CN107525836B - CeO2-x/C/rGO纳米复合材料及其制备方法和用途 - Google Patents

CeO2-x/C/rGO纳米复合材料及其制备方法和用途 Download PDF

Info

Publication number
CN107525836B
CN107525836B CN201710712034.7A CN201710712034A CN107525836B CN 107525836 B CN107525836 B CN 107525836B CN 201710712034 A CN201710712034 A CN 201710712034A CN 107525836 B CN107525836 B CN 107525836B
Authority
CN
China
Prior art keywords
ceo
preparation
rgo nanocomposite
nanocomposite
btc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710712034.7A
Other languages
English (en)
Other versions
CN107525836A (zh
Inventor
吴玉程
罗兰
崔接武
彭帮国
王岩
张勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201710712034.7A priority Critical patent/CN107525836B/zh
Publication of CN107525836A publication Critical patent/CN107525836A/zh
Application granted granted Critical
Publication of CN107525836B publication Critical patent/CN107525836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种以金属‑有机框架物为前驱体的CeO2‑x/C/rGO纳米复合材料及其制备方法和用途。具体方法是将1,3,5‑BTC乙醇溶液和Ce(NO3)3水溶液加入氧化石墨烯溶液中,在室温下进行搅拌,对搅拌后的混合溶液进行离心处理,获得Ce(1,3,5‑BTC)(H2O)6/GO纳米复合物,即CeO2‑x/C/rGO纳米复合材料的前驱体。最后对前驱体在氩气中进行煅烧处理,制备CeO2‑x/C/rGO纳米复合材料。该纳米复合材料制备方法快速简单,成本低廉,且具有良好的电化学性能,可用于构筑电化学生物传感器的基体材料。

Description

CeO2-x/C/rGO纳米复合材料及其制备方法和用途
技术领域
本发明涉及纳米复合材料领域,具体涉及一种以金属-有机物框架物为前驱体,结合煅烧处理从而获得CeO2-x/C/rGO纳米复合材料及其并将其应用于尿酸电化学生物传感器的构筑中。
背景技术
电化学生物传感器由分子识别元件和信号转换元件组成,识别元件采用生物材料及其衍生物去识别被测目标,而信号转换元件则把生物活性表达的信号转换为电信号,这种特征检测电信号具体表现为电势、电流或电导变化。生物传感器具有专一性强,灵敏度高,分析过程简便等优势,在已研究出的生物传感器电极材料中,基体材料多采用单相的贵金属、碳材料以及金属氧化物等材料。在碳材料中,石墨烯具有高的电子迁移率,而在众多金属氧化物材料中, CeO2纳米材料具有良好的电化学活性和生物兼容性,这两种材料已经广泛应用于不同类型的电化学生物传感器的基体材料。
金属-有机框架物是一类具有周期性框架结构多孔网状材料,具有高的比表面积。以金属-有机框架物为前驱体,结合煅烧处理获得的CeO2-x/C/rGO纳米复合材料既具有单相金属氧化物的性能优势,又赋予其单相金属氧化物所不具有的性能,同时得益于金属-有机框架物独特的结构,使得此纳米复合材料具有高的比表面积,以此纳米复合材料构筑电化学生物传感器,可有效提高其检测性能,如:灵敏度、线性范围、检测极限等。
发明内容
本发明要解决的技术问题为克服现有技术中的不足之处,提供一种具有较高电化学活性的CeO2-x/C/rGO纳米复合材料及其制备方法和用途。
为了实现上述发明目的,本发明提供如下技术方案:
一种CeO2-x/C/rGO纳米复合材料,以金属-有机框架物Ce-BTC为前驱体,以还原氧化石墨烯为载体,CeO2以非化学计量比的状态存在,其中,0.2<x<0.3。
一种CeO2-x/C/rGO纳米复合材料的制备方法,具体步骤如下:
(1)将通过改进的Hummer’s法制得的氧化石墨烯超声处理1.8-2.2h,随后用去离子水稀释,并进行剧烈搅拌,搅拌速度为2400-2600rpm;
(2)在室温下,将1,3,5-BTC乙醇溶液和Ce(NO3)3水溶液加入步骤(1) 中正在搅拌的氧化石墨烯水溶液中,立即产生大量棕色沉淀,其中1,3,5-BTC与 Ce(NO3)3摩尔比为1:1-1:4之间;
(3)将步骤(2)中获得的沉淀在3800-4200rpm转速下离心4-6min,随后依次用乙醇和去离子水清洗2-4次以去除残留的反应剂,在90-110℃干燥1.8-2.2h;
(4)将步骤(3)中干燥后的样品在玛瑙研钵中研磨至细粉;
(5)将步骤(4)中获得的样品在氩气气氛中煅烧,煅烧温度580-620℃,升温速率1-3℃/min,保温1.8-2.2h。
一种CeO2-x/C/rGO纳米复合材料的用途,可用于构建尿酸电化学生物传感器的基体材料。
与已有技术相比,本发明的有益效果体现在:
一方面本发明以金属-有机框架物为前驱体,利用其比表面积高的特点,结合电子迁移率高的石墨烯,可以获得电化学性能更好的CeO2-x/C/rGO纳米复合材料;另一方面本发明的制备方法快速简单,混合溶液在剧烈搅拌下立即形成前驱体;随后在氩气中煅烧过程后,得到CeO2-x/C/rGO纳米复合材料。由于在氩气煅烧过程中产生了大量氧空位,形成了Ce3+离子,从而使该纳米复合材料对双氧水在负电位下具有良好的还原性能。本发明制备而成的CeO2-x/C/rGO纳米复合材料用于构筑尿酸电化学生物传感器的参数为:10微升100U mL-1的尿酸酶滴加于CeO2-x/C/rGO纳米复合材料修饰的玻碳电极表面,其优化的负载量为0.75mg cm-2,随后量取5微升2.5v/v%戊二醛和2.8w/v%牛血清白蛋白混合溶液滴加于尿酸酶修饰的电极表面形成保护膜。
附图说明
图1为本发明中实施例1所制备CeO2-x/C/rGO纳米复合材料前驱体的扫描电子照片;
图2中(a)(b)为本发明中实施例2所制备CeO2-x/C/rGO纳米复合材料的扫描电子照片;
图3中(a)(b)为本发明中实施例2所制备CeO2-x/C/rGO纳米复合材料的透射电子显微镜电子照片;
图4中(a)(b)为基于CeO2-x/C/rGO纳米复合材料的尿酸电化学生物传感器对不同浓度尿酸的电流响应及校准曲线。
具体实施方式
下面结合具体事例针对本发明作进一步说明。
实施例1:
1、CeO2-x/C/rGO纳米复合材料前驱体的制备
(1)将通过改进的Hummer’s法制得的4mg/ml氧化石墨烯超声处理2h,随后用去离子水稀释为1mg/ml,并进行剧烈搅拌,搅拌速度为2500rpm;
(2)将84mg 1,3,5-BTC溶于20mL乙醇中获得1,3,5-BTC乙醇溶液,将 260mg硝酸铈溶于20mL蒸馏水中获得硝酸铈水溶液;
(3)在室温下,将步骤(2)中获得的两种溶液加入步骤(1)中处于搅拌状态中的石墨烯溶液中,立即产生棕色沉淀;
(4)将步骤(3)中获得的沉淀在4000rpm转速下离心5min,随后用乙醇和去离子水清洗3次以去除残留的反应剂,在100℃干燥2h;
(5)将步骤(4)中干燥后的样品在玛瑙研钵中研磨至细粉。
本实例所制备的CeO2-x/C/rGO纳米复合材料前驱体的形貌如图1所示。
实施例2:
1、CeO2-x/C/rGO纳米复合材料前驱体的制备
(1)将通过改进的Hummer’s法制得的4mg/ml氧化石墨烯超声处理2h,随后用去离子水稀释为0.5mg/ml,并进行剧烈搅拌,搅拌速度为2500rpm;
(2)将84mg 1,3,5-BTC溶于20mL乙醇中获得1,3,5-BTC乙醇溶液,将 174mg硝酸铈溶于20mL蒸馏水中获得硝酸铈水溶液;
(3)在室温下,将步骤(2)中获得的两种溶液加入步骤(1)中处于搅拌状态中的石墨烯溶液中,立即产生棕色沉淀;
(4)将步骤(3)中获得的沉淀在4000rpm转速下离心5min,随后用乙醇和去离子水清洗3次以去除残留的反应剂,在100℃干燥2h;
(5)将步骤(4)中干燥后的样品在玛瑙研钵中研磨至细粉。
2、CeO2-x/C/rGO纳米复合材料的制备
将制备的CeO2-x/C/rGO纳米复合材料前驱体在氩气气氛中煅烧,煅烧温度 600℃,升温速率2℃/min,保温2小时,即可获得CeO2-x/C/rGO纳米复合材料。
本实例所制备的CeO2-x/C/rGO纳米复合材料表面形貌如图2中(a)(b) 所示,TEM照片如图3中(a)(b)所示。
CeO2-x/C/rGO纳米复合材料的用途为:
利用CeO2-x/C/rGO纳米复合材料的生物兼容性、独特的结构以及良好的电化学性能,可用于构筑尿酸电化学生物传感器。
以实施例2中制备的CeO2-x/C/rGO纳米复合材料构筑尿酸电化学生物传感器的参数为:10微升100U mL-1的尿酸酶滴加于CeO2-x/C/rGO纳米复合材料修饰的玻碳电极表面,其优化的负载量为0.75mg cm-2,随后量取5微升2.5v/v%戊二醛和2.8w/v%牛血清白蛋白混合溶液滴加于尿酸酶修饰的电极表面形成保护膜。获得的尿酸电化学生物传感器对尿酸的响应及校准曲线如图4所示,基于CeO2-x/C/rGO纳米复合材料的尿酸生物传感器对尿酸展示出较高的灵敏度、宽的线性范围和良好的选择性。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (2)

1.一种CeO2-x/C/rGO纳米复合材料的制备方法,以金属-有机框架物Ce-BTC为前驱体,以还原氧化石墨烯为载体,CeO2以非化学计量比的状态存在,其中,0.2<x<0.3,其特征在于,制备方法具体步骤如下:
(1)将通过改进的Hummer’s法制得的氧化石墨烯超声处理1.8-2.2h,随后用去离子水稀释,并进行剧烈搅拌,搅拌速度为2400-2600rpm;
(2)在室温下,将1,3,5-BTC乙醇溶液和Ce(NO3)3水溶液加入步骤(1)中正在搅拌的氧化石墨烯水溶液中,立即产生大量棕色沉淀,其中1,3,5-BTC与Ce(NO3)3摩尔比为1:1-1:4之间;
(3)将步骤(2)中获得的沉淀在3800-4200rpm转速下离心4-6min,随后依次用乙醇和去离子水清洗2-4次以去除残留的反应剂,在90-110℃干燥1.8-2.2h;
(4)将步骤(3)中干燥后的样品在玛瑙研钵中研磨至细粉;
(5)将步骤(4)中获得的样品在氩气气氛中煅烧,煅烧温度580-620℃,升温速率1-3℃/min,保温1.8-2.2h。
2.根据权利要求1所述的一种CeO2-x/C/rGO纳米复合材料的制备方法,其特征在于:制备而成的CeO2-x/C/rGO纳米复合材料可用于构建尿酸电化学生物传感器的基体材料。
CN201710712034.7A 2017-08-18 2017-08-18 CeO2-x/C/rGO纳米复合材料及其制备方法和用途 Active CN107525836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710712034.7A CN107525836B (zh) 2017-08-18 2017-08-18 CeO2-x/C/rGO纳米复合材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710712034.7A CN107525836B (zh) 2017-08-18 2017-08-18 CeO2-x/C/rGO纳米复合材料及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN107525836A CN107525836A (zh) 2017-12-29
CN107525836B true CN107525836B (zh) 2019-05-28

Family

ID=60681445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710712034.7A Active CN107525836B (zh) 2017-08-18 2017-08-18 CeO2-x/C/rGO纳米复合材料及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN107525836B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342527B (zh) * 2018-11-26 2020-09-01 阜阳师范学院 一种用于测定苯乙胺电极的制备方法
CN110292912B (zh) * 2019-07-19 2022-04-12 长安大学 一种mof衍生的簇状铈基除磷吸附剂及其制备方法
CN110629266B (zh) * 2019-10-30 2020-10-16 贵州民族大学 一种具有自修复特性的超疏水不锈钢表面的制备方法
CN115389600A (zh) * 2022-09-09 2022-11-25 湘潭大学 扑热息痛电化学传感器及其制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649337B (zh) * 2015-03-03 2016-08-17 合肥工业大学 多孔NiO/CeO2杂化纳米片阵列及其制备方法和用途
CN105866208A (zh) * 2016-05-31 2016-08-17 合肥工业大学 CeO2 @CNT核壳纳米线阵列及其制备方法和用途
CN106268953A (zh) * 2016-08-12 2017-01-04 桂林电子科技大学 一种氧化石墨烯和含铈配位聚合物的棒状多孔复合材料及其制备方法

Also Published As

Publication number Publication date
CN107525836A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
CN107525836B (zh) CeO2-x/C/rGO纳米复合材料及其制备方法和用途
Ge et al. Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis
SoYoon et al. Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application
Patil et al. Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation
Liu et al. A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection
Li et al. Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing
Feng et al. MnO2/graphene nanocomposites for nonenzymatic electrochemical detection of hydrogen peroxide
Khan et al. Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode
Zhang et al. A novel nonenzymatic sensor based on LaNi0. 6Co0. 4O3 modified electrode for hydrogen peroxide and glucose
Yu et al. Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO 4 microrods
Chu et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods
Wang et al. Perovskite LaTiO3–Ag0. 2 nanomaterials for nonenzymatic glucose sensor with high performance
Ye et al. A novel nonenzymatic hydrogen peroxide sensor based on LaNi0. 5Ti0. 5O3/CoFe2O4 modified electrode
Dong et al. A nonenzymatic L-cysteine sensor based on SnO2-MWCNTs nanocomposites
Li et al. Dual-functional cubic cuprous oxide for non-enzymatic and oxygen-sensitive photoelectrochemical sensing of glucose
Jahani Evaluation of the usefulness of an electrochemical sensor in detecting ascorbic acid using a graphite screen-printed electrode modified with NiFe2O4 nanoparticles
Fatemi et al. Apple–biomorphic synthesis of porous ZnO nanostructures for glucose direct electrochemical biosensor
CN101140257B (zh) 含镍铝水滑石纳米片的生物传感器酶功能敏感膜及其制备方法
CN105699368B (zh) 一种基于二维复合材料构建的双功能过氧化氢无酶传感器的制备方法及应用
CN103954660B (zh) 一种检测胆固醇的酶生物传感器及其制备方法与应用
Mehmood et al. Role of Au (NPs) in the enhanced response of Au (NPs)-decorated MWCNT electrochemical biosensor
Shamsipur et al. Highly sensitive non-enzymatic electrochemical glucose sensor by Nafion/SBA-15-Cu (II) modified glassy carbon electrode
CN103616418A (zh) 一种dna电化学生物传感器及其制备方法
CN103033549A (zh) 一种基于石墨烯的双酶葡萄糖传感器的制备方法
Gupta ZnO based third generation biosensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant