CN107503981B - 一种中低比转速混流泵叶轮设计方法 - Google Patents

一种中低比转速混流泵叶轮设计方法 Download PDF

Info

Publication number
CN107503981B
CN107503981B CN201710852903.6A CN201710852903A CN107503981B CN 107503981 B CN107503981 B CN 107503981B CN 201710852903 A CN201710852903 A CN 201710852903A CN 107503981 B CN107503981 B CN 107503981B
Authority
CN
China
Prior art keywords
impeller
pump
rice
formula
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710852903.6A
Other languages
English (en)
Other versions
CN107503981A (zh
Inventor
付强
陈铭
朱荣生
王秀礼
刘刚
李梦圆
张国玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710852903.6A priority Critical patent/CN107503981B/zh
Publication of CN107503981A publication Critical patent/CN107503981A/zh
Application granted granted Critical
Publication of CN107503981B publication Critical patent/CN107503981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • F04D29/242Geometry, shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • F04D29/183Semi axial flow rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps

Abstract

本发明提供了一种中低比转速混流泵叶轮的设计方法,已知泵的设计工况流量Q、设计工况扬程H、设计工况转速n和叶轮比转速ns参数,来计算混流透平叶轮的主要几何参数,包括:叶轮的进口当量直径D0、叶轮的进口直径Dj、叶片的进口直径D1、叶轮轮毂直径Dh、叶片的进口角β1、叶轮的出口直径D2、叶轮的出口宽度b2、叶片的出口角β2、叶片的后盖板与轴线夹角ε、叶片的前盖板与轴线夹角γ、叶轮的出口与轴线夹角θ。采用本发明设计的混流泵叶轮在一定程度上改善了叶轮内流态,大大降低了水力损失,从而提高了泵运行的稳定性和高效性。

Description

一种中低比转速混流泵叶轮设计方法
技术领域
本发明涉及混流泵领域,特别涉及一种中低比转速混流泵叶轮设计方法。
背景技术
混流泵是当原动机带动叶轮旋转后,对液体的作用既有离心力又有轴向推力,是离心泵和轴流泵的综合,液体斜向流出叶轮,因此它是介于离心泵和轴流泵之间的一种泵。混流泵的比转速高于离心泵,低于轴流泵。它的扬程比轴流泵高,但流量比轴流泵小,比离心泵大。用于输送清洁和污染的介质,化学中性或侵蚀性的介质,化工流程中强制循环、海水养殖、城市煤气工程、水处理系统。
然而现有中低比转速混流泵叶轮并没有专有的水力部件设计理论,只是在离心泵设计的基础上稍加改变。导致了混流泵水力效率提升不明显。
为了使混流泵的水力设计更加合理,实现以尽可能少的投资达到最佳的装置性能,本人提供了一种中低比转速混流泵叶轮设计方法。
专利号为CN201611051487.1的中国发明专利中公开了一种大功率潜水混流泵壳体,包括主壳体,主壳体上设有输入端固定板,主壳体上还设有输出过滤端,主壳体前面设有主动力供应端,主动力供应端端面为上大下小的螺旋柱横截面,主壳体内部设有螺旋导流柱,螺旋导流柱为弧形结构,主壳体与输入端固定板之间设有输入端加强筋,主壳体顶部高胡两个整体加固结构。
专利号为CN201510392759.3的中国发明专利中公开了一种多级立式高比转速混流泵,它包括吸入喇叭口及设置在中心的驱动轴,吸入喇叭口上端连接有首级导叶体,首级导叶体上端连接有次级导叶体,吸入喇叭口与首级导叶体之间设置有首级叶轮,首级导叶体与次级导叶体之间设置有次级叶轮。现有对于混流泵的设计方法专利多基于其机械结构的改进,针对中低比转速混流泵缺少完备的水力设计方案。
发明内容
针对现有技术中存在不足,本发明提供了一种中低比转速混流泵叶轮设计方法,不仅提高了泵运行效率,而且同时考虑了其抗空化性能、稳定性、安全性以及经济性。
本发明是通过以下技术手段实现上述技术目的的。
一种中低比转速混流泵叶轮设计方法,已知泵的设计工况流量Q、设计工况扬程H、设计工况转速n和叶轮比转速ns参数,由下面公式计算叶轮轮毂直径Dh
Dh=(1.148e0.0000781n-0.0000001108e0.004352n)·dB
式中:
Dh—叶轮轮毂直径,米;
dB—泵轴直径,米;其中:
Q—泵的流量,米3/秒;
H—泵的扬程,米;
ρ—输送介质密度,千克/米3
[τ]—泵轴材料许用应力,帕;
n—设计工况转速,转/分。
进一步,所述叶轮的进口直径Dj的设计公式:
式中:
D0—叶轮的进口当量直径,米;
Q—泵的流量,米3/秒;
n—设计工况转速,转/分;
Dj—叶轮的进口直径,米;
Dh—叶轮轮毂直径,米。
进一步,所述叶轮的出口直径D2的设计公式:
式中:
ns—叶轮比转速;
Q—泵的流量,米3/秒;
n—设计工况转速,转/分;
D2—叶轮的出口直径,米;
H—泵的扬程,米。
进一步,所述叶轮的出口宽度b2的设计公式:
式中:
ns—叶轮比转速;
Q—泵的流量,米3/秒;
n—设计工况转速,转/分;
b2—叶轮的出口宽度,米。
进一步,所述叶轮的叶片出口直径D1的设计公式:
式中:
Dj—叶轮进口直径,米;
H—泵的扬程,米;
D1—叶轮的叶片进口直径,米。
进一步,所述叶轮的叶片出口角β2的设计公式:
β2=506.6Q3-266.6Q2+72.13Q+24.33
式中:
Q—泵的流量,米3/秒;
β2—叶轮的叶片出口角,度。
进一步,所述叶轮的叶片进口角β1的设计公式:
β1=18.54n0.04622
式中:
n—设计工况转速,转/分;
β1—叶轮的叶片进口角,度。
进一步,所述叶轮的后盖板与轴线夹角ε的设计公式:
式中:
H—泵的扬程,米;
ε—叶轮的后盖板与轴线夹角,度。
进一步,所述叶轮的前盖板与轴线夹角γ的设计公式:
γ=64.31-4.842cos(11.57Q)+2.844sin(11.57Q)
式中:
Q—泵的流量,米3/秒;
γ—叶轮的前盖板与轴线夹角,度。
进一步,所述叶轮的出口与轴线夹角θ的设计公式:
θ=60.62sin(0.01381H+0.5513)+31.51sin(0.0197H+3.293)
式中:
H—泵的扬程,米;
θ—叶轮的出口与轴线夹角,度。
本发明的有益效果在于:
1.本发明所述的中低比转速混流泵叶轮设计方法,可以得到相对完善准确的中低比转速混流泵叶轮的主要几何参数的设计方法。通过上述计算方法确定混流泵叶轮的主要几何参数,包括:叶轮的进口当量直径D0、叶轮进口直径Dj、叶片的进口直径D1、叶轮轮毂直径Dh、叶片的进口角β1、叶轮的出口直径D2、叶轮的出口宽度b2、叶片的出口角β2、叶片的后盖板与轴线夹角ε、叶片的前盖板与轴线夹角γ、叶轮的出口与轴线夹角θ。该设计方案在一定程度上提高了泵运行效率,同时也有利于提高其抗空化性能,从而提高了系统运行的稳定性和高效性。
附图说明
图1为本发明所述的中低比转速混流泵叶轮剖面图。
图2为本发明所述的混流泵叶轮叶片平面图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
本发明通过以下几个公式来确定一种中低比转速混流泵叶轮的主要几何参数,包括叶轮的进口当量直径D0、叶轮的进口直径Dj、叶片的进口直径D1、叶轮轮毂直径Dh、叶片的进口角β1、叶轮的出口直径D2、叶轮的出口宽度b2、叶片的出口角β2、叶片的后盖板与轴线夹角ε、叶片的前盖板与轴线夹角γ、叶轮的出口与轴线夹角θ。
如图1和图2所示,此实施例是在已知泵的设计工况流量Q、设计工况扬程H、设计工况转速n和叶轮比转速ns参数,来计算一种中低比转速混流泵叶轮的主要几何参数,例如Q=0.07米3/秒,H=17米,n=1450转/分钟,
Dh=(1.148e0.0000781n-0.0000001108e0.004352n)·dB=0.030m
β2=506.6Q3-266.6Q2+72.13Q+24.33=28.15°
β1=18.54n0.04622=25.95°
γ=64.31-4.842cos(11.57Q)+2.844sin(11.57Q)=63.03°
θ=60.62sin(0.01381H+0.5513)+31.51sin(0.0197H+3.293)=28.17°
本发明采用相对准确的公式对一种中低比转速混流泵叶轮的主要几何参数进行设计,主要是通过改善叶轮的相关参数以提高其效率。这不仅提高了泵运行的稳定性和高效性,还降低了其维修周期。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

