CN107540045B - 碳化硅材料的使用方法、臭氧光催化剂及包含其的反应器 - Google Patents

碳化硅材料的使用方法、臭氧光催化剂及包含其的反应器 Download PDF

Info

Publication number
CN107540045B
CN107540045B CN201710958250.XA CN201710958250A CN107540045B CN 107540045 B CN107540045 B CN 107540045B CN 201710958250 A CN201710958250 A CN 201710958250A CN 107540045 B CN107540045 B CN 107540045B
Authority
CN
China
Prior art keywords
ozone
silicon carbide
carbide material
photocatalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710958250.XA
Other languages
English (en)
Other versions
CN107540045A (zh
Inventor
谢勇冰
曹宏斌
李玉平
盛宇星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Handan Iron and Steel Group Co., Ltd
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201710958250.XA priority Critical patent/CN107540045B/zh
Publication of CN107540045A publication Critical patent/CN107540045A/zh
Priority to US16/159,982 priority patent/US20190112211A1/en
Application granted granted Critical
Publication of CN107540045B publication Critical patent/CN107540045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/104Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1028Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20784Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2094Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • B01D2255/707Additives or dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种碳化硅材料的使用方法,将所述碳化硅材料用于臭氧光催化反应。本发明将碳化硅材料用于臭氧光催化反应,可克服碳化硅光催化效率低的问题,利用其光生电子较强的还原性,还原臭氧分子高效产羟基自由基,提高处理过程的氧化能力。在可见光或紫外光与臭氧耦合时均具有较强的催化活性,且碳化硅成本低,稳定性好,延长了臭氧光催化剂或设备的寿命。

Description

碳化硅材料的使用方法、臭氧光催化剂及包含其的反应器
技术领域
本发明属于废水、废气处理技术领域,具体涉及一种碳化硅作为催化剂用于臭氧-光催化处理废水、废气的用途,以及包含所述碳化硅材料的臭氧光催化剂和臭氧光催化反应器。
背景技术
碳化硅是一种半导体材料,具有热导率高、电子饱和迁移速率大、临界击穿电场高、介电常数低等诸多优点,主要用于LED器件衬底、电力电子器件、射频微波器件衬底、石墨烯外延衬底等领域,在通信、电网、航空航天、石油开采及国防军事等众多领域具有良好的应用前景。现有技术也有把碳化硅作为催化剂,用于光催化分解水制氢或水体污染物降解,但其本身活性很低,例如在光催化分解水制氢时需要负载金属铂,在光催化处理水体污染物时,需要与其他半导体光催化剂复合,应用前景非常渺茫。
对于光催化反应,其催化剂需要具有较好的电子-空穴分离性能,而对于臭氧光催化反应,反应体系中的臭氧分子有利于电子-空血分离,因此电子-空穴分离特性对于效果的提升并不明显。
而对于臭氧光催化,是在臭氧和入射光共同作用下产生羟基自由基,实现对废水、废气中不易被常规氧化剂氧化的污染物高效去除的目标。臭氧光催化技术主要采用紫外光作为光源,但紫外光源制造成本高,并且稳定使用寿命较短。开发可见光下的臭氧光催化剂,能够降低臭氧光催化的成本。现有技术可见光与臭氧耦合处理的催化剂主要采用WO3、C3N4等材料,但存在活性偏低,催化剂不稳定的问题,还应进一步研究完善。
本领域需要开发一种能够使用可见光作为光源的臭氧光催化剂,降低臭氧光催化的成本。
发明内容
针对现有技术的不足,本发明的目的之一在于提供一种碳化硅材料的使用方法,将所述碳化硅材料用于臭氧光催化反应。
碳化硅作为一种半导体材料,具有宽禁带、高击穿电场、高导热率、高饱和电子迁移率的特点,在高温、高频、大功率、光电子以及抗辐射器件等方面具有应用前景。而本发明发现碳化硅材料具有臭氧光催化活性,将其用作臭氧光催化反应,可以显著引发臭氧和可见光或紫外光的协同作用。在相同条件下,臭氧光催化降解有机物的反应速率远远大于臭氧催化氧化和光催化氧化的反应速率之和能够明显的提高臭氧光催化的反应速率。同时由于碳化硅材料是一种非金属材料,具有无毒、轻质、化学稳定性非常高等优点,用作臭氧光催化反应时,表现出非常好的活性与稳定性,能够从源头上避免催化剂的失活及金属溶出的二次污染。此外,选用碳化硅材料作为臭氧光催化剂,赋予臭氧光催化剂良好的导热性能、抗氧化性能和机械强度。
对于碳化硅材料用作臭氧光催化剂时,使用方法包括:在光照条件下,以包含所述碳化硅材料的物质为催化剂,将其与废水和/或废气接触,同时通入含有臭氧的气体,进行反应。
对于碳化硅材料用作臭氧光催化时,其除了能够对紫外光有良好响应,对于可见光也表相处良好的响应,因此,当选用碳化硅作为臭氧光催化剂时,作为臭氧光催化的入射光,其可以选择紫外光,还可以选择可见光,或者同时选择紫外光和可见光。
本发明对碳化硅的种类不做具体限定,任何一种型号的碳化硅均可用于本发明,示例性的包括β型碳化硅、α型碳化硅等,或者本领域技术人员能够获得的不同型号的碳化硅的混合物。
优选地,所述光照的入射光包括紫外光和/或可见光,优选波长范围为10~400nm的紫外光、波长范围为400~820nm的可见光、波长范围为10~820nm的全波长入射光、波长范围为190~800nm的模拟太阳光波长中的任意1种。
示例性地,所述光照的入射光可以包括如下列举的任意点值或者由以下列举的任意点值组成的数值范围:
8nm、15nm、30nm、60nm、80nm、95nm、100nm、110nm、130nm、160nm、180nm、195nm、200nm、210nm、230nm、260nm、280nm、295nm、300nm、310nm、330nm、360nm、380nm、395nm、400nm、410nm、430nm、460nm、480nm、495nm、500nm、510nm、530nm、560nm、580nm、595nm、600nm、610nm、630nm、660nm、680nm、695nm、700nm、710nm、730nm、760nm、780nm、795nm、800nm、810nm、830nm、860nm、880nm、895nm等。
优选地,所述光照的入射光为连续波长的入射光或单波长的入射光,优选连续波长入射光。
作为优选技术方案,本发明所述催化剂还包括掺杂物,所述掺杂物优选包括金属单质、金属氧化物、氮化碳、钒酸铋中的任意1种或至少2种的组合。
掺杂物的加入能够进一步提高碳化硅对可见光的响应,并且提高光生电子和空穴的分离效率,进而提高臭氧光催化的反应速率。
优选地,所述金属单质、金属氧化物中的金属包括钯、铂、金、银、钌、铑、铱、锰、铜、铁、钴、镍、铬、钒、钼、钛、锌、钨、锡中的任意1种或至少2种的组合。
掺杂物可以以任何本领域技术人员能够获得的方式进行掺杂,例如浸渍后高温焙烧,浸渍后高温还原,光化学氧化法,光化学还原法等,本发明不做具体限定。
优选地,所述掺杂物掺杂在所述碳化硅材料的表面。
本发明所述催化剂还可以包括其他的功能性成分,示例性的例如还可以包括载体,所述碳化硅材料负载在所述载体上。载体的作用是承载所述的催化剂,使其能够稳定的存在,避免出现团聚等问题。本发明所述碳化硅材料负载在所述载体上的方式本发明不做具体限定,可以通过物理混合焙烧、高速球磨或者在其他载体制备过程掺入碳化硅材料,本发明不做具体限定。本发明所述载体优选包括泡沫镍、分子筛、二氧化钛、氧化锌、三氧化钨、氮化碳中的任意1种或至少2种的组合。
优选地,所述碳化硅材料的存在形式包括固体碳化硅粉末烧结成型的多孔碳化硅材料、负载在固体载体表面的碳化硅粉末、涂敷在反应器内壁的碳化硅粉末和碳化硅粉体材料中的任意1种或至少2种的组合。
优选地,所述碳化硅粉体材料包括实心碳化硅粉末、介孔碳化硅、碳化硅纳米棒、碳化硅空心球中的任意1种或至少2种的组合。
优选地,所述碳化硅材料的制备方法包括模板法、溶胶凝胶、碳热还原法、聚碳硅烷裂解法、化学气相沉积法、高温热蒸发法、燃烧法中的任意1种或至少2种的组合。
在臭氧光催化反应中,臭氧可以以臭氧混合气的形式通入,所述臭氧混合气是以氧气或洁净空气作为气体源,经过臭氧反应器高压电离产生的氧气和臭氧的混合气体(简称臭氧混合气)。
优选地,所述含有臭氧的气体包括臭氧混合气,所述臭氧混合气中,臭氧浓度为≤160mg/L,例如155mg/L、150mg/L、140mg/L、130mg/L、110mg/L、80mg/L、60mg/L、50mg/L、40mg/L、30mg/L、20mg/L、10mg/L、7mg/L、3mg/L等,优选40~150mg/L。合适的臭氧浓度与光照配合,能够高效进行臭氧光催化反应。
优选地,所述臭氧混合气包括氧气源产生的臭氧混合气。
优选地,当所述碳化硅材料单独用于臭氧光催化处理废水时,其用量为0.1~5g/L,例如0.3g/L、0.6g/L、0.8g/L、1.0g/L、1.5g/L、1.8g/L、2.0g/L、2.3g/L、2.6g/L、2.9g/L、3.3g/L、3.6g/L、3.8g/L、4.0g/L、4.3g/L、4.6g/L、4.8g/L等,优选0.2~1g/L。
当单独将碳化硅材料用于臭氧光催化处理废水,其用量为0.1~5g/L时,臭氧的通入量优选为20~150mg/L,例如25mg/L、40mg/L、65mg/L、80mg/L、95mg/L、102mg/L、115mg/L、125mg/L、135mg/L、145mg/L等,入射光波长为200~420nm。
本发明目的之二是提供一种臭氧光催化剂,所述臭氧催化剂包括碳化硅材料。
本发明提供的臭氧催化剂包含碳化硅材料,其能够对于可见光下的臭氧光催化有响应,扩展了臭氧光催化的入射光波长。此外,由于碳化硅材料稳定性好,且臭氧光催化活性高,因此提高了臭氧光催化剂的活性。
优选地,当所述碳化硅材料与金属单质和/或金属氧化物中的任意1种复配时,所述臭氧催化剂中,碳化硅材料的含量≥95wt%,例如96wt%、97wt%、98wt%、99wt%、99.5wt%等,优选95~99.9wt%。
优选地,所述金属单质和/或金属氧化物掺杂在所述碳化硅材料的表面。
本发明对金属单质和/或金属氧化物不做具体限定,示例性地可以选择钯、铂、金、银、钌、铑、铱、锰、铜、铁、钴、镍中的任意1种或至少2种的组合。
优选地,当所述碳化硅材料负载在载体上时,所述臭氧催化剂中,碳化硅材料的含量为5~50wt%,例如6wt%、9wt%、12wt%、18wt%、25wt%、28wt%、35wt%、38wt%、45wt%、48wt%等,优选10~40wt%wt%。
优选地,所述载体包括二氧化钛、氧化锌、三氧化钨、泡沫镍中的任意1种或至少2种的组合。
本发明的目的之三是提供一种臭氧光催化反应器,所述臭氧光催化反应器的催化单元中包含碳化硅材料。
优选地,所述臭氧光催化反应器的催化单元中包含目的之二所述的臭氧光催化剂。
优选地,所述臭氧光催化反应器的光源包括能够发射紫外光和/或可见光的光源,优选包括能够发射波长范围为10~400nm的紫外光、波长范围为400~820nm的可见光、波长范围为10~820nm的全波长入射光、波长范围为190~800nm的模拟太阳光波长中的任意1种的光源。
本发明目的之二提供的臭氧光催化剂和/或目的之三提供的臭氧光催化反应器能够用于废水,实现废水中有机物降解、废水脱色、除泡、杀菌的目的;还可以用于废气和/或大气的处理,实现废气和/或大气中挥发性有机物去除、杀菌、除臭的目的。
与现有技术相比,本发明具有如下有益效果:
(1)本发明提供了一种碳化硅材料作为臭氧光催化反应的催化剂的新用途,碳化硅通常用作半导体,将其用作臭氧光催化的催化剂来源广泛,稳定性好,能够降低臭氧光催化的成本,延长臭氧光催化剂或设备的寿命;
(2)本发明提供了一种含有碳化硅材料的臭氧光催化剂,由于含有的碳化硅材料对可见光具有臭氧光催化活性,且反应活性高,稳定性好,因此扩展了含有碳化硅材料的臭氧光催化剂的入射光范围,降低了催化剂的使用量,同样催化剂用量下提高了反应速率,延长了催化剂的寿命;
(3)本发明将碳化硅材料用于臭氧光催化反应,可克服碳化硅光催化效率低的问题,利用其光生电子较强的还原性,还原臭氧分子高效产羟基自由基,提高处理过程的氧化能力。在可见光或紫外光与臭氧耦合时均具有较强的催化活性,且碳化硅成本低,稳定性好,延长了臭氧光催化剂或设备的寿命。。
附图说明
图1为实施例1的对羟基苯甲酸降解曲线;
图2为实施例1的TOC去除率;
图3为实施例2的TOC去除率;
图4为实施例3的草酸降解曲线;
图5为实施例4的TOC去除率。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
一种臭氧紫外光催化去除有机废水中对羟基苯甲酸的方法,包括如下步骤:
在半连续反应器中,以400mL初始浓度为40mg/L的对羟基苯甲酸为反应液,将外照式氙灯光源垂直放置于反应器上方,采用滤光片过滤掉可见光区,使光源仅发射紫外光,光波长范围为190~400nm,光照强度为160mW/cm2;臭氧混合气的流速为100mL/min,臭氧浓度为20mg/L;称取80mg碳化硅(催化剂)投入到反应液中,碳化硅浓度为0.2g/L,固液充分混匀后打开紫外光源并同时向反应器中持续通入臭氧混合气;反应时长1小时,并保留不同时段的样品,用高效液相色谱仪检测反应物对羟基苯甲酸的浓度,用总有机碳分析仪检测总有机碳(TOC)的浓度;
图1为实施例1的对羟基苯甲酸降解曲线,图2为实施例1的TOC去除率。从图1看出反应20min时对羟基苯甲酸已完全去除;从图2可以看出反应1h后TOC去除率达到95.8%,说明绝大部分对羟基苯甲酸已被彻底矿化为水和二氧化碳,深度氧化去除效果优异。
将催化剂取出,重复进行如上实验,测定循环使用10次后的催化活性(即重复对羟基苯甲酸的去除步骤,测定TOC去除率),结果显示催化活性下降低于0.2%。
实施例2
一种臭氧可见光催化去除医药废水中青霉素(Penicillin G)的方法,包括如下步骤:
在连续反应器中,反应溶液的有效体积150mL,青霉素初始浓度为36mg/L;采用插入式可见光光源,碳化硅涂覆固载在圆柱状反应器内壁,光波长范围为420~800nm,光照强度为130mW/cm2,光源外壁与反应器内壁间距为1cm。臭氧混合气的流速为100mL/min,臭氧浓度为20mg/L;模拟废水进入反应器后,打开可见光源并同时向反应器中持续通入臭氧混合气;调整待处理废水的流速,以控制反应器内有效停留时间为1小时,用高效液相色谱测定出口处溶液中青霉素的浓度,用总有机碳分析仪检测出口处溶液中TOC的浓度。
图3为实施例2的TOC去除率。从图3可以看出,反应1小时后TOC去除率达到54.3%,说明大部分中间产物已被彻底地矿化成水和二氧化碳。
将催化剂取出,重复进行如上实验,测定循环使用10次后的催化活性(即重复青霉素的分解步骤,测定TOC去除率),结果显示催化活性下降低于0.2%。
实施例3
一种臭氧可见光去除有机废水中草酸的方法,包括如下步骤:
采用半连续反应器,反应溶液的体积为300mL,草酸浓度为180mg/L;将外罩式氙灯光源垂直放置于反应器上方,采用滤光片过滤掉可见光区,使光源仅发射可见光,光波长范围为420~800nm,光照强度为490mW/cm2;臭氧混合气的流速为100mL/min,臭氧浓度为20mg/L;称取60mg碳化硅投入到反应液中,催化剂浓度为0.2g/L,固液充分混匀后打开紫外光源并同时向反应器中持续通入臭氧混合气;反应时长1小时,并保留不同时段的样品,用高效液相色谱仪检测反应物草酸的浓度;
图4为实施例3的草酸降解曲线,从图中可以看出反应45min时草酸几乎全部降解完毕。由于草酸是多数有机物降解的中间产物,且不易被臭氧氧化,这种方法对草酸降解速率快,表明其对有机物深度氧化具有较好效果。
将催化剂取出,重复进行如上实验,测定循环使用10次后的催化活性(即重复草酸的降解步骤,测定草酸的去除率),结果显示催化活性下降低于0.1%。
实施例4
一种臭氧太阳光去除有机废水中头孢氨苄的方法,包括如下步骤:
采用半连续反应器,反应溶液的体积为400mL,头孢氨苄浓度为37mg/L;将外罩式氙灯光源垂直放置于反应器上方,光波长范围为190~800nm(模拟太阳光波长),光照强度为200mW/cm2;臭氧混合气的流速为100mL/min,臭氧浓度为30mg/L;称取80mg碳化硅投入到反应液中,催化剂浓度为0.2g/L,固液充分混匀后打开紫外光源并同时向反应器中持续通入臭氧混合气;反应时长1小时,反应过程中保留不同时间段的样品,用高效液相色谱仪检测反应物头孢氨苄的浓度,用总有机碳分析仪检测TOC的浓度;
高效液相色谱的测试结果表明头孢氨苄在反应5min时就快速降解,因此降解曲线未列出。图5为实施例4的TOC去除率,从图5可以看出反应1h后TOC去除率达到25%,实施例4提供了一种利用太阳能的降解新思路,若进行条件优化,污染物的矿化程度还有进一步提升的空间。
将催化剂取出,重复进行如上实验,测定循环使用10次后的催化活性(即重复头孢氨苄的去除步骤,测定TOC去除率),结果显示催化活性下降低于0.1%。
实施例5
一种臭氧可见光催化去除制药废水的方法,包括如下步骤:
采用半连续反应器,反应溶液的体积为400mL,制药废水的COD浓度为260mg/L;将外罩式氙灯光源垂直放置于反应器上方,光波长范围为190~800nm(模拟太阳光波长),光照强度为200mW/cm2;臭氧混合气的流速为100mL/min,臭氧浓度为30mg/L。所用催化剂为碳化硅与氮化碳复合材料,二者质量比为1:1。称取400mg催化剂投入到反应液中,催化剂浓度为1g/L,固液充分混匀后打开紫外光源并同时向反应器中持续通入臭氧混合气;反应时长1小时,结束后测定废水的COD浓度;
处理1小时后,制药废水的COD降至127mg/L,处理效果非常显著。将催化剂取出,重复进行如上实验,测定循环使用10次后的催化活性(即重复头孢氨苄的去除步骤,测定TOC去除率),结果显示催化活性下降低于0.1%。
实施例6
一种臭氧紫外光催化处理造纸废水生化出水的方法,包括如下步骤:
在半连续反应器中,处理400mL造纸废水的生化出水,COD初始浓度为80mg/L,将外照式氙灯光源垂直放置于反应器上方,采用滤光片过滤掉可见光区,使光源仅发射紫外光,光波长范围为190~400nm,光照强度为160mW/cm2;臭氧混合气的流速为100mL/min,臭氧浓度为160mg/L;称取2g碳化硅(催化剂)投入到反应液中,碳化硅浓度为5g/L,固液充分混匀后打开紫外光源并同时向反应器中持续通入臭氧混合气;反应时长1小时,反应结束后测定溶液的COD浓度;
反应1小时后,溶液COD降低至37mg/L,说明溶液中大部分有机物被彻底矿化为水和二氧化碳,深度氧化去除效果优异。
将催化剂取出,重复进行如上实验,测定循环使用10次后的催化活性(即重复头孢氨苄的去除步骤,测定TOC去除率),结果显示催化活性下降低于0.2%。
对比例1
一种碳化硅紫外光催化去除模拟废水中草酸的方法,包括如下步骤:
在半连续反应器中,以300mL初始浓度为180mg/L的草酸为反应液,将外照式氙灯光源垂直放置于反应器上方,采用滤光片过滤掉可见光区,使光源仅发射紫外光,光波长范围为190~400nm,光照强度为160mW/cm2;称取80mg碳化硅(催化剂)投入到反应液中,碳化硅浓度为0.2g/L,固液充分混匀后打开紫外光源,反应时长1小时,用高效液相色谱仪检测溶液中草酸浓度;
反应1小时后,溶液中草酸去除率仅3.5%,表明碳化硅的紫外光催化活性很低。
对比例2
一种碳化硅可见光催化去除模拟废水中草酸的方法,包括如下步骤:
实验条件与对比例1相似,仅将光源改为可见光,光波长范围为420~800nm,光照强度为490mW/cm2.
反应1小时后,溶液中草酸去除率仅2.8%,表明碳化硅的紫外光催化活性很低。
对比例3
一种碳化硅催化臭氧氧化去除模拟废水中草酸的方法,包括如下步骤:
在半连续反应器中,以300mL初始浓度为180mg/L的草酸为反应液,通入的臭氧混合气的流速为100mL/min,臭氧浓度为20mg/L;称取80mg碳化硅(催化剂)投入到反应液中,碳化硅浓度为0.2g/L,固液充分混匀后持续通入臭氧混合气;反应时长1小时,用高效液相色谱仪检测溶液中草酸的浓度;
反应1小时后,溶液中草酸去除率仅4.1%,表明碳化硅的催化臭氧氧化活性很低。
从对比例1~3和实施例3的结果可以看出,在碳化硅作为催化剂时,单纯的光照(包括紫外、可见光)或者臭氧条件,对于废液中草酸的去除效果非常不好,去除率都在5%以内,而将碳化硅作为催化剂用于臭氧光催化,能够将废液中的草酸几乎全部除去(至少99%以上),获得了预想不到的技术效果。而所述碳化硅作为臭氧光催化剂用于其他废水中污染物的去除,也表现出优异的效果,例如对有机废水中对羟基苯甲酸1h的去除率在95%以上,且催化剂活性降低在0.2%以下;对医药废水中青霉素、头孢氨苄等污染物,去除1h后大部分中间产物都可以被降解;对有机废水中草酸45min能够将废水中的草酸几乎全部降解完毕。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (19)

1.一种碳化硅材料的使用方法,其特征在于,所述使用方法包括:在光照条件下,以包含所述碳化硅材料的物质为催化剂,将其与废水和/或废气接触,同时通入含有臭氧的气体,进行反应;所述含有臭氧的气体包括臭氧混合气,所述臭氧混合气中,臭氧浓度为10~160mg/L;所述光照的入射光包括可见光;所述催化剂中碳化硅材料的含量≥95wt%。
2.如权利要求1所述的使用方法,其特征在于,所述光照的入射光包括波长范围为400~820nm的可见光、波长范围为10~820nm的全波长入射光、波长范围为190~800nm的模拟太阳光波长中的任意1种。
3.如权利要求1所述的使用方法,其特征在于,所述光照的入射光为连续波长的入射光或单波长的入射光。
4.如权利要求1所述的使用方法,其特征在于,所述催化剂还包括掺杂物。
5.如权利要求4所述的使用方法,其特征在于,所述掺杂物包括金属单质、金属氧化物、氮化碳、钒酸铋中的任意1种或至少2种的组合。
6.如权利要求5所述的使用方法,其特征在于,所述金属单质、金属氧化物中的金属包括钯、铂、金、银、钌、铑、铱、锰、铜、铁、钴、镍、铬、钒、钼、钛、锌、钨、锡中的任意1种或至少2种的组合。
7.如权利要求5所述的使用方法,其特征在于,所述金属单质或金属氧化物掺杂在所述碳化硅材料的表面。
8.如权利要求1所述的使用方法,其特征在于,所述碳化硅材料的存在形式包括固体碳化硅粉末烧结成型的多孔碳化硅材料、负载在固体载体表面的碳化硅粉末、涂敷在反应器内壁的碳化硅粉体材料中的任意1种或至少2种的组合。
9.如权利要求8所述的使用方法,其特征在于,所述碳化硅粉体材料包括实心碳化硅粉末、介孔碳化硅、碳化硅纳米棒、碳化硅空心球中的任意1种或至少2种的组合。
10.如权利要求1所述的使用方法,其特征在于,所述碳化硅材料的制备方法包括模板法、溶胶凝胶、碳热还原法、聚碳硅烷裂解法、化学气相沉积法、高温热蒸发法、燃烧法中的任意1种或至少2种的组合。
11.如权利要求1所述的使用方法,其特征在于,所述臭氧混合气包括氧气源产生的臭氧混合气。
12.如权利要求1所述的使用方法,其特征在于,当所述碳化硅材料单独用于臭氧光催化处理废水时,其用量为0.1~5g/L。
13.如权利要求12所述的使用方法,其特征在于,当所述碳化硅材料单独用于臭氧光催化处理废水时,其用量为0.2~1g/L。
14.一种臭氧光催化剂的用途,其特征在于,所述臭氧光催化剂包括碳化硅材料,含有臭氧的气体包括臭氧混合气,所述臭氧混合气中,臭氧浓度为10~160mg/L;所述臭氧光催化剂中碳化硅材料的含量≥95wt%,催化的入射光包括可见光。
15.如权利要求14所述的用途,其特征在于,所述碳化硅材料与金属单质和/或金属氧化物中的任意1种复配。
16.如权利要求15所述的用途,其特征在于,所述碳化硅材料与金属单质和/或金属氧化物中的任意1种复配,所述臭氧催化剂中,碳化硅材料的含量为95~99.9wt%。
17.如权利要求15所述的用途,其特征在于,所述金属单质和/或金属氧化物掺杂在所述碳化硅材料的表面。
18.一种臭氧光催化反应器,其特征在于,所述臭氧光催化反应器的催化单元中包含碳化硅材料,碳化硅材料的含量≥95wt%;含有臭氧的气体包括臭氧混合气,所述臭氧混合气中,臭氧浓度为10~160mg/L;所述臭氧光催化反应器的光源为能够发射可见光的光源。
19.如权利要求18所述的臭氧光催化反应器,其特征在于,所述臭氧光催化反应器的光源包括能够发射波长范围为400~820nm的可见光、波长范围为10~820nm的全波长入射光、波长范围为190~800nm的模拟太阳光波长中的任意1种的光源。
CN201710958250.XA 2017-10-16 2017-10-16 碳化硅材料的使用方法、臭氧光催化剂及包含其的反应器 Active CN107540045B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710958250.XA CN107540045B (zh) 2017-10-16 2017-10-16 碳化硅材料的使用方法、臭氧光催化剂及包含其的反应器
US16/159,982 US20190112211A1 (en) 2017-10-16 2018-10-15 Method for Photocatalytic Ozonation Reaction, Catalyst for photocatalytic ozonation and Reactor Containing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710958250.XA CN107540045B (zh) 2017-10-16 2017-10-16 碳化硅材料的使用方法、臭氧光催化剂及包含其的反应器

Publications (2)

Publication Number Publication Date
CN107540045A CN107540045A (zh) 2018-01-05
CN107540045B true CN107540045B (zh) 2021-04-16

Family

ID=60967117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710958250.XA Active CN107540045B (zh) 2017-10-16 2017-10-16 碳化硅材料的使用方法、臭氧光催化剂及包含其的反应器

Country Status (2)

Country Link
US (1) US20190112211A1 (zh)
CN (1) CN107540045B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020264112A1 (en) 2019-06-25 2020-12-30 California Institute Of Technology Reactive electrochemical membrane for wastewater treatment
CN110404568A (zh) * 2019-08-14 2019-11-05 安徽科博瑞环境科技有限公司 一种用于高浓度有机废水处理的高效催化剂及其制备方法
CN110841683B (zh) * 2019-11-18 2020-07-14 宁波航天米瑞科技有限公司 二氧化钛复合光催化剂及其制备方法
CN111167496B (zh) * 2020-01-09 2020-12-25 南开大学 一种可见光催化材料及其制备方法和应用
CN112058290B (zh) * 2020-01-21 2023-05-26 中国石油大学(华东) 光催化改性材料在清除海洋溢油中的应用
CN112159011A (zh) * 2020-09-27 2021-01-01 青岛理工大学 一种紫外/臭氧耦合催化剂的高级氧化系统及污水处理工艺
CN112246268A (zh) * 2020-10-12 2021-01-22 四川旭航新材料有限公司 一种新型高效的臭氧催化材料及其制备方法
WO2022132662A1 (en) * 2020-12-14 2022-06-23 California Institute Of Technology "super bubble" electro-photo hybrid catalytic system for advanced treatment of organic wastewater
CN112973757B (zh) * 2021-03-08 2022-11-08 合肥工业大学 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法
CN113213714A (zh) * 2021-06-15 2021-08-06 上海灿星环境科技有限公司 一种原料药废水处理工艺
CN113428967A (zh) * 2021-07-13 2021-09-24 中科合成油内蒙古有限公司 一种多维高级氧化有机废水深度处理方法和系统
CN116393177B (zh) * 2021-12-28 2024-09-13 万华化学集团股份有限公司 一种催化臭氧氧化NOx的催化剂及其制备方法和用途
CN114394710B (zh) * 2022-01-23 2022-11-22 河北海力香料股份有限公司 一种氨乙基硫醚生产废水的处理方法
CN114620801B (zh) * 2022-03-29 2022-11-25 北京安力斯环境科技股份有限公司 一种用于难降解污水处理的光催化回流增效氧化系统
CN114682280B (zh) * 2022-04-11 2024-01-12 南方科技大学 镍单原子催化剂及其制备方法与应用
CN116239078B (zh) 2023-05-10 2023-08-22 中国科学院过程工程研究所 一种光解水制氢装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501801A (en) * 1993-11-30 1996-03-26 Board Of Control Of Michigan Technology University Method and apparatus for destroying organic compounds in fluid
US5790934A (en) * 1996-10-25 1998-08-04 E. Heller & Company Apparatus for photocatalytic fluid purification
KR100271945B1 (ko) * 1998-04-06 2000-11-15 장인순 방사선과tio₂를이용한하수및폐수의처리방법
US6074564A (en) * 1998-04-09 2000-06-13 Black & Veatch, L.L.P. Ozone injection system
JP4273105B2 (ja) * 2005-08-31 2009-06-03 日本ピラー工業株式会社 流体用照射装置
WO2016094658A1 (en) * 2014-12-11 2016-06-16 Microlin, Llc Devices for disinfection, deodorization, and/or sterilization of objects
US10125031B2 (en) * 2015-06-08 2018-11-13 King Fahd University Of Petroleum And Minerals Method for disinfecting a fluid with a palladium-doped tungsten trioxide photo-catalyst
CN205586816U (zh) * 2016-04-18 2016-09-21 东莞市绿月环保工程有限公司 一种低浓度有机废气净化组合设备

Also Published As

Publication number Publication date
US20190112211A1 (en) 2019-04-18
CN107540045A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
CN107540045B (zh) 碳化硅材料的使用方法、臭氧光催化剂及包含其的反应器
Rengaraj et al. Photocatalytic degradation of methylparathion—an endocrine disruptor by Bi3+-doped TiO2
CN107473337B (zh) 电催化膜与三维电极耦合处理难降解废水的装置和方法
CN106622211B (zh) 一种臭氧催化氧化材料及其制备方法和应用
KR101334970B1 (ko) 광촉매 재료, 유기물 분해 방법, 내장부재, 공기청정 장치, 산화제 제조 장치
Cheng et al. The simultaneous removal of heavy metals and organic contaminants over a Bi 2 WO 6/mesoporous TiO 2 nanotube composite photocatalyst
CN103586026A (zh) 一种用于臭氧氧化的炭载催化剂及其制备方法与它的用途
CN101952040A (zh) 共掺杂的二氧化钛泡沫和水消毒设备
JP6552090B2 (ja) 光触媒複合体材料およびその製造方法
El Gaidoumi et al. Mesoporous pyrophyllite–titania nanocomposites: Synthesis and activity in phenol photocatalytic degradation
CN105536787B (zh) 一种复合催化剂及制备方法和应用
Bocos et al. Application of a new sandwich of granular activated and fiber carbon as cathode in the electrochemical advanced oxidation treatment of pharmaceutical effluents
CN102600838A (zh) 纳米银-二氧化钛负载多孔堇青石泡沫陶瓷催化剂及制备
CN108212170A (zh) 有机废水降解用臭氧氧化催化剂及其制备方法
CN106955728A (zh) 一种高效负载型臭氧氧化催化剂的制备方法与应用
Shamsi Kasmaei et al. Kinetic and thermodynamic studies on the reactivity of hydroxyl radicals in wastewater treatment by advanced oxidation processes
CN103230802A (zh) 一种可见光响应的复合光催化剂的制备方法及其除砷方法
Santos et al. Dye degradation enhanced by coupling electrochemical process and heterogeneous photocatalysis
CN113663730A (zh) 一种铁基有机骨架复合材料及其制备方法和应用
KR101183518B1 (ko) 가시광 활성 구형 탄소계 기공소재 및 그의 제조방법
CN109382102B (zh) 用于室内甲醛和苯完全快速降解的可见光催化材料的制备方法
Zhao et al. Preparation of TiO 2/sponge composite for photocatalytic degradation of 2, 4, 6-trichlorophenol
EP4115972A1 (en) Unwanted substance removal device and method for removing unwanted substance, and separation device and separation method
CN111068641A (zh) 多相芬顿催化剂及含酚废水的芬顿氧化处理方法
Casillas et al. Coupled Al-Ga-xAg composites prepared by the sol–gel method and their efficient photocatalytic performance in the degradation of diclofenac

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220207

Address after: 100190 No. two, No. 1, North Haidian District, Beijing, Zhongguancun

Patentee after: Institute of Process Engineering, Chinese Academy of Sciences

Patentee after: Handan Iron and Steel Group Co., Ltd

Address before: 100190 No. two, No. 1, North Haidian District, Beijing, Zhongguancun

Patentee before: Institute of Process Engineering, Chinese Academy of Sciences

TR01 Transfer of patent right