding packets for transport over SDN networks
EP2918054B1 (en) * 2012-11-12 2019-08-21 Alcatel Lucent System and method for a pass thru mode in a virtual chassis system
JP2014170985A (ja) * 2013-03-01 2014-09-18 Nec Corp 通信装置、通信方法、及び、通信プログラム
US9450817B1 (en) 2013-03-15 2016-09-20 Juniper Networks, Inc. Software defined network controller
CN104104570B (zh) * 2013-04-07 2018-09-04 新华三技术有限公司 Irf系统中的聚合处理方法及装置
EP2800304A1 (en) 2013-04-30 2014-11-05 Telefonaktiebolaget L M Ericsson (Publ) Technique for configuring a Software-Defined Network
US9525597B2 (en) * 2013-06-06 2016-12-20 Dell Products, L.P. System and method for base topology selection
US9276817B2 (en) 2013-07-12 2016-03-01 Hewlett Packard Enterprise Development Lp Method for determining network topology
US9787546B2 (en) 2013-08-07 2017-10-10 Harris Corporation Network management system generating virtual network map and related methods
US9843504B2 (en) 2013-08-09 2017-12-12 Futurewei Technologies, Inc. Extending OpenFlow to support packet encapsulation for transport over software-defined networks
CN103501236B (zh) 2013-08-26 2016-09-28 武汉烽火网络有限责任公司 网络控制平面逻辑拓扑生成方法及装置
US9258238B2 (en) 2013-08-30 2016-02-09 Juniper Networks, Inc. Dynamic end-to-end network path setup across multiple network layers
JP2015056836A (ja) * 2013-09-13 2015-03-23 アラクサラネットワークス株式会社 通信装置及びネットワークシステム
CN104468358B (zh) * 2013-09-25 2018-05-11 新华三技术有限公司 分布式虚拟交换机系统的报文转发方法及设备
US9247327B2 (en) 2013-10-10 2016-01-26 Nec Laboratories America, Inc. Suurballe-based cloud service embedding procedure in software-defined flexible-grid optical transport networks
US9450864B2 (en) 2013-10-11 2016-09-20 Futurewei Technologies, Inc. Using PCE as SDN controller
EP3055955B1 (en) 2013-10-11 2018-05-23 Xieon Networks S.à r.l. Centralized data path establishment augmented with distributed control messaging
US9225641B2 (en) 2013-10-30 2015-12-29 Globalfoundries Inc. Communication between hetrogenous networks
US20150188731A1 (en) * 2013-12-27 2015-07-02 Daniel P. Daly Programmable Distributed Networking
US9602427B2 (en) 2014-02-06 2017-03-21 Nec Corporation Cloud service embedding with shared protection in software-defined flexible-grid optical transport networks
US9749214B2 (en) 2014-02-26 2017-08-29 Futurewei Technologies, Inc. Software defined networking (SDN) specific topology information discovery
US9225597B2 (en) 2014-03-14 2015-12-29 Nicira, Inc. Managed gateways peering with external router to attract ingress packets
US9300592B2 (en) * 2014-03-14 2016-03-29 International Business Machines Corporation Physical port sharing in a link aggregation group
US9559946B2 (en) * 2014-03-31 2017-01-31 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Link aggregation group (LAG) support on a software-defined network (SDN)
US9407534B2 (en) 2014-05-27 2016-08-02 Telefonaktiebolaget L M Ericsson (Publ) Enhanced procedure to compute LFAs with IGP max metric
US9774502B2 (en) * 2014-06-25 2017-09-26 Ciena Corporation Systems and methods for combined software defined networking and distributed network control
US10187305B2 (en) 2014-07-02 2019-01-22 Futurewei Technologies, Inc. System and method for using a path control element as a central controller for local protection of label switched path (LSP)
US9450866B2 (en) 2014-07-11 2016-09-20 Telefonaktiebolaget L M Ericsson (Publ) Forwarding table performance control in SDN
US9503338B2 (en) * 2014-07-24 2016-11-22 Ciena Corporation Systems and methods to detect and propagate UNI operational speed mismatch in ethernet services
US9537785B2 (en) * 2014-08-14 2017-01-03 Ixia Link aggregation group (LAG) link allocation
US9436443B2 (en) 2014-08-28 2016-09-06 At&T Intellectual Property I, L.P. Software defined network controller
US9692684B2 (en) 2014-09-05 2017-06-27 Telefonaktiebolaget L M Ericsson (Publ) Forwarding table precedence in SDN
US9641249B2 (en) * 2014-09-18 2017-05-02 Lenovo Enterprise Solutions (Singapore) Pte, Ltd. Support for converged fiber channel over ethernet (FCoE) traffic on software defined networks (SDNs)
CN104283791B (zh) 2014-10-09 2018-04-06 新华三技术有限公司 一种sdn网络中的三层拓扑确定方法和设备
CN104283722B (zh) 2014-10-29 2018-05-08 新华三技术有限公司 Sdn链路状态信息收集方法及装置
CN104320345B (zh) 2014-10-30 2018-02-09 新华三技术有限公司 Sdn网络中拓扑信息收集的方法及装置
CN105704067B (zh) 2014-11-27 2019-01-08 英业达科技有限公司 交换装置
WO2016058263A1 (zh) 2014-12-16 2016-04-21 北京大学深圳研究生院 一种基于内容的路由方法和系统
US9369785B1 (en) 2014-12-18 2016-06-14 Juniper Networks, Inc. Integrated controller for routing / switching network and underlying optical transport system
US20160315866A1 (en) 2015-04-27 2016-10-27 Telefonaktiebolaget L M Ericsson (Publ) Service based intelligent packet-in mechanism for openflow switches
US9860350B2 (en) * 2015-05-12 2018-01-02 Huawei Technologies Co., Ltd. Transport software defined networking (SDN)—logical to physical topology discovery

Also Published As

Publication number Publication date
WO2016184272A1 (en) 2016-11-24
EP3289733A4 (en) 2018-03-21
JP6515206B2 (ja) 2019-05-15
US10015053B2 (en) 2018-07-03
EP3289733B1 (en) 2020-04-29
JP2018519728A (ja) 2018-07-19
US20160344652A1 (en) 2016-11-24
CN107615721A (zh) 2018-01-19
EP3289733A1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
CN107615721B (zh) 传输软件定义网络-逻辑链路聚合成员信令的系统和方法
US10542076B2 (en) Cloud service control and management architecture expanded to interface the network stratum
US10404571B2 (en) Communication among network controllers
US9118421B2 (en) Extending control plane functions to the network edge in an optical transport network
KR101317969B1 (ko) 링크 애그리게이션 방법 및 노드
US8295204B2 (en) Method and system for dynamic assignment of network addresses in a communications network
WO2020001044A1 (zh) 用于获取网络切片的方法、装置和系统
US9485198B1 (en) Methods and apparatus for multicast traffic failover in a network
CN107534611B (zh) 用于逻辑到物理拓扑发现的系统和方法
US10374935B2 (en) Link discovery method, system, and device
US9729948B1 (en) Systems and methods for discovery of a controller in openflow networks
CN107615722B (zh) 传输软件定义网络(sdn)——经由分组窥探的零配置邻接
WO2010130177A1 (zh) 业务连接建立方法、路径计算单元设备及网络系统
CN106533879B (zh) 一种ptn设备中dcn不规则域互通的方法及装置
US20100284268A1 (en) Node State Recovery for a Communication Network
US9525615B2 (en) Systems and methods for implementing multiple ISIS routing instances on a network element
Sreenath et al. An Online Distributed Protocol for the Restoration of Connectivity in the Virtual topology after Link failure in IP over WDM networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant