CN107501440A - 一种新型羧甲基壳聚糖衍生物及其制备方法和应用 - Google Patents

一种新型羧甲基壳聚糖衍生物及其制备方法和应用 Download PDF

Info

Publication number
CN107501440A
CN107501440A CN201710777484.4A CN201710777484A CN107501440A CN 107501440 A CN107501440 A CN 107501440A CN 201710777484 A CN201710777484 A CN 201710777484A CN 107501440 A CN107501440 A CN 107501440A
Authority
CN
China
Prior art keywords
ves
carboxymethyl chitosan
succinate
cmcts
medicine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710777484.4A
Other languages
English (en)
Other versions
CN107501440B (zh
Inventor
常菁
古军祥
陈晓彤
张海斌
韩宝芹
刘万顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201710777484.4A priority Critical patent/CN107501440B/zh
Publication of CN107501440A publication Critical patent/CN107501440A/zh
Application granted granted Critical
Publication of CN107501440B publication Critical patent/CN107501440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种新型羧甲基壳聚糖衍生物及其制备方法和应用。首先合成了新材料O‑羧甲基壳聚糖‑维生素E琥珀酸酯(O‑CMCTS‑VES),O‑羧甲基壳聚糖的部分游离氨基上接枝了维生素E琥珀酸酯,二者通过形成酰胺键的方式形成共价键,VES取代度在3%~5%。O‑CMCTS‑VES在水中自组装形成纳米颗粒,粒径在100‑200nm,Zeta电位为‑29mV,对模型药物阿霉素(DOX)的包封率最高可达74.5%,载药量最高13%。本发明制备的载药纳米粒粒径在100‑200nm之间、形态大小均一、分散均匀,说明了本发明制得的O‑CMCTS‑VES/DOX能够有效包覆疏水性药物,是一种良好的药物载体。

Description

一种新型羧甲基壳聚糖衍生物及其制备方法和应用
技术领域
本发明涉及一种羧甲基壳聚糖衍生物,属于海洋化工工程技术领域。
背景技术
双亲性聚合物胶束(Amphiphilic polymeric micelle,Apm)由两部分组成:一部分是亲水疏油的极性高分子聚合物,称为亲水基团,如壳聚糖衍生物等;另一部分则是疏水亲油的非极性基团,称为疏水基团,如胆固醇、棕榈酸等。这种双亲性的聚合物胶束可以在水溶液中通过自组装原理形成具有“疏水核心-亲水外壳”的胶束,即在水溶液中疏水基团被排斥而相互缔合成内核,而亲水基团被水吸引排列在外侧形成亲水的外壳。通过控制所用材料的分子量的大小、胶束上疏水基团的量可以使制备的胶束呈纳米级别,这种具有“核-壳”结构的双亲性纳米载体具有提高难溶性药物/蛋白和基因的稳定性、提高难溶性药物的溶解性、提高药物在病灶部位的富集、降低药物的全身毒副作用等多个优点。
羧甲基壳聚糖(Carboxymethyl chitosan,CMCTS)是一种重要的壳聚糖衍生物,其改善了壳聚糖在水溶液中溶解性差的缺点,又保留了壳聚糖的优良性能,在生物医药领域具有广泛的应用。维生素E琥珀酸酯(Vitamin E Succinate,VES)是天然化合物维生素E的衍生物,由维生素E与琥珀酸通过脱水缩合生成,是疏水性的化合物。由于VES对正常的细胞和组织没有杀伤作用,而对大多数肿瘤细胞具有抑制作用,使其成为抗肿瘤研究的热点。
通常抗癌药物具有难溶性、无靶向性、副作用大、易引发耐药性等缺点,开发了系列包载抗癌药物的纳米载体,可有效提高难溶药物的溶解性,提高其稳定性,并通过肿瘤组织特有的EPR(Enhanced permeability and retention effect,EPR)效应实现靶向性,降低毒副作用和耐药性,已经成为一种新型的癌症治疗给药研究方法。
发明内容
本发明旨在合成一种新型双亲性自组装的抗癌药物载体,即为羧甲基壳聚糖衍生物,本发明利用羧甲基壳聚糖和维生素E琥珀酸酯合成新材料,并对药物进行包载。
本发明合成的药物载体的疏水核心为抗肿瘤的药物提供庇护的场所。维生素E琥珀酸酯分子中具有苯环结构,与模型药物阿霉素的苯环结构能够实现π-π堆叠的效应,即一个苯环上的轻微缺电子的氢原子和另一苯环上的富电子的π电子云之间形成的弱氢键,因此可以提高抗肿瘤药物的稳定性、提高其水溶性、延长体内循环时间、同时也提高了药物的包载效率。
根据肿瘤组织与正常机体组织的差别,利用肿瘤具有的EPR效应实现载药的纳米粒子更多的在肿瘤组织富集,而在正常的组织中分布较少;由于本发明的药物载体具有pH敏感性,因此其在偏酸的环境中(肿瘤组织中)比在中性的环境中更容易释放药物,所以携带药物的载体在肿瘤部位能释放更多的药物,在正常组织中释放的药物则很少,从而减轻抗癌药物对正常机体的副作用。
本发明首先合成了新材料O-羧甲基壳聚糖-维生素E琥珀酸酯(O-CMCTS-VES),O-羧甲基壳聚糖的部分游离氨基上接枝了维生素E琥珀酸酯,二者通过形成酰胺键的方式结合在一起,VES取代度在3%~5%。
进一步的,所述新材料O-CMCTS-VES在水中自组装形成纳米颗粒,粒径在100-200nm,Zeta电位为-29mV,对模型药物阿霉素(DOX)的包封率最高可达74.5%,载药量最高13%。
进一步的,所述O-CMCTS-VES的制备方法:以O-羧甲基壳聚糖(O-CMCTS)作为亲水材料,溶剂为去离子水;以维生素E琥珀酸酯(VES)作为疏水性物质,溶剂为DMF;利用N-羟基琥珀酰亚胺(NHS)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC·HCl)作为活化剂和缩合剂,使维生素E琥珀酸酯的羧基能与羧甲基壳聚糖上的氨基进行脱水缩合形成酰胺键,最终制得O-CMCTS-VES;反应式如下:
进一步的,所述羧甲基壳聚糖-维生素E琥珀酸酯在制备疏水性药物载体上的应用。
进一步的,所述疏水性药物为带有苯环结构的疏水性药物。
进一步的,所述疏水性药物阿霉素(DOX)。
本发明的技术效果:
1、本发明制得的羧甲基壳聚糖-维生素E琥珀酸酯作为纳米载药材料,其在未载药时的粒径为177.6nm,符合纳米载药对粒径的要求;Zeta电位为-29mV,其电荷的绝对值大于25mV,说明合成的纳米粒是稳定的,因为较强的电荷作用可以通过静电排斥不会产生沉淀和交联;多分散指数(Polydispersity index,PDI)为0.256<0.5,说明粒径分散均匀,大小均一。
扫描电镜(SEM)结果表明未载药时纳米粒子的粒径在100nm-200nm之间,形态呈均匀的球形,大小均一、形态均匀。
2、利用紫外分光光度法计算得到的载药量为13.0%,包封率为74.5%。
3、制备的O-CMCTS-VES/DOX纳米粒,其粒径为208.7nm,多分散指数为0.335<0.5,说明载药纳米粒子分散均匀,粒径较为均一,其Zeta电位测得为-22.2mV,结构形式较为稳定。
4、载药纳米粒的SEM结果表明制备的载药纳米粒粒径在100-200nm之间,形态大小均一、分散均匀,说明了本发明制得的O-CMCTS-VES/DOX能够有效包覆疏水性药物,是一种良好的药物载体。
附图说明
图1为O-CMCTS(a)以及O-CMCTS-VES(b)的红外图谱。
图2为O-CMCTS(A)与O-CMCTS-VES(B)的核磁图谱。
图3为O-CMCTS-VES的粒径图。
图4为O-CMCTS-VES扫描电镜图。
图5为O-CMCTS-VES载药DOX制备流程示意图。
图6为DOX(a)及O-CMCTS-VES(b)的紫外全波长扫描图。
图7为DOX的浓度与吸光度之间的标准曲线图。
图8为O-CMCTS-VES/DOX的粒径图。
图9为O-CMCTS-VES/DOX扫描电镜图。
具体实施方式
以下通过具体实施例并结合附图对本发明进一步解释和说明。
实施例1:羧甲基壳聚糖-维生素E琥珀酸酯的制备方法:
称取0.66g的O-羧甲基壳聚糖(O-CMCTS)溶解于60mL去离子水中,制得羧甲基壳聚糖水溶液;称取3.16g维生素E琥珀酸酯(VES)溶解于70mL二甲基甲酰胺(DMF)中,溶解后加入1.16g EDC和0.69g NHS,催化30min后,将上述制备的羧甲基壳聚糖水溶液逐滴滴入此反应液中,滴加完毕后,室温条件下,以200rpm的转速机械搅拌反应48h。反应完毕后将反应液用5倍体积(650mL)的无水乙醇沉淀,抽滤后将沉淀再用适量无水乙醇洗涤三次,然后将沉淀溶解于去离子水中,透析三天后冷冻干燥得到羧甲基壳聚糖-维生素E琥珀酸酯。根据紫外分光光度法测得VES的取代度为3.5%,根据元素分析法测得VES的取代度为2.4%。
实施例2:羧甲基壳聚糖-维生素E琥珀酸酯的制备方法:
称取0.66g的O-羧甲基壳聚糖(O-CMCTS)溶解于60mL去离子水中,制得羧甲基壳聚糖水溶液;称取1.59g维生素E琥珀酸酯(VES)溶解于70mL二甲基甲酰胺(DMF)中,溶解后加入0.58g EDC和0.35g NHS催化30min后,将上述制备的羧甲基壳聚糖水溶液逐滴滴入此反应液中,滴加完毕后,室温条件下,以200rpm的转速机械搅拌反应48h。反应完毕后将反应液用5倍体积(650mL)的无水乙醇沉淀,抽滤后将沉淀再用适量无水乙醇洗涤三次,然后将沉淀溶解于去离子水中,透析3天后冷冻干燥得到羧甲基壳聚糖-维生素E琥珀酸酯。根据紫外分光光度法测得VES的取代度为4.8%,根据元素分析法测得VES的取代度为3.7%。
实施例3:羧甲基壳聚糖-维生素E琥珀酸酯的制备方法:
称取0.66g的O-羧甲基壳聚糖(O-CMCTS)溶解于60mL去离子水中,制得羧甲基壳聚糖水溶液;称取1.19g维生素E琥珀酸酯(VES)溶解于70mL二甲基甲酰胺(DMF)中,溶解后加入0.47g EDC和0.26g NHS催化30min后,将上述制备的羧甲基壳聚糖水溶液逐滴滴入此反应液中,滴加完毕后,室温条件下,以200rpm的转速机械搅拌反应48h。反应完毕后将反应液用5倍体积(650mL)的无水乙醇沉淀,抽滤后将沉淀再用适量无水乙醇洗涤三次,然后将沉淀溶解于去离子水中,透析3天后冷冻干燥得到羧甲基壳聚糖-维生素E琥珀酸酯。根据紫外分光光度法测得VES的取代度为5.3%,根据元素分析法测得VES的取代度为3.9%。
此反应为非均相反应,不断调整水相和有机相体积的比例,以及投料比、反应时间等条件,最终制得VES取代度在3%~5%的O-CMCTS-VES。与实施例1和实施例2制得的羧甲基壳聚糖-维生素E琥珀酸酯相比,实施例3中的羧甲基壳聚糖-维生素E琥珀酸酯取代度最高,这可能是由于VES的量减少,单个的葡萄糖胺的量相对增加,所能提供的氨基数量相对增加,所以取代度会有所升高。
采用红外光谱和核磁氢谱表征实施例3中产物的组成,结果如图1和图2所示,结合红外和核磁的结果可判断维生素E琥珀酸酯成功接枝到了羧甲基壳聚糖上;采用动态光散射仪测定实施例3产物的尺寸和分布,结果如图3所示,合成条件优化后得到的材料粒径为177.6nm,多分散指数(Polydispersity index,PDI)为0.256<0.5,表明粒径大小均一,分布均匀;采用扫描电子显微镜观察实施例3中产物的形貌,结果如图4所示,从纳米粒的形态可以观察到O-CMCTS-VES的形状为规则的球形,粒径大概在100nm-200nm之间,没有出现团聚现象,分布均匀,粒径均一。
实施例4:以DOX为例,进行载药纳米粒子O-CMCTS-VES/DOX的制备
将DOX·HCl置于去离子水中,加入2倍摩尔量的三乙胺于上述溶液中,将实施例3中制备的O-CMCTS-VES加入到上述的溶液中,避光过夜搅拌;之后超声处理,离心,过滤,除去未包载进纳米粒的药物,得到的液体即为载药材料(O-CMCTS-VES/DOX)。制备原理如图5所示。
(1)紫外分光光度法计算载药量和包封率
载药纳米粒O-CMCTS-VES/DOX的载药量(Drug loading content,LC)及包封率(Entrapment efficiency,EE)由紫外分光光度法确定。
用酶标仪对阿霉素进行全波长扫描,绘制关于阿霉素的标准曲线,结果如图6、图7所示。取上述制备的O-CMCTS-VES/DOX纳米粒混合溶液1ml,加入到25ml的容量瓶内,添加DMSO至刻度线,超声处理使DOX从纳米粒的疏水核心充分释放,于酶标仪内在482nm处测其吸光度,代入DOX的标准曲线求出DOX的含量。代入下列公式求出纳米粒的载药量和包封率。
载药量(LC)%=纳米粒包载的药物量/载药纳米粒的质量×100%
包封率(EE)%=纳米粒包载的药物量/投药量×100%
表2不同的药质比得到的药物包封率和载药量
从表2的结果表明,当药质比为1:10时得到的包封率为64.3%,载药量为6.1%;药质比为2:10时得到的包封率为74.5%,载药量为13.0%;药质比为3:10时得到的包封率为39.7%,载药量为10.6%。即当药质比为2:10时得到的包封率及载药量最大。
(2)载药纳米粒(O-CMCTS-VES/DOX)的粒径、PDI及Zeta电位的测定
将(1)中制备的最佳包封率及载药量的载药纳米粒O-CMCTS-VES/DOX于激光粒度电位分析仪内进行纳米粒的粒径、多分散指数及Zeta电位的测定。
将以药质比为2:10制备的O-CMCTS-VES/DOX载药纳米粒于激光粒度分析仪内测其粒径、PDI以及Zeta电位。图8为载药纳米粒的粒径分布图,其粒径为208.7nm,多分散指数为0.335,小于0.5,说明载药纳米粒分散均匀,粒径较为均一,其Zeta电位测得为-22.2mV。
(3)载药纳米粒的形态观察
取一滴(1)中制备的最佳包封率及载药量的载药纳米粒O-CMCTS-VES/DOX滴至干净的盖玻片上,在超净工作台内自然风干,进行扫描电镜的观察。
将以药质比为2:10制备的载药纳米粒O-CMCTS-VES/DOX通过扫描电镜进行形态学观察,结果如图9所示,从图中可以看出,载药纳米材料的粒径在100-200nm之间,粒径均一,没有团聚现象,在形态上与空白纳米粒的粒径相比有所增大。
综上所述,本发明制备的O-CMCTS-VES/DOX能够有效包覆药物,且能形成粒径均一、无团聚的载药粒子。

Claims (6)

1.一种新型羧甲基壳聚糖衍生物,其特征在于,该衍生物为O-羧甲基壳聚糖的部分游离氨基上接枝了维生素E琥珀酸酯,二者通过形成酰胺键的方式形成共价键,得到O-羧甲基壳聚糖-维生素E琥珀酸酯,其VES取代度在3%~5%。
2.如权利要求1所述的羧甲基壳聚糖衍生物,其特征在于,所述O-羧甲基壳聚糖-维生素E琥珀酸酯在水中自组装形成纳米颗粒,粒径在100-200nm,Zeta电位为-29mV,对药物阿霉素的包封率为74.5%,载药量为13%。
3.权利要求1所述的羧甲基壳聚糖衍生物的制备方法,其特征在于,以O-羧甲基壳聚糖作为亲水材料,溶剂为去离子水;以维生素E琥珀酸酯作为疏水性物质,溶剂为DMF;利用N-羟基琥珀酰亚胺和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐作为活化剂和缩合剂,使维生素E琥珀酸酯的羧基能与羧甲基壳聚糖上的氨基进行脱水缩合形成酰胺键,最终制得O-羧甲基壳聚糖-维生素E琥珀酸酯,即O-CMCTS-VES;反应式如下:
4.权利要求1所述的羧甲基壳聚糖-维生素E琥珀酸酯在制备疏水性药物载体上的应用。
5.如权利要求4所述的应用,其特征在于,所述疏水性药物为带有苯环结构的疏水性药物。
6.如权利要求5所述的应用,其特征在于,所述疏水性药物阿霉素。
CN201710777484.4A 2017-09-01 2017-09-01 一种羧甲基壳聚糖衍生物及其制备方法和应用 Active CN107501440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710777484.4A CN107501440B (zh) 2017-09-01 2017-09-01 一种羧甲基壳聚糖衍生物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710777484.4A CN107501440B (zh) 2017-09-01 2017-09-01 一种羧甲基壳聚糖衍生物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107501440A true CN107501440A (zh) 2017-12-22
CN107501440B CN107501440B (zh) 2019-02-01

Family

ID=60694666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710777484.4A Active CN107501440B (zh) 2017-09-01 2017-09-01 一种羧甲基壳聚糖衍生物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107501440B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984238A (zh) * 2022-06-25 2022-09-02 中国海洋大学 基于壳聚糖的多功能双亲性自组装纳米载体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558391A (zh) * 2011-12-31 2012-07-11 沈阳药科大学 维生素e琥珀酸酯-壳聚糖接枝物及其制备方法和应用
CN104013955A (zh) * 2014-06-18 2014-09-03 中国科学院过程工程研究所 一种不含表面活性剂的水包油乳液及其用途
CN105687133A (zh) * 2016-03-04 2016-06-22 北京工业大学 一种两亲性壳聚糖衍生物载药纳米胶束及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558391A (zh) * 2011-12-31 2012-07-11 沈阳药科大学 维生素e琥珀酸酯-壳聚糖接枝物及其制备方法和应用
CN104013955A (zh) * 2014-06-18 2014-09-03 中国科学院过程工程研究所 一种不含表面活性剂的水包油乳液及其用途
CN105687133A (zh) * 2016-03-04 2016-06-22 北京工业大学 一种两亲性壳聚糖衍生物载药纳米胶束及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984238A (zh) * 2022-06-25 2022-09-02 中国海洋大学 基于壳聚糖的多功能双亲性自组装纳米载体及其制备方法
CN114984238B (zh) * 2022-06-25 2024-01-30 中国海洋大学 基于壳聚糖的多功能双亲性自组装纳米载体及其制备方法

Also Published As

Publication number Publication date
CN107501440B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
Sur et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system
Liu et al. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy
Tang et al. Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery
Li et al. Amphiphilic chitosan derivative-based core–shell micelles: Synthesis, characterisation and properties for sustained release of Vitamin D3
Salar et al. Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles
Rahmani et al. Preparation and characterization of silk fibroin nanoparticles as a potential drug delivery system for 5-fluorouracil
Razmi et al. Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug
Khoee et al. Ultrasound-assisted synthesis of pH-responsive nanovector based on PEG/chitosan coated magnetite nanoparticles for 5-FU delivery
CN108434460B (zh) 一种靶向性介孔二氧化硅纳米药物及其制备方法
Sahu et al. Folate‐Decorated Succinylchitosan Nanoparticles Conjugated with Doxorubicin for Targeted Drug Delivery
Nan et al. Polymeric hydrogel nanocapsules: A thermo and pH dual-responsive carrier for sustained drug release
CN110408047B (zh) 纳米配位聚合物及其制备方法和应用
Zhang et al. Comparison in docetaxel-loaded nanoparticles based on three different carboxymethyl chitosans
CN107308112A (zh) 一种改性黄原胶纳米胶束的制备方法
Huang et al. Development of a resveratrol–zein–dopamine–lecithin delivery system with enhanced stability and mucus permeation
Geyik et al. Multi-stimuli-sensitive superparamagnetic κ-carrageenan based nanoparticles for controlled 5-fluorouracil delivery
Wang et al. Effect of carboxymethyl konjac glucomannan coating on the stability and colon-targeted delivery performance of fucoxanthin-loaded gliadin nanoparticles
Chang et al. Temperature and pH dual responsive nanogels of modified sodium alginate and NIPAM for berberine loading and release
Soltani et al. pH-responsive glycodendrimer as a new active targeting agent for doxorubicin delivery
CN111407740A (zh) 一种超声可激活释放药物的白蛋白纳米粒子、其制备方法及应用
CN110384682A (zh) 一种基于羧基化纤维素的两亲性靶向纳米药物递送系统的制备
Wang et al. Gold nanoparticles decorated by amphiphilic block copolymer as efficient system for drug delivery
CN107501440B (zh) 一种羧甲基壳聚糖衍生物及其制备方法和应用
CN107970224A (zh) 一种脂质修饰磁性氧化石墨烯复合材料的制备方法及应用
CN107158396A (zh) 一种药物靶向输送载体、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant