CN107573514B - 一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法 - Google Patents

一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法 Download PDF

Info

Publication number
CN107573514B
CN107573514B CN201710780017.7A CN201710780017A CN107573514B CN 107573514 B CN107573514 B CN 107573514B CN 201710780017 A CN201710780017 A CN 201710780017A CN 107573514 B CN107573514 B CN 107573514B
Authority
CN
China
Prior art keywords
polypyrrole
microwave
composite material
metal organic
organic framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710780017.7A
Other languages
English (en)
Other versions
CN107573514A (zh
Inventor
罗居杰
张怀平
郭清萍
张耀东
张新宇
王淑敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201710780017.7A priority Critical patent/CN107573514B/zh
Publication of CN107573514A publication Critical patent/CN107573514A/zh
Application granted granted Critical
Publication of CN107573514B publication Critical patent/CN107573514B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于新型能源材料技术领域,特别涉及一种用微波法制备超级电容器用聚吡咯/金属有机骨架纳米复合材料的方法。所述方法包括:将甲酸、镍盐、聚吡咯充分混合后置于家用微波炉中,通过控制聚吡咯、甲酸、镍盐三者的质量比、微波功率和微波加热时间进行微波反应,反应结束后,得到聚吡咯/金属有机骨架纳米复合材料。由于制备过程简单快速,且生产成本较低,该纳米复合材料具有广阔的应用前景。

Description

一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的 方法
技术领域
本发明属于新型能源材料技术领域,特别涉及一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法。
背景技术
超级电容器具有功率密度高、充电速度快、使用寿命长以及优秀的循环性能,在电子产品及能量回收和存储领域具有广阔的应用前景。电极材料是超级电容器的电化学性能优劣的关键因素,因此要实现超级电容器的广泛应用,必须制备和开发高性能的电极材料。
聚吡咯制备的赝电容电容器电极材料具有导电性能高,抗氧化性能好,高比电容以及合成制备简单等优势,但是聚吡咯循环稳定性差,自放电能力强,使其应用受到了很大限制,因此,通常要通过将聚吡咯与其它材料进行复合来提高其性能。
金属有机骨架( metal-organic frameworks,MOFs)是由金属离子与有机配体通过配位作用形成的多孔网状骨架结构材料。与传统的多孔材料相比,MOFs 具有结构多样、孔隙率高、比表面积大、孔容可调控、孔表面易功能化等优点。此外,MOFs中的金属离子可以发生氧化还原反应,产生对法拉第准电容的贡献。因此,MOFs逐渐被应用到电化学储能领域,如锂离子电池、燃料电池及超级电容器等。目前制备MOFs的方法比较多,主要有水热法、溶剂热法、球磨法、电化学合成法等。这些方法都存在反应时间长,操作方法相对复杂,效率相对较低的缺点,而且溶剂热法需用有机溶剂,对环境不安全。
本发明制备聚吡咯/金属有机骨架纳米复合材料,所采用的微波法具有操作简单、快速且不需要溶剂的优点。聚吡咯既是复合材料的原料,又是原位合成金属有机骨架的加热层,使得采用本发明方法制备聚吡咯/金属有机骨架纳米复合材料具有快速、简单、环境友好、价格低廉的优势,该纳米复合材料在储能领域将具有广阔的应用前景。
发明内容
本发明的目的在于克服现有技术的缺点和不足,提供一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的制备方法。通过控制聚吡咯与有机配体的质量比、微波功率和微波加热时间合成聚吡咯/金属有机骨架纳米复合材料。
为实现以上目的,本发明采用如下技术方案:一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法,包括以下步骤:
(1)称量质量份为0.1-50的聚吡咯,聚吡咯为聚吡咯纳米粒子、聚吡咯纳米线、聚吡咯纳米管中的一种;
(2)称量质量份为0.22-11的甲酸和质量份为0.2-10的镍盐,与步骤(1)中的聚吡咯混合均匀置于玻璃瓶中,镍盐为六水合硝酸镍、六水合氯化镍、四水合醋酸镍、草酸镍、六水合硫酸镍中的一种;
(3)将步骤(2)中的玻璃瓶置于微波炉中,经过一定的微波功率和加热时间即可得到聚吡咯/金属有机骨架纳米复合材料,其中微波功率为200-1000w,微波加热时间为10-400s。
上述的一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法,甲酸和镍盐的质量比为11:10; 聚吡咯和镍盐的质量比为5:1-1:2。
本发明提出了一种微波法制备聚吡咯/金属有机骨架纳米复合材料的方法。该方法采用微波法,以聚吡咯物作为微波加热层和复合原料之一,原位合成聚吡咯/金属有机骨架纳米复合材料。该方法具有快速、简单、环境友好、价格低廉等优点。材料合成方法简单,易于操作,具有良好的应用前景。
附图说明
图1为实施例1-4制备的聚吡咯/金属有机骨架纳米复合材料的X射线衍射图谱(XRD图)。
具体实施方式
下面结合实施例对本发明做详细描述,但是本发明的保护范围不仅限于下列实施例。
实施例1
(1)称量0.1g 聚吡咯纳米线;
(2)称量0.22g甲酸,0.2g六水合硝酸镍与步骤(1)中的聚吡咯纳米线混合均匀,置于小玻璃瓶中;
(3)将步骤(2)中的小玻璃瓶放置在微波炉中,微波功率200w,微波加热时间10s,得到样品。
实施例2
(1)称量50g聚吡咯纳米管;
(2) 称量11g甲酸,10g四水合醋酸镍与步骤(1)中的聚吡咯纳米管混合均匀,置于小玻璃瓶中;
(3)将步骤(2)中的小玻璃瓶放置在微波炉中,微波功率1000w,微波加热时间400s,得到样品。
实施例3
(1)称量0.1g 聚吡咯纳米粒子;
(2)称量0.22g甲酸,0.2g草酸镍与步骤(1)中的聚吡咯纳米粒子混合均匀,置于小玻璃瓶中;
(3)将步骤(2)中的小玻璃瓶放置在微波炉中,微波功率500w,微波加热时间60s,得到样品。
实施例4
(1)称量0.4g 聚吡咯纳米线;
(2)称量0.44g甲酸,0.4g六水合氯化镍与步骤(1)中的聚吡咯纳米线混合均匀,置于小玻璃瓶中;
(3)将步骤(2)中的小玻璃瓶放置在微波炉中,微波功率800w,微波加热时间30s,得到样品。

Claims (2)

1.一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法,其特征在于包括以下步骤:
(1)称量质量份为0.1-50的聚吡咯,聚吡咯为聚吡咯纳米粒子、聚吡咯纳米线、聚吡咯纳米管中的一种;
(2)称量质量份为0.22-11的甲酸和质量份为0.2-10的镍盐,与步骤(1)中的聚吡咯混合均匀置于玻璃瓶中,镍盐为六水合硝酸镍、六水合氯化镍、四水合醋酸镍、草酸镍、六水合硫酸镍中的一种;
(3)将步骤(2)中的玻璃瓶置于微波炉中,经过一定的微波功率和加热时间即可得到聚吡咯/金属有机骨架纳米复合材料,其中微波功率为200-1000w,微波加热时间为10-400s。
2.根据权利要求1所述的一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法,其特征在于甲酸和镍盐的质量比为11:10;聚吡咯和镍盐的质量比为5:1-1:2。
CN201710780017.7A 2017-09-01 2017-09-01 一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法 Expired - Fee Related CN107573514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710780017.7A CN107573514B (zh) 2017-09-01 2017-09-01 一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710780017.7A CN107573514B (zh) 2017-09-01 2017-09-01 一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法

Publications (2)

Publication Number Publication Date
CN107573514A CN107573514A (zh) 2018-01-12
CN107573514B true CN107573514B (zh) 2020-08-07

Family

ID=61030618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710780017.7A Expired - Fee Related CN107573514B (zh) 2017-09-01 2017-09-01 一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法

Country Status (1)

Country Link
CN (1) CN107573514B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933455A (zh) * 2020-06-12 2020-11-13 扬州大学 应用于超级电容器的PNT@NiCo-LDH复合材料及其制备方法
CN112574560B (zh) * 2020-11-30 2022-06-28 安徽工业大学 一种聚合物复合铋酸铜纳米片的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061522A1 (en) * 2003-12-05 2005-07-07 Eastman Kodak Company Synthesis for organometallic cyclometallated transition metal complexes
US20070232841A1 (en) * 2006-03-31 2007-10-04 Canon Kabushiki Kaisha Fluorene derivative and organic electroluminescence device using the same
CN104241605A (zh) * 2014-09-19 2014-12-24 中国科学院宁波材料技术与工程研究所 一种无定形碳材料的制备方法及其在锂离子电池中的应用
CN107020387A (zh) * 2016-02-01 2017-08-08 北京化工大学 一种常温常压快速制备铜纳米线-金属有机骨架zif-8复合材料的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190797B (zh) * 2010-03-08 2014-11-05 安徽大学 具有纳米孔洞的三嗪基共价键有机骨架材料的快速合成方法及用途
CN103170640B (zh) * 2011-12-22 2015-08-19 同济大学 一种微波合成FeNi纳米棒的方法
CN104844798B (zh) * 2015-05-06 2017-01-18 南昌航空大学 一种纳米多孔聚吡咯管的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061522A1 (en) * 2003-12-05 2005-07-07 Eastman Kodak Company Synthesis for organometallic cyclometallated transition metal complexes
US20070232841A1 (en) * 2006-03-31 2007-10-04 Canon Kabushiki Kaisha Fluorene derivative and organic electroluminescence device using the same
CN104241605A (zh) * 2014-09-19 2014-12-24 中国科学院宁波材料技术与工程研究所 一种无定形碳材料的制备方法及其在锂离子电池中的应用
CN107020387A (zh) * 2016-02-01 2017-08-08 北京化工大学 一种常温常压快速制备铜纳米线-金属有机骨架zif-8复合材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fabrication and high-performance microwave absorption of Ni@SnO2@PPy Core-Shell composite;Yan Wang,等;《Synthetic Metals》;20160716;第220卷;第347-353页 *
含镍多孔材料的合成和表征研究;王业红;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20100915(第9期);第B020-136页 *
钴( II) 镍( II) 超分子配合物的微波合成、晶体结构;檀鑫,等;《首都师范大学学报( 自然科学版)》;20111231;第32卷(第6期);第37-41页 *

Also Published As

Publication number Publication date
CN107573514A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
Sun et al. Metal–Organic Framework Derived Honeycomb Co9S8@ C Composites for High‐Performance Supercapacitors
Wang et al. Nitrogen-doped macro-meso-micro hierarchical ordered porous carbon derived from ZIF-8 for boosting supercapacitor performance
CN103803527B (zh) 一种多孔碳的制备方法及其产品
Chen et al. In situ construction of porous Ni/Co-MOF@ Carbon cloth electrode with honeycomb-like structure for high-performance energy storage
Bao et al. Advanced hybrid supercapacitors assembled with CoNi LDH nanoflowers and nanosheets as high-performance cathode materials
Liu et al. Metal‐Organic Frameworks‐Derived NiS2/CoS2/N‐Doped Carbon Composites as Electrode Materials for Asymmetric Supercapacitor
Zhang et al. Wire spherical-shaped Co-MOF electrode materials for high-performance all-solid-state flexible asymmetric supercapacitor device
Yue et al. Design and synthesis of conductive metal‐organic frameworks and their composites for supercapacitors
Ren et al. In-situ transformation of Ni foam into sandwich nanostructured Co1. 29Ni1. 71O4 nanoparticle@ CoNi2S4 nanosheet networks for high-performance asymmetric supercapacitors
Ren et al. Advanced hybrid supercapacitors assembled with beta-Co (OH) 2 microflowers and microclews as high-performance cathode materials
Wang et al. Poplar branch bio-template synthesis of mesoporous hollow Co3O4 hierarchical architecture as an anode for long-life lithium ion batteries
CN104157853B (zh) 一种负极材料、其制备方法及应用
Zhang et al. Influence of Co-MOF morphological modulation on its electrochemical performance
He et al. Cattail spike-like Co (OH) F@ Co3O4 nanoarrays for high-performance supercapacitors
CN105552366A (zh) 一种锂电池负极材料-氮掺杂SnS/C复合纳米材料的制备方法
CN108054020A (zh) 一种氮掺杂碳颗粒/石墨化碳氮复合材料的制备方法及应用
Lv et al. Ni3S2 nanoparticles encapsulated in S-doped biomass-derived hierarchically porous carbon as an advanced electrode for excellent hybrid supercapacitors performance
CN105405680A (zh) 一种碳颗粒/二氧化锰复合电极材料的制备方法
Wang et al. Morphology evolution of CoNi‐LDHs synergistically engineered by precipitant and variable cobalt for asymmetric supercapacitor with superior cycling stability
CN108039283B (zh) 一种基于原位聚合的富氮掺杂多级孔碳材料及其制备方法与应用
Huang et al. Bimetallic organic framework in situ fabrication nanoflower-like cobalt nickel sulfide and ultrathin layered double hydroxide arrays for high-efficient asymmetric hybrid supercapacitor
Yang et al. Ultrahigh Rate Capability and Lifespan MnCo2O4/Ni‐MOF Electrode for High Performance Battery‐Type Supercapacitor
Xing et al. Defect-Engineered 3D Cross-Network Co3O4–x N x Nanostructure for High-Performance Solid-State Asymmetric Supercapacitors
CN107573514B (zh) 一种用微波法制备聚吡咯/金属有机骨架纳米复合材料的方法
Liu et al. Carbon coating on metal oxide materials for electrochemical energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200807