1.一种中低比转速混流泵叶轮设计方法,其特征在于,已知泵的流量Q、泵的扬程H、设计工况转速n和叶轮比转速ns参数,由下面公式计算叶轮轮毂直径Dh
Dh=(1.148e0.0000781n-0.0000001108e0.004352n)·dB
式中:
Dh—叶轮轮毂直径,米;
dB—泵轴直径,米;其中:其中g为重力加速度,米/秒2
Q—泵的流量,米3/秒;
H—泵的扬程,米;
ρ—输送介质密度,千克/米3
[τ]—泵轴材料许用应力,帕;
n—设计工况转速,转/分。
2.根据权利要求1所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的进口直径Dj的设计公式:
式中:
D0—叶轮的进口当量直径,米;
Q—泵的流量,米3/秒;
n—设计工况转速,转/分;
Dj—叶轮的进口直径,米;
Dh—叶轮轮毂直径,米。
3.根据权利要求1所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的出口直径D2的设计公式:
式中:
ns—叶轮比转速;
Q—泵的流量,米3/秒;
n—设计工况转速,转/分;
D2—叶轮的出口直径,米;
H—泵的扬程,米。
4.根据权利要求1所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的出口宽度b2的设计公式:
式中:
ns—叶轮比转速;
Q—泵的流量,米3/秒;
n—设计工况转速,转/分;
b2—叶轮的出口宽度,米。
5.根据权利要求2所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的叶片出口直径D1的设计公式:
式中:
Dj—叶轮的进口直径,米;
H—泵的扬程,米;
D1—叶轮的叶片出口直径,米。
6.根据权利要求1所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的叶片出口角β2的设计公式:
β2=506.6Q3-266.6Q2+72.13Q+24.33
式中:
Q—泵的流量,米3/秒;
β2—叶轮的叶片出口角,度。
7.根据权利要求1所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的叶片进口角β1的设计公式:
β1=18.54n0.04622
式中:
n—设计工况转速,转/分;
β1—叶轮的叶片进口角,度。
8.根据权利要求1所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的后盖板与轴线夹角ε的设计公式:
式中:
H—泵的扬程,米;
ε—叶轮的后盖板与轴线夹角,度。
9.根据权利要求1所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的前盖板与轴线夹角γ的设计公式:
γ=64.31-4.842cos(11.57Q)+2.844sin(11.57Q)
式中:
Q—泵的流量,米3/秒;
γ—叶轮的前盖板与轴线夹角,度。
10.根据权利要求1所述的中低比转速混流泵叶轮设计方法,其特征在于,所述叶轮的出口与轴线夹角θ的设计公式:
θ=60.62sin(0.01381H+0.5513)+31.51sin(0.0197H+3.293)
式中:
H—泵的扬程,米;
θ—叶轮的出口与轴线夹角,度。
CN201710852903.6A 2017-09-20 2017-09-20 一种中低比转速混流泵叶轮设计方法 Active CN107503981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710852903.6A CN107503981B (zh) 2017-09-20 2017-09-20 一种中低比转速混流泵叶轮设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710852903.6A CN107503981B (zh) 2017-09-20 2017-09-20 一种中低比转速混流泵叶轮设计方法

Publications (2)

Publication Number Publication Date
CN107503981A CN107503981A (zh) 2017-12-22
CN107503981B true CN107503981B (zh) 2019-03-05

Family

ID=60697980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710852903.6A Active CN107503981B (zh) 2017-09-20 2017-09-20 一种中低比转速混流泵叶轮设计方法

Country Status (1)

Country Link
CN (1) CN107503981B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109114005B (zh) * 2018-10-30 2024-02-13 江苏双达泵业股份有限公司 一种高温液下泵
CN110081017B (zh) * 2019-04-29 2020-11-10 江苏城乡建设职业学院 一种潜水排污泵的叶轮
CN110486295B (zh) * 2019-08-22 2021-03-16 江苏瑞阳环保有限公司 一种对旋式轴流泵次级叶轮转速匹配的控制方法
CN111379737A (zh) * 2020-04-16 2020-07-07 珠海格力电器股份有限公司 混流风轮、风机组件、动力系统、风扇

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6439845B1 (en) * 2000-03-23 2002-08-27 Kidney Replacement Services, P.C. Blood pump
CN103306985B (zh) * 2013-06-20 2016-04-27 江苏大学 一种低比速离心泵低噪声水力设计方法
CN103291653B (zh) * 2013-06-24 2015-07-29 江苏大学 一种低比转数叶轮及其叶片设计方法
CN103994099B (zh) * 2014-05-07 2016-01-13 江苏大学 一种复合式变曲率低比转速离心泵叶轮设计方法
CN104613003B (zh) * 2014-11-26 2017-05-03 江苏大学 一种低比转数无过载离心泵叶轮水力设计方法

Also Published As

Publication number Publication date
CN107503981A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
CN107503981B (zh) 一种中低比转速混流泵叶轮设计方法
CN108050106B (zh) 具有分离网增强自吸的旋涡泵
CN103994096A (zh) 一种无堵塞旋流泵的水力设计方法
CN108661919A (zh) 具有气液分离装置的喷射泵
CN213981328U (zh) 一种抑制气团滞留的离心泵叶轮
CN101918121B (zh) 混合器组件及混合器组件中的流动控制方法
CN201133321Y (zh) 小上冠出口混流式水轮机转轮
CN106870462B (zh) 一种泵站用的肘形进水流道的设计方法
CN108547794A (zh) 一种消防高速离心泵
CN104019056A (zh) 一种叶片前弯式循环增压泵的水力模型设计方法
CN108361205A (zh) 一种离心泵叶轮及包含该离心泵叶轮的lng潜液泵
CN107965473B (zh) 包括具有开口的至少一个叶片的、用于流体压缩装置的扩散器
CN108757571A (zh) 一种方箱式双向进水流道设计方法
CN110053748A (zh) 一种高比转速喷水推进泵水力模型结构
CN103615411A (zh) 中浓纸浆泵导流发生器
CN207609564U (zh) 多出水口轴流泵
EP3642475B1 (en) Vortex generator
CN106547951A (zh) 一种高抗汽蚀无过载离心泵叶轮设计方法
CN203670222U (zh) 全扬程自吸泵
CN105275880B (zh) 一种混流式核主泵
CN105060519A (zh) 推流潜水曝气机
CN105201915A (zh) 高效低汽蚀进水段结构
CN203009310U (zh) 一种抗汽蚀叶片泵
CN206221284U (zh) 双进口导叶式水平中开多级离心泵
CN206071890U (zh) 一种增强自吸的旋涡复合泵

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant