CN107486246A - Wc多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法 - Google Patents

Wc多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法 Download PDF

Info

Publication number
CN107486246A
CN107486246A CN201710817659.XA CN201710817659A CN107486246A CN 107486246 A CN107486246 A CN 107486246A CN 201710817659 A CN201710817659 A CN 201710817659A CN 107486246 A CN107486246 A CN 107486246A
Authority
CN
China
Prior art keywords
foamed ceramics
catalyst
polycrystalline
polycrystalline foamed
waste plastics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710817659.XA
Other languages
English (en)
Other versions
CN107486246B (zh
Inventor
刘士涛
孙艳
吴聪萍
刘建国
邹志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunshan Innovation Institute of Nanjing University
Original Assignee
Kunshan Innovation Institute of Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunshan Innovation Institute of Nanjing University filed Critical Kunshan Innovation Institute of Nanjing University
Priority to CN201710817659.XA priority Critical patent/CN107486246B/zh
Publication of CN107486246A publication Critical patent/CN107486246A/zh
Application granted granted Critical
Publication of CN107486246B publication Critical patent/CN107486246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • C10G3/52Hydrogen in a special composition or from a special source
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

本发明公开了一种WC多晶泡沫陶瓷催化剂,包括WC、Ni、Al、Si、Zn、NH4 +、(C6H10O5)n,及各组分的质量比为60~70%:2~5%:5~10%:10~15%:15~25%:20~30%。本发明还公开了一种WC多晶泡沫陶瓷催化剂的制备方法,将WC、硝酸镍、拟薄水铝石、硅胶、碱式碳酸锌、碳酸氢铵、淀粉加入粉末混合机混合反应。本发明还公开了利用WC多晶泡沫陶瓷催化剂催化废塑料与生物柴油产烃的方法,以废塑料作为供氢体,WC多晶泡沫陶瓷催化剂作为加氢脱氧和异构催化剂,TiO2多晶泡沫陶瓷催化剂作为催化改质催化剂,催化生物柴油进行加氢脱氧和异构化反应转化为液体烃类燃料。

Description

WC多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与 生物柴油产烃的方法
技术领域
本发明涉及一种WC多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法,属于油品改质技术领域。
背景技术
生物柴油因为能够直接用于当前的柴油发动机系统,燃烧性能比石化柴油更加优越,在生产、储存和运输方面也更安全,并具有良好的生物降解性、环境友好性和可再生性而被称为“液体太阳能”,被认为是最好的石化替代能源之一。
随着生物柴油的大量使用,其自身存在的一些问题也日益凸显,如燃烧时生物柴油热值较石化柴油低约10%,如不改变发动机的结构参数,发动机的功率要下降8%左右。较高的运动黏度使发动机喷嘴喷出的油滴平均直径变大,导致油气混合不均匀,燃烧不完全,易出现喷嘴堵塞、燃油消耗量增大的情况。同时,原料对生物柴油的性质影响很大,若原料中饱和脂肪酸,如棕榈酸或硬脂酸含量高,则生物柴油的低温流动性较差;若不饱和脂肪酸,如亚油酸或亚麻酸含量高,则生物柴油的氧化安定性较差。另外,生物柴油对发动机中橡胶管路也有腐蚀作用,与石化柴油混合时不能超过一定限值,若要使用高含量的生物柴油,则必须更换耐生物柴油的橡胶和塑料油路器件。
为解决生物柴油使用过程中存在的各种问题,将其转化为与石化柴油组成、结构和性质相似的烃类燃料已成为当前生物柴油的发展趋势。这些烃类燃料在化学结构上与柴油完全相同,具有与柴油相近的黏度和发热值,较低的密度和较高的十六烷值、硫含量较低、倾点低以及与柴油相当的氧化安定性等优势。同时,生物柴油转化为烃类燃料后CO2排放量比柴油低,发动机尾气中SOx,NOx含量和颗粒物排放量明显减少,而且可以大大减少发动机的结垢,噪声也明显下降。
目前,将生物柴油转化为烃类燃料的方法主要有直接加氢脱氧和加氢脱氧异构。油脂直接加氢脱氧工艺是在高温高压下的深度加氢过程,羧基中的氧原子和氢原子结合成水分子,而自身还原成烃,使用的催化剂是经过硫化处理的负载型Co-Mo和Ni-Mo等加氢催化剂。此项工艺简单,产物具有很高的十六烷值,但是得到的柴油组分中主要是长链的正构烷烃,使得产品的浊点较高,低温流动性差,在高纬度地区难以使用而限制了该技术的应用。
加氢脱氧异构工艺实际是对直接加氢脱氧工艺的改进,该工艺包括2个阶段,第一阶段为加氢脱氧,与直接加氢脱氧的条件相近;第二阶段为临氢异构,利用贵金属催化剂将正构烷烃转化为异构烷烃,从而提高产品的低温流动性。
然而,无论是直接加氢脱氧还是加氢脱氧异构都需要外部供给氢气,且加氢脱氧催化剂需要预硫化才能发挥作用,而异构化则为贵金属催化剂。单独供给氢气需要专门的供氢管线和储存设施,安全要求高,且只能从外采购,不利于降低生产成本。催化剂预硫化的操作要求严格,工艺繁琐,且硫化的好坏直接影响后续加氢脱氧效果,不利于产品质量控制,至于异构化所使用的贵金属催化剂则过于昂贵,不适合用于生产燃料这种低附加值产品。
经研究发现,废塑料中含有大量的氢(如聚烯烃的含氢量高达14%),富氢塑料通过氢转移为生物质供氢,使生物质热解产生的自由基得到稳定,从而促进了塑料和生物质转化为烃类燃料,且与生物质热解温度比较接近,是一种比较理想的共催化热解原料。同时,生物质与废塑料共热解还具有很好的协同作用,目前普遍认同的观点是生物质中的脂肪类聚合物在反应中发挥了储存和提供自由基的作用。而废塑料作为烯烃的高聚合体,在热解过程中会发生解聚反应,生成低聚合的烯烃,其碳链的解聚即为自由基反应。显然,生物柴油和废塑料共热解将促进废塑料的解聚,提高热解液体产率,而废塑料碳链上脱下来的氢则为生物柴油加氢脱氧提供了需要的氢。
另外,废塑料(尤其是聚乙烯PE、聚丙烯PP、聚苯乙烯PS、聚氯乙烯PVC等聚烯烃类塑料)的生物降解性能差,危害大且难于处理,其产生的“白色污染”不仅影响农作物吸收养分和水分,导致农作物减产,而且被动物当作食物吞入,还会导致动物死亡(在动物园、牧区和海洋中,此类情况已屡见不鲜)。同时这些满天乱飞的塑料制品,也会带来严重的视觉污染,影响城市的环境美化和形象。据统计,仅2010年,我国的塑料制品就达到了5830余万吨,消费量超过6500万吨,约占世界塑料消费量2.4亿吨的1/4,2013年这一数据更是超过了8400万吨,占到了世界消费总量的1/3。其中聚烯烃类塑料占塑料总量80%左右,同期国内产生的废塑料达2000万吨/年左右,其回收利用率仅20%,资源浪费十分严重。
为了解决上述问题,专利CN105778976A在有机溶剂和反应气氛下,用含Zn催化剂催化生物柴油进行脱氧反应生成烃类,反应过程中催化剂不需硫化,而且可以采用水进行供氢,极大地降低了氢气的消耗。但该工艺烃类收率仅能维持在70%左右,添加的环己烷、石油醚、石脑油等有机溶剂增加了产品的分离成本,且反应对原料要求过高,极大的降低了该技术的应用价值。CN105218291A使用活性组分为Fe、Co、Ni、Cu、Zn等非贵金属的双功能负载型催化剂,在非临氢条件下进行脱氧,反应过程中不需要氢气,且可同时催化不饱和脂肪酸原位加氢和饱和脂肪酸脱羧。该方法的缺点主要是添加过量的水和反应生成的甲醇以及脂肪酸与原料脂肪酸甲酯混合在一起,增加了产物纯化难度和成本。另外,脂肪酸甲酯由油脂制备而来,该工艺又将其水解成脂肪酸再脱羧成烃,与脂肪酸直接脱羧相比过于复杂化,从燃料合成角度看,不是一种好的方法。CN103756723A则利用生物柴油溶解和稀释煤焦油的作用,来降低煤焦油的加氢难度以及对设备的要求,并通过生物柴油转化为正构烷烃来提高产品的十六烷值。然而,由于产品中正构烷烃含量的增加,导致得到的产物低温流动性变差,最终限制了产品的使用。相比之下,专利CN104099120A则采用电解技术进行生物柴油脱氧,然后将得到的长链烷烃依次进行催化裂化和异构化反应,以此来获得航空煤油。该方法不需要催化剂和氢气,与其他生物柴油制烃技术相比,整个过程清洁环保,操作简单。但反应过程中使用的贵金属铂阳极材料,不利于规模化生产,同时消耗大量的电能,从能源利用和转换角度看,不是明智之举。另外,反应过程过于复杂,产品中除了含有烃,未反应的甲酯,还有二元脂肪酸酯、酯类低分子、丙酸、丙二酸、CO2、H2等物质生成,增加了物料损失,也降低了产品收率。而水解时使用的氢氧化钠,势必带来环境污染问题,不利于清洁生产。
综上所述,我们可以发现,现有技术都没有很好的解决生物柴油制烃方面存在的耗氢大、催化剂需硫化和需要贵金属催化剂才能高效转化等问题。因此,开发出一种工艺简单、耗氢少、不需要单独供氢、催化效率高、生产成本低,适合工业化生产的生物柴油制烃技术显得尤为必要。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种WC多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法,工艺简单、不需单独供氢,催化效率高、生产成本低,适合工业化生产的废塑料与生物柴油共催化产烃的方法。
为解决上述技术问题,本发明提供一种WC多晶泡沫陶瓷催化剂,其特征是,包括WC、Ni、Al、Si、Zn、NH4 +、(C6H10O5 )n,并且所述WC、Ni、Al、Si、Zn、NH4 +、(C6H10O5 )n的质量比为60~70%:2~5%:5~10%:10~15%:15~25%:20~30%。
优选地,所述Ni、Al、Si、Zn、NH4 +、(C6H10O5 )n的化合物分别为硝酸镍、拟薄水铝石、硅胶、碱式碳酸锌、碳酸氢铵、淀粉。
本发明还提供一种WC多晶泡沫陶瓷催化剂的制备方法,其特征是,包括:
将仲钨酸铵、炭黑等比例加入球磨机内,无水乙醇湿磨10h,所得浆料90~110℃下喷雾干燥,得到前驱体;然后将前驱体放入真空马弗炉焙烧,得到炭黑含量过量的WC粗品;
称取WC、硝酸镍、拟薄水铝石、硅胶、碱式碳酸锌、碳酸氢铵、淀粉加入粉末混合机混合5~10h,将混合好的物料放入螺杆挤压机制成圆柱,烘箱干燥,然后置于马弗炉内焙烧,即得所需WC多晶泡沫陶瓷催化剂。
优选地,所述前驱体在真空马弗炉内焙烧的条件为1500~1650℃、1~10Pa条件下焙烧2~6h;所述WC粗品在气氛炉内焙烧的条件为空气条件下500~800℃焙烧2~4h。
优选地,所述WC、硝酸镍、拟薄水铝石、硅胶、碱式碳酸锌、碳酸氢铵、淀粉的质量比为60~70%:2~5%:5~10%:10~15%:15~25%:20~30%。
优选地,所述物料在螺杆挤压机内制成直径2~3mm,长1~2cm圆柱,放入烘箱100~120℃条件下干燥12~24h,然后于1300~1500℃马弗炉内焙烧4~6h。
本发明还提供一种利用WC多晶泡沫陶瓷催化剂催化废塑料与生物柴油产烃的方法,其特征是,以废塑料作为供氢体,WC多晶泡沫陶瓷催化剂作为加氢脱氧和异构催化剂,TiO2多晶泡沫陶瓷催化剂作为催化改质催化剂,在实验室固定床反应器内催化生物柴油进行加氢脱氧和异构化反应转化为液体烃类燃料。
优选地,具体包括:
首先设定废塑料热裂解温度300~500℃,产生的裂解气在装有TiO2多晶泡沫陶瓷催化剂的固定床反应器内,于300~450℃条件下进行催化改质;
然后将得到的含油气体与地沟油生物柴油并流进入装填有WC多晶泡沫陶瓷催化剂的固定床反应器,在反应温度350~450℃,压力1.5~5.0MPa,油脂体积空速2.0~5.0h-1,废塑料裂解气化速率5~10L/min条件下,反应0.5~1h;生成的产物经气液分离器除去不凝气体后,进入分馏塔进行在线分割。
优选地,生成的产物分离纯化的方法为:经气液分离器除去CO、CO2、H2、CH4和低碳烃后,进入减压分馏塔对反应产物进行分割,收集<170℃、170~250℃和250~350℃和>350℃共4个温度段馏出物,得到汽油、煤油、柴油和重油,气体产物分离出氢气进行循环利用,重油进入废塑料裂解气化装置作为传热介质重新利用。
本发明所达到的有益效果:
(1)废塑料中含有大量的氢(如聚烯烃的含氢量高达14%),富氢塑料通过氢转移为生物质供氢,使生物质热解产生的自由基得到稳定,从而促进了塑料和生物质转化为烃类燃料,且与生物质热解温度比较接近,是一种比较理想的共催化热解原料。同时,生物质与废塑料共热解还具有很好的协同作用,生物质中的脂肪类聚合物在反应中发挥了储存和提供自由基的作用。而废塑料作为烯烃的高聚合体,在热解过程中会发生解聚反应,生成低聚合的烯烃,其碳链的解聚即为自由基反应。生物柴油和废塑料共热解促进了废塑料的解聚,提高了热解液体产率,而废塑料碳链上脱下来的氢则为生物柴油加氢脱氧提供了需要的氢;
(2)采用具有加氢脱羧和异构性能的非贵金属双功能催化剂,在生物柴油成烃同时对生成的烃和来自废塑料裂解的烃进行异构化,有效减少了正构烷烃的生成,利于改善产品低温流动性能;
(3)整个生产工艺不需要单独供氢,且反应后多余的H2还可用于其他工业生产,利于降低生产成本;
(4)WC为类贵金属催化剂,表面电子结构与Pt类似,作为催化剂在催化氢化、烷烃氢解重整、加氢脱硫等反应中具有良好的催化活性,不受任何浓度的CO和10-6数量级的H2S中毒,具有良好的稳定性和抗中毒性能。其在反应过程中提供了分散的碳元素,通过拉长金属与金属间的距离而提高d带能区的电子密度,进而改变金属碳化物的加氢脱氧催化活性,从而获得较高的加氢脱羧转化效率,但成本与贵金属催化剂相比要低得多。
(5)该催化剂碳化钨表面存在一种双重功能结构,即由于碳化钨表面氧的存在而形成的酸性中心(即WOx)以及碳化钨所形成的金属点。在催化烃的反应的过程中,金属点可以强烈吸附反应物中的氢和烃的分子使之在碳化钨的表面形成各自的活性基团。酸性的WOx则可以促进碳链结构的改变,生成异构化产物,同时阻止碳化钨活性中心使异构化产物进一步氢解。
另外,该催化在使用过程中不需要进行预硫化、活化等处理即可用于生物柴油生产烃类燃料,且制备过程简单,易于实现工业放大。
(6)废塑料不需清洗可直接使用,不仅减小了以往废塑料清洗带来的环境污染,而且降低了一定的处理成本。
(7)生产过程简单,反应时间短,自动化程度高,易于工业化连续生产。
(8)利用过量的炭黑成功防止了新鲜的WC被空气氧化,使其处于钝化状态,并在焙烧除去过量炭黑后即可获得活化,有效的简化了新鲜WC钝化和活化过程,避免了氢气还原预处理操作,降低了材料制备成本和生产危险性。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1:
(1)WC多晶泡沫陶瓷催化剂的制备
分别称取2Kg仲钨酸铵和炭黑加入球磨机内,按照球料比1.5:2加入氧化锆球和无水乙醇至形成浆料后,湿磨10h。所得浆料100℃下喷雾干燥,得到前驱体。然后将前驱体放入真空马弗炉,在1650℃,10Pa条件下焙烧4h,得到炭黑含量过量的WC粗品。将WC粗品放入气氛炉内,空气条件下600℃焙烧4h除去多余炭黑,得到WC粉体。
按重量比分别称取1.5Kg WC、0.11Kg硝酸镍、0.21Kg拟薄水铝石、0.32Kg硅胶、0.32Kg碱式碳酸锌、0.37Kg碳酸氢铵、0.49Kg淀粉加入粉末混合机混合10h,将混合好的物料放入螺杆机压机,制成直径2mm,长2cm圆柱,放入烘箱110℃干燥24h,然后置于1450℃马弗炉内焙烧6h,即得所需WC多晶泡沫陶瓷催化剂。
(2)TiO2多晶泡沫陶瓷催化剂的制备
称取1.5Kg大孔硅胶于马弗炉中500℃活化8h,取出置于真空干燥器内冷却至室温。然后用去离子水溶解0.5KgZrOCl2•8H2O和0.2Kg聚乙二醇,形成溶液A;称取0.3KgC9H21AlO3和0.01KgCe(NO)3用无水乙醇溶解完全形成溶液B。再将溶液A置于70℃恒温水浴,加入活化的大孔硅胶,匀速搅拌下滴加氨水直至Zr4+沉淀完全,离心,无水乙醇洗涤3次,80℃下真空干燥12h,得到表面负载Zr(OH)2的大孔硅胶C。将得到的大孔硅胶C加入溶液B,搅拌下加入溶有0.004KgNH4HCO3的异丙醇水(异丙醇:水=1:2)溶液2.5L,60℃恒温反应4h,离心,100℃真空干燥6h,得到在大孔硅胶C负载有Al(OH)3和Ce(OH)3的大孔硅胶D。
最后将得到的大孔硅胶D加入溶有1KgC16H36O4Ti和0.3KgFe(NO3)3的无水乙醇溶液中,搅拌下滴加氨水,至Fe3+全部沉淀,离心,乙醇洗涤3次,80℃真空干燥12h。冷却后加入0.5KgPMMA微球,0.6Kg乙基纤维素,于粉末混合机内充份混合4h。转入湿法混合制粒机内,喷淋溶有CMC的乙醇溶液进行混合造粒,制成2mm小球,120℃干燥12h。置于高温马弗炉内,800℃保温4h,然后升温至1550℃焙烧2h,即得TiO2多晶泡沫陶瓷催化剂。
实施例2:
实施例2中所用催化剂为按照实施例1中所公布方法制备,制备方法详见实施例1。
将废塑料PP加入裂解汽化炉,用氮气吹扫整套系统约30min,设定最终裂解温度为400℃,采取程序升温的方法控制废塑料裂解气化速度为5L/min,进入装填有TiO2多晶泡沫陶瓷催化剂的固定床反应器,在320℃条件下进行催化改质,目的在于催化产生大量的H2。然后将得到的含油气体与地沟油生物柴油并流进入装填有WC多晶泡沫陶瓷催化剂的固定床反应器,在反应温度350℃,压力4.0MPa,油脂体积空速3.0h-1条件下,反应1h。生成的产物经气液分离器分离除去CO、CO2、H2、CH4和低碳烃后,进入减压分馏塔对反应产物进行分割,收集<170℃、170~250℃和250~350℃和>350℃温度段馏出物,得到汽油、煤油、柴油和重油。经过上述反应,生物柴油转化率达100%,其中汽油产率为55%,煤油产率为15%,柴油产率为17%,重油产率为4%,气体产率为9%。
实施例3:
实施例3中所用催化剂为按照实施例1中所公布方法制备,制备方法详见实施例1。
将废塑料PE加入裂解汽化炉,用氮气吹扫整套系统约30min,设定最终裂解温度为450℃,采取程序升温的方法控制废塑料裂解气化速度为8L/min,进入装填有TiO2多晶泡沫陶瓷催化剂的固定床反应器,在340℃条件下进行催化改质,然后将得到的含油气体与菜籽油生物柴油并流进入装填有WC多晶泡沫陶瓷催化剂的固定床反应器,在反应温度380℃,压力5.0MPa,油脂体积空速5.0h-1条件下,反应0.8h。生成的产物经气液分离器分离除去CO、CO2、H2、CH4和低碳烃后,进入减压分馏塔对反应产物进行分割,收集<170℃、170~250℃和250~350℃和>350℃温度段馏出物,得到汽油、煤油、柴油和重油。经过上述反应,生物柴油转化率达100%,其中汽油产率为60%,煤油产率为18%,柴油产率为15%,重油产率为3%,气体产率为9%。
实施例4:
实施例4中所用催化剂为按照实施例1中所公布方法制备,制备方法详见实施例1。
将废塑料HDPE加入裂解汽化炉,用氮气吹扫整套系统约30min,设定最终裂解温度为450℃,采取程序升温的方法控制废塑料裂解气化速度为10L/min,进入装填有TiO2多晶泡沫陶瓷催化剂的固定床反应器,在360℃条件下进行催化改质。然后将得到的含油气体与大豆油生物柴油并流进入装填有WC多晶泡沫陶瓷催化剂的固定床反应器,在反应温度420℃,压力3.0MPa,油脂体积空速2.0h-1条件下,反应0.6h。生成的产物经气液分离器分离除去CO、CO2、H2、CH4和低碳烃后,进入减压分馏塔对反应产物进行分割,收集<170℃、170~250℃和250~350℃和>350℃温度段馏出物,得到汽油、煤油、柴油和重油。经过上述反应,生物柴油转化率达100%,其中汽油产率为65%,煤油产率为13%,柴油产率为10%,重油产率为2%,气体产率为10%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

1.WC多晶泡沫陶瓷催化剂,其特征是,包括WC、Ni、Al、Si、Zn、NH4 +、(C6H10O5 )n,并且所述WC、Ni、Al、Si、Zn、NH4 +、(C6H10O5 )n的质量比为60~70%:2~5%:5~10%:10~15%:15~25%:20~30%。
2.根据权利要求1所述的WC多晶泡沫陶瓷催化剂,其特征是,所述Ni、Al、Si、Zn、NH4 +、(C6H10O5 )n的化合物分别为硝酸镍、拟薄水铝石、硅胶、碱式碳酸锌、碳酸氢铵、淀粉。
3.WC多晶泡沫陶瓷催化剂的制备方法,其特征是,包括:
将仲钨酸铵、炭黑等比例加入球磨机内,无水乙醇湿磨10h,所得浆料90~110℃下喷雾干燥,得到前驱体;然后将前驱体放入真空马弗炉焙烧,得到炭黑含量过量的WC粗品;将WC粗品放入气氛炉内焙烧,除去多余炭黑,得到WC粉体;
称取WC、硝酸镍、拟薄水铝石、硅胶、碱式碳酸锌、碳酸氢铵、淀粉加入粉末混合机混合5~10h,将混合好的物料放入螺杆机压机,制成圆柱,放入烘箱干燥,然后置于马弗炉内焙烧,即得所需WC多晶泡沫陶瓷催化剂。
4.根据权利要求3所述的WC多晶泡沫陶瓷催化剂的制备方法,其特征是,所述前驱体在真空马弗炉内焙烧的条件为1500~1650℃、1~10Pa条件下焙烧2~6h;所述WC粗品在气氛炉内焙烧的条件为空气条件下500~800℃焙烧2~4h。
5.根据权利要求3所述的WC多晶泡沫陶瓷催化剂的制备方法,其特征是,所述WC、硝酸镍、拟薄水铝石、硅胶、碱式碳酸锌、碳酸氢铵、淀粉的质量比为60~70%:2~5%:5~10%:10~15%:15~25%:20~30%。
6.根据权利要求3所述的WC多晶泡沫陶瓷催化剂的制备方法,其特征是,所述物料在螺杆挤压机内制成直径2~3mm,长1~2cm圆柱,放入烘箱100~120℃条件下干燥12~24h,置于1300~1500℃马弗炉内焙烧4~6h。
7.利用WC多晶泡沫陶瓷催化剂催化废塑料与生物柴油产烃的方法,其特征是,以废塑料作为供氢体,WC多晶泡沫陶瓷催化剂作为加氢脱氧和异构催化剂,TiO2多晶泡沫陶瓷催化剂作为催化改质催化剂,在实验室固定床反应器内催化生物柴油进行加氢脱氧和异构化反应转化为液体烃类燃料。
8.根据权利要求7所述的利用WC多晶泡沫陶瓷催化剂催化废塑料与生物柴油产烃的方法,其特征是,具体包括:
首先设定废塑料热裂解温度300~500℃,产生的裂解气在装有TiO2多晶泡沫陶瓷催化剂的固定床反应器内,于300~450℃条件下进行催化改质;
然后将得到的含油气体与地沟油生物柴油并流进入装填有WC多晶泡沫陶瓷催化剂的固定床反应器,在反应温度350~450℃,压力1.5~5.0MPa,油脂体积空速2.0~5.0h-1,废塑料裂解气化速率5~10L/min条件下,反应0.5~1h,生成的产物经气液分离器除去不凝气体后,进入分馏塔进行在线分割。
9.根据权利要求8所述的利用WC多晶泡沫陶瓷催化剂催化废塑料与生物柴油产烃的方法,其特征是,生成的产物分离纯化的方法为:经气液分离器除去CO、CO2、H2、CH4和低碳烃后,进入减压分馏塔对反应产物进行分割,收集<170℃、170~250℃和250~350℃和>350℃共4个温度段馏出物,得到汽油、煤油、柴油和重油,气体产物分离出氢气进行循环利用,重油进入废塑料裂解气化装置作为传热介质重新利用。
CN201710817659.XA 2017-09-12 2017-09-12 Wc多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法 Active CN107486246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710817659.XA CN107486246B (zh) 2017-09-12 2017-09-12 Wc多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710817659.XA CN107486246B (zh) 2017-09-12 2017-09-12 Wc多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法

Publications (2)

Publication Number Publication Date
CN107486246A true CN107486246A (zh) 2017-12-19
CN107486246B CN107486246B (zh) 2020-02-18

Family

ID=60652344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710817659.XA Active CN107486246B (zh) 2017-09-12 2017-09-12 Wc多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法

Country Status (1)

Country Link
CN (1) CN107486246B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417243A (zh) * 2008-10-23 2009-04-29 中山大学 高比表面积碳化钨微球与负载型催化剂及它们的制备方法
CN101869853A (zh) * 2010-05-28 2010-10-27 中山大学 有序介孔碳/碳化钨复合材料与其负载型催化剂以及它们的制备方法
CN102049273A (zh) * 2009-10-27 2011-05-11 中国科学院大连化学物理研究所 一种介孔炭担载的碳化钨催化剂及其制备和应用
CN104311132A (zh) * 2014-10-22 2015-01-28 山东理工大学 一种氮化硅、碳化硅结合碳化钨泡沫陶瓷的制备方法
CN107124880A (zh) * 2014-06-11 2017-09-01 法商圣高拜欧洲实验及研究中心 具有取向颗粒的陶瓷制品及其生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417243A (zh) * 2008-10-23 2009-04-29 中山大学 高比表面积碳化钨微球与负载型催化剂及它们的制备方法
CN102049273A (zh) * 2009-10-27 2011-05-11 中国科学院大连化学物理研究所 一种介孔炭担载的碳化钨催化剂及其制备和应用
CN101869853A (zh) * 2010-05-28 2010-10-27 中山大学 有序介孔碳/碳化钨复合材料与其负载型催化剂以及它们的制备方法
CN107124880A (zh) * 2014-06-11 2017-09-01 法商圣高拜欧洲实验及研究中心 具有取向颗粒的陶瓷制品及其生产方法
CN104311132A (zh) * 2014-10-22 2015-01-28 山东理工大学 一种氮化硅、碳化硅结合碳化钨泡沫陶瓷的制备方法

Also Published As

Publication number Publication date
CN107486246B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
Quah et al. An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts
Tang et al. Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production
Islam et al. Advances in solid-catalytic and non-catalytic technologies for biodiesel production
Arumugamurthy et al. Conversion of a low value industrial waste into biodiesel using a catalyst derived from brewery waste: An activation and deactivation kinetic study
Sun et al. Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies
CN101597508B (zh) 一种高级脂肪酸酯制备烷烃的方法
EP2612900B1 (en) Method for producing renewable fuel using supercritical fluid
CN101249449A (zh) 新型固体碱催化剂及其在生物柴油合成中的应用
CN101249431A (zh) 一种新型固体碱催化剂及其在生物柴油合成中的应用
CN103614155A (zh) 一种藻油生产烃类燃料的制备方法
Pan et al. Functional nanomaterials-catalyzed production of biodiesel
Zhang et al. An overview of metal-organic frameworks-based acid/base catalysts for biofuel synthesis
Amirthavalli et al. Various methods of biodiesel production and types of catalysts
CN101831328A (zh) 一种绿色燃油及其制备方法
Yusup et al. Emerging technologies for biofuels production
Zheng et al. Facile synthesis of chitosan-derived sulfonated solid acid catalysts for realizing highly effective production of biodiesel
CN107617441A (zh) TiO2多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法
CN103484163A (zh) 一种生物质双模式重整气化制备纯净合成气的方法
CN107486246A (zh) Wc多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法
CN113926459B (zh) 一种磁性碳基催化剂及利用该催化剂制备生物柴油的方法
WO2018058954A1 (zh) 一种废油脂直接制备正异构烷烃的方法
CN105754718B (zh) 一种生物柴油的制备方法
CN101249454A (zh) 固体碱催化剂及其在制备生物柴油中的应用
CN105170154A (zh) 用于co2和ch4重整制合成气的催化剂及制备方法
CN106984355A (zh) 一种HPW/g‑C3N4复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant