CN107482722B - A constant current charger circuit - Google Patents
A constant current charger circuit Download PDFInfo
- Publication number
- CN107482722B CN107482722B CN201710739758.0A CN201710739758A CN107482722B CN 107482722 B CN107482722 B CN 107482722B CN 201710739758 A CN201710739758 A CN 201710739758A CN 107482722 B CN107482722 B CN 107482722B
- Authority
- CN
- China
- Prior art keywords
- unit
- terminal
- transistor
- output
- sampling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007600 charging Methods 0.000 claims abstract description 83
- 238000005070 sampling Methods 0.000 claims abstract description 67
- 239000003990 capacitor Substances 0.000 claims abstract description 66
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 238000010277 constant-current charging Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H02J7/0077—
Landscapes
- Amplifiers (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明属于电子电路技术领域,特别涉及一种高精度高稳定性的恒流充电电路,可以用于单节锂电池充电器中。The invention belongs to the technical field of electronic circuits, in particular to a constant current charging circuit with high precision and high stability, which can be used in a single-cell lithium battery charger.
背景技术Background technique
随着手机、平板、可穿戴式电子设备的流行,对于这些移动电子设备的电源管理变得越来越重要。锂电池由于工作电压高,寿命长等优点,被广泛应用于移动电子设备中。而根据锂电池的化学特性,现在最为流行的充电方式是三阶段充电法:涓流充电、恒流充电、恒压充电。其中恒流充电占据了锂电池充电的主要过程。With the popularity of mobile phones, tablets, and wearable electronic devices, power management for these mobile electronic devices becomes more and more important. Lithium batteries are widely used in mobile electronic devices due to their high operating voltage and long life. According to the chemical characteristics of lithium batteries, the most popular charging method is the three-stage charging method: trickle charging, constant current charging, and constant voltage charging. Among them, constant current charging occupies the main process of lithium battery charging.
图1为传统锂电池恒流充电电路简图。其中SYS为DC-DC(直流-直流)稳压器的稳定输出,在恒流充电阶段,SYS电压始终比电池电压高△V1(△V1>0V),N1管为锂电池充电器的功率管,S1管为采样管。BAT为需要充电的锂电池,R1为外接的零温高精度电阻,REF为基准电平,PUMPC为电荷泵的输出。恒流充电原理为,采样管S1与功率管N1的栅、漏、衬底电压分别相等,通过运放的深度负反馈,保证S1与N1的源端电压也相等。在四端电压都相等的情况下,采样比例仅和MOS管宽长比有关。采样电流IBFETH流过电阻R1产生采样电压,与基准电压作比较,调整功率管栅端电压PUMP,以此将充电电流控制在一个恒定值。Figure 1 is a schematic diagram of a traditional lithium battery constant current charging circuit. Among them, SYS is the stable output of the DC-DC (direct current-direct current) regulator. In the constant current charging stage, the SYS voltage is always higher than the battery voltage by △V1 (△V1>0V), and the N1 tube is the power tube of the lithium battery charger. , the S1 tube is the sampling tube. BAT is the lithium battery to be charged, R1 is an external zero-temperature high-precision resistor, REF is the reference level, and PUMPC is the output of the charge pump. The principle of constant current charging is that the gate, drain and substrate voltages of the sampling tube S1 and the power tube N1 are equal respectively, and the source voltages of S1 and N1 are also equalized through the deep negative feedback of the operational amplifier. In the case where the voltages at the four terminals are all equal, the sampling ratio is only related to the width-length ratio of the MOS tube. The sampling current I BFETH flows through the resistor R1 to generate the sampling voltage, which is compared with the reference voltage to adjust the gate terminal voltage PUMP of the power tube, so as to control the charging current at a constant value.
由于设计和工艺的原因,运放A1存在失调电压(offset),会导致采样电流产生误差,进而导致恒流充电电流产生偏差。偏差电流为:Due to design and process reasons, the op amp A1 has an offset voltage (offset), which will cause errors in the sampling current, which in turn lead to deviations in the constant-current charging current. The bias current is:
由此式可以看出失调电压(offset)误差会被放大(VPUMP-VBAT-VTH)倍,(VPUMP-VBAT-VTH)为功率管N1的过驱动电压,这意味着当预设的充电电流越大时,电流偏差越大。此时容易使电流超出恒流充电环路的调节范围,恒流充电功能失效。而现如今随着电池容量的不断增大和使用者对充电时间的严格要求,恒流充电电流将不断增大,这就意味着由于失调电压引起的电路稳定性问题将被不断的放大。It can be seen from this formula that the offset voltage (offset) error will be amplified by (V PUMP -V BAT -V TH ) times, and (V PUMP -V BAT -V TH ) is the overdrive voltage of the power transistor N1, which means that when The greater the preset charging current, the greater the current deviation. At this time, it is easy to cause the current to exceed the adjustment range of the constant current charging loop, and the constant current charging function will fail. Nowadays, with the continuous increase of battery capacity and the strict requirements of users for charging time, the constant current charging current will continue to increase, which means that the circuit stability problem caused by the offset voltage will be continuously amplified.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述现有技术的不足,提出一种具有高精度高稳定性的恒流充电器电路,通过使用开关电容技术,以实现消除运放的失调电压(offset),减小电流采样误差,使得锂电池充电器可以在大电流恒流充电时依然保持充电电流精准,充电环路稳定。The purpose of the present invention is to propose a constant current charger circuit with high precision and high stability in view of the above-mentioned deficiencies of the prior art. By using the switched capacitor technology, the offset voltage (offset) of the operational amplifier can be eliminated and the current can be reduced. The sampling error enables the lithium battery charger to keep the charging current accurate and the charging loop stable during high current constant current charging.
为实现上述目的,本发明一种恒流充电器电路包括:充电单元1、采样单元2、信号转换单元5、充电电流调节单元6、数字控制单元7,其特征在于包括:开关电容电路单元3、电压补偿单元4;In order to achieve the above purpose, a constant current charger circuit of the present invention includes: a
所述充电单元1,用于给锂电池进行恒流充电;其设有两路输入,第一输入端连接至前级DC-DC(直流-直流)转换器的输出电压SYS,第二输入端连接至充电电流调节单元6的输出;输出端连接至待充电的锂电池的阳极电压BAT;The
所述采样单元2,其设有两路输入,用于对充电电流进行比例采样;第一输入端连接至DC-DC(直流-直流)转换器输出电压SYS,第二输入端连接至充电单元1的输入端;输出端BFETH输出采样电流信号IBFETH;The sampling unit 2 has two inputs for proportional sampling of the charging current; the first input end is connected to the output voltage SYS of the DC-DC (direct current-direct current) converter, and the second input end is connected to the charging unit The input end of 1; the output end BFETH outputs the sampling current signal I BFETH ;
所述开关电容电路单元3,其设有四路输入,第一输入端连接至待充电的锂电池的阳极电压BAT,第二输入端连接采样单元2的输出端BFETH,第三输入端连接至数字控制单元7的输出的逻辑控制信号P1,第四输入端连接至数字控制单元7的输出的逻辑控制信号P1X;其输出端连接至电压补偿单元4的输入端;The switched capacitor circuit unit 3 has four inputs, the first input terminal is connected to the anode voltage BAT of the lithium battery to be charged, the second input terminal is connected to the output terminal BFETH of the sampling unit 2, and the third input terminal is connected to the anode voltage BAT of the lithium battery to be charged. For the logic control signal P1 output by the
所述电压补偿单元4,其输出端连接至信号转换单元5的第一输入端,用于补偿开关电容电路单元3的输出电压,减小采样精度误差;The output terminal of the voltage compensation unit 4 is connected to the first input terminal of the
所述信号转换单元5,其设有两路输入,其第二输入端连接采样电流信号IBFETH;开关电容电路单元3、电压补偿单元4和信号转换单元5构成反馈环路,用以保证采样单元2能够精准的按比例采样充电电流;输出端连接至充电电流调节单元6的第一输入端;The
所述充电电流调节单元6,其设有两路输入,第二输入端连接基准电压REF,其输出端连接至信号采样单元2的输入端和充电单元1的输入端,用以调节充电电流,保证充电电流恒定不变;The charging
所述数字控制单元7,用于产生两个逻辑控制信号P1和P1X,其中第一逻辑控制信号P1控制开关电容电路单元3中的联动开关S1~S6,第二逻辑控制信号P1X控制开关电容电路单元3中的联动开关S7~S12。The
上述充电单元1,由第一晶体管MN1构成,此晶体管由N(N>1)个完全相同的NMOS管并联而成;第一晶体管MN1的栅端连接至充电电流调节单元6的输出端,源端连接至锂电池的阳极电压BAT,漏端连接至前级DC-DC(直流-直流)转换器的输出电压SYS,且SYS=VBAT+△V1(△V1>0V)。The above-mentioned
上述采样单元2由第二晶体管MN2构成,其尺寸与构成第一晶体管MN1的NMOS管的尺寸完全相同,个数比为1:N;所述第二晶体管MN2的漏端和第一晶体管MN1的漏端相连,所述第二晶体管MN2的栅端和第一晶体管MN1的栅端相连,第二晶体管MN2的源端作为采样单元2的输出端BFETH,输出采样电流信号IBFETH。The above-mentioned sampling unit 2 is composed of a second transistor MN2, the size of which is exactly the same as that of the NMOS transistor that constitutes the first transistor MN1, and the number ratio is 1:N; The drain terminals are connected, the gate terminal of the second transistor MN2 is connected to the gate terminal of the first transistor MN1, and the source terminal of the second transistor MN2 is used as the output terminal BFETH of the sampling unit 2 to output the sampling current signal I BFETH .
上述开关电容电路单元3包括第一运算放大器A1、第二运算放大器A2、第一电容C1、第二电容C2和12个联动开关S1~S12:The above-mentioned switched capacitor circuit unit 3 includes a first operational amplifier A1, a second operational amplifier A2, a first capacitor C1, a second capacitor C2 and 12 linkage switches S1-S12:
所述第一联动开关S1连接采样单元2的输出端BFETH和第一电容C1的上极板,第一电容C1的下极板与第一运算放大器A1的反向输入端相连;The first linkage switch S1 is connected to the output end BFETH of the sampling unit 2 and the upper plate of the first capacitor C1, and the lower plate of the first capacitor C1 is connected to the reverse input end of the first operational amplifier A1;
所述第二联动开关S2连接锂电池的阳极电压BAT和第一运算放大器A1的正向输入端;The second linkage switch S2 is connected to the anode voltage BAT of the lithium battery and the forward input terminal of the first operational amplifier A1;
所述第三联动开关S3连接第一运算放大器A1的输出端和电压补偿单元4的输入端A;The third linkage switch S3 is connected to the output end of the first operational amplifier A1 and the input end A of the voltage compensation unit 4;
所述第四联动开关S4跨接第二运算放大器A2的反向输入端和输出端;The fourth linkage switch S4 is connected across the reverse input end and the output end of the second operational amplifier A2;
所述第五联动开关S5连接第二电容C2的上极板和第二运算放大器A2的正向输入端;The fifth linkage switch S5 is connected to the upper plate of the second capacitor C2 and the forward input terminal of the second operational amplifier A2;
所述第六联动开关S6连接第二运算放大器A2的正向输入端和电压补偿单元4的输入端A;The sixth linkage switch S6 is connected to the forward input terminal of the second operational amplifier A2 and the input terminal A of the voltage compensation unit 4;
所述第七联动开关S7跨接第一运算放大器A1的反向输入端和输出端;The seventh linkage switch S7 is connected across the reverse input end and the output end of the first operational amplifier A1;
所述第八联动开关S8连接第一电容C1的上极板和第一运算放大器A1的正向输入端;The eighth linkage switch S8 is connected to the upper plate of the first capacitor C1 and the forward input terminal of the first operational amplifier A1;
所述第九联动开关S9连接第一运算放大器A1的正向输入端和电压补偿单元4的输入端A;The ninth linkage switch S9 is connected to the forward input terminal of the first operational amplifier A1 and the input terminal A of the voltage compensation unit 4;
所述第十联动开关S10连接采样单元2的输出端BFETH和第二电容C2的上极板,第二电容C2的下极板与第二运算放大器A2的反向输入端相连;The tenth linkage switch S10 is connected to the output end BFETH of the sampling unit 2 and the upper plate of the second capacitor C2, and the lower plate of the second capacitor C2 is connected to the reverse input end of the second operational amplifier A2;
所述第十一联动开关S11连接锂电池的阳极电压BAT和第二运算放大器A2的正向输入端;The eleventh linkage switch S11 is connected to the anode voltage BAT of the lithium battery and the forward input terminal of the second operational amplifier A2;
所述第十二联动开关S12连接第二运算放大器A2的输出端和电压补偿单元4的输入端A。The twelfth linkage switch S12 is connected to the output end of the second operational amplifier A2 and the input end A of the voltage compensation unit 4 .
上述电压补偿单元4包括第三晶体管MN3和一个恒定电流源I1;The above-mentioned voltage compensation unit 4 includes a third transistor MN3 and a constant current source I1;
所述第三晶体管MN3的栅端作为电压补偿单元4的输入端,漏端连接至电源电压VCC,源端作为电压补偿单元4的输出端;The gate terminal of the third transistor MN3 is used as the input terminal of the voltage compensation unit 4, the drain terminal is connected to the power supply voltage VCC, and the source terminal is used as the output terminal of the voltage compensation unit 4;
所述电流源I1跨接于第三晶体管MN3的源端和地之间。The current source I1 is connected between the source terminal of the third transistor MN3 and the ground.
上述信号转换单元5包括第四晶体管MP1和第一电阻R1;The above-mentioned
所述第四晶体管MP1的栅端作为信号转换单元5的输入端,源端连接至采样单元2的输出端BFETH,漏端作为信号转换单元5的输出端;The gate terminal of the fourth transistor MP1 is used as the input terminal of the
所述第一电阻R1跨接于第四晶体管MP1的漏端和地之间。The first resistor R1 is connected between the drain terminal of the fourth transistor MP1 and the ground.
上述充电电流调节单元6包括第三运算放大器A3,第五晶体管MN4和第二电阻R2;The above-mentioned charging
所述第三运算放大器A3的反向输入端作为充电电流调节单元6的第一输入端,正向输入端作为充电电流调节单元6的第二输入端,并连接基准电压REF;其输出端连接至第五晶体管MN4的栅端;The reverse input terminal of the third operational amplifier A3 is used as the first input terminal of the charging
所述第五晶体管MN4的源端连接至地,其漏端通过第二电阻R2连接至外部电荷泵输出电压PUMPC;第五晶体管MN4和第二电阻R2的公共端PUMP作为充电电流调节单元6的输出端。The source terminal of the fifth transistor MN4 is connected to the ground, and its drain terminal is connected to the external charge pump output voltage PUMPC through the second resistor R2; the common terminal PUMP of the fifth transistor MN4 and the second resistor R2 is used as the charging
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1.本发明通过引入开关电容电路,将放大器的失调电压记录并存储在电容中,并在采样过程中释放与原本的失调电压抵消,从而保证充电电流的采样精度,以此解决因为采样误差而导致的恒流充电环路在大电流充电时不稳定易失效的问题,大大提高了恒流充电的电流精度与电路系统的稳定性。1. The present invention records and stores the offset voltage of the amplifier in the capacitor by introducing a switched capacitor circuit, and releases and offsets the original offset voltage during the sampling process, thereby ensuring the sampling accuracy of the charging current, thereby solving the problem of sampling errors due to sampling errors. The resulting problem that the constant current charging loop is unstable and easy to fail during high current charging greatly improves the current accuracy of the constant current charging and the stability of the circuit system.
2.本发明通过引入电压补偿电路,对处在失调电压存储阶段的运算放大器的直流工作点进行修正,减小开关电容电路状态切换时,运算放大器输入端寄生电容对电路精度的影响。2. The present invention corrects the DC operating point of the operational amplifier in the offset voltage storage stage by introducing a voltage compensation circuit to reduce the influence of the parasitic capacitance at the input end of the operational amplifier on the circuit accuracy when the switched capacitor circuit is switched.
附图说明Description of drawings
图1传统锂电池恒流充电电路工作示意图;Figure 1 is a schematic diagram of the operation of a traditional lithium battery constant current charging circuit;
图2本发明的锂电池恒流充电系统框图;2 is a block diagram of a lithium battery constant current charging system of the present invention;
图3本发明的开关电容电路单元电路图;3 is a circuit diagram of a switched capacitor circuit unit of the present invention;
图4本发明的电压补偿单元电路图;4 is a circuit diagram of a voltage compensation unit of the present invention;
图5本发明的信号转换单元电路图;5 is a circuit diagram of a signal conversion unit of the present invention;
图6本发明的充电电流调节单元电路图;6 is a circuit diagram of a charging current adjustment unit of the present invention;
图7本发明的数字控制单元产生的逻辑控制信号示意图;7 is a schematic diagram of the logic control signal generated by the digital control unit of the present invention;
图8本发明的恒流充电电路的整体工作示意图;8 is a schematic diagram of the overall operation of the constant current charging circuit of the present invention;
图9本发明的恒流充电电路在不同工作状态时的等效电路图;9 is an equivalent circuit diagram of the constant current charging circuit of the present invention in different working states;
具体实施方式Detailed ways
以下参照说明书附图对本发明的具体实施方式作进一步的说明。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings.
参考图2,本发明提供的一种恒流充电器电路,包括充电单元1、采样单元2、开关电容电路单元3、电压补偿单元4、信号转换单元5、充电电流调节单元6,数字控制单元7,其中:2, a constant current charger circuit provided by the present invention includes a
所述充电单元1,用于给锂电池进行恒流充电;其设有两路输入,第一输入端连接至前级DC-DC(直流-直流)转换器的输出电压SYS,第二输入端连接至充电电流调节单元6的输出;输出端连接至待充电的锂电池的阳极电压BAT;The charging
所述采样单元2,其设有两路输入,用于对充电电流进行比例采样;第一输入端连接至DC-DC(直流-直流)转换器输出电压SYS,第二输入端连接至充电单元1的输入端;输出端BFETH输出采样电流信号IBFETH;The sampling unit 2 has two inputs for proportional sampling of the charging current; the first input end is connected to the output voltage SYS of the DC-DC (direct current-direct current) converter, and the second input end is connected to the charging unit The input end of 1; the output end BFETH outputs the sampling current signal I BFETH ;
所述开关电容电路单元3,其设有四路输入,第一输入端连接至待充电的锂电池的阳极电压BAT,第二输入端连接采样电流信号IBFETH,第三输入端连接至数字控制单元7的输出的逻辑控制信号P1,第四输入端连接至数字控制单元7的输出的逻辑控制信号P1X;其输出端连接至电压补偿单元4的输入端;The switched capacitor circuit unit 3 has four inputs, the first input terminal is connected to the anode voltage BAT of the lithium battery to be charged, the second input terminal is connected to the sampling current signal I BFETH , and the third input terminal is connected to the digital control The logic control signal P1 of the output of the
所述电压补偿单元4,其输出端连接至信号转换单元5的第一输入端,用于补偿开关电容电路单元3的输出电压,减小采样精度误差;The output terminal of the voltage compensation unit 4 is connected to the first input terminal of the
所述信号转换单元5,其设有两路输入,其第二输入端连接采样电流信号IBFETH;输出端连接至充电电流调节单元6的第一输入端。开关电容电路单元3、电压补偿单元4和信号转换单元5构成反馈环路,用以保证采样单元2能够精准的按比例采样充电电流。The
所述充电电流调节单元6,其设有两路输入,第二输入端连接基准电压REF,其输出端连接至信号采样单元2的输入端和充电单元1的输入端,用以调节充电电流,保证充电电流恒定不变;The charging
所述数字控制单元7,用于产生两个逻辑控制信号P1和P1X,其中第一逻辑控制信号P1控制开关电容电路单元3中的联动开关S1~S6,第二逻辑控制信号P1X控制开关电容电路单元3中的联动开关S7~S12。The
进一步的,参考图2,所述充电单元1,由第一晶体管MN1构成,此晶体管由N(N>1)个完全相同的NMOS管并联而成;所述采样单元2由第二晶体管MN2构成,其尺寸与构成第一晶体管MN1的NMOS管的尺寸完全相同,个数比为1:N。所述第二晶体管MN2的漏端和第一晶体管MN1的漏端相连,所述第二晶体管MN2的栅端和第一晶体管MN1的栅端相连,第二晶体管MN2的源端输出采样电流信号IBFETH;通过开关电容电路单元3、电压补偿单元4和信号转换单元5构成反馈环路,保证第二晶体管MN2的源端电压和充电单元1中的第一晶体管MN1的源端电压相等,以此保证流经第二晶体管MN2的电流为流经第一晶体管MN1的电流的1/N,以此达到电流采样的目的。同时采样电流信号IBFETH通过信号转换单元5转换为采样电压并输出给充电电流调节单元6。该充电电流调节单元6将所述采样电压与基准电压REF相比较,得到充电电流调节信号反馈至第一晶体管MN1的栅端,用于控制并调节恒流充电电流的大小。Further, referring to FIG. 2 , the charging
第一晶体管MN1的漏端连接至前级DC-DC(直流-直流)转换器的输出电压SYS,且SYS=BAT+△V1(△V1>0V),栅端连接至充电电流调节单元6的输出端,源端连接至待充电锂电池的阳极电压BAT。由于SYS电压恒比BAT电压高△V,这意味着该功率管的源漏电压固定不变,那么功率管通过的电流大小就由栅端电压唯一确定。The drain terminal of the first transistor MN1 is connected to the output voltage SYS of the previous-stage DC-DC converter, and SYS=BAT+ΔV1 (ΔV1>0V), and the gate terminal is connected to the output of the charging
参考图3,所述开关电容电路单元3包括第一运算放大器A1、第二运算放大器A2、第一电容C1、第二电容C2和12个联动开关S1~S12:Referring to FIG. 3 , the switched capacitor circuit unit 3 includes a first operational amplifier A1, a second operational amplifier A2, a first capacitor C1, a second capacitor C2 and 12 linkage switches S1-S12:
所述第一联动开关S1连接采样单元(2)的输出端BFETH和第一电容C1的上极板,第一电容C1的下极板与第一运算放大器A1的反向输入端相连;The first linkage switch S1 is connected to the output end BFETH of the sampling unit (2) and the upper plate of the first capacitor C1, and the lower plate of the first capacitor C1 is connected to the reverse input end of the first operational amplifier A1;
所述第二联动开关S2连接锂电池的阳极电压BAT和第一运算放大器A1的正向输入端;The second linkage switch S2 is connected to the anode voltage BAT of the lithium battery and the forward input terminal of the first operational amplifier A1;
所述第三联动开关S3连接第一运算放大器A1的输出端和电压补偿单元(4)的输入端A;The third linkage switch S3 is connected to the output end of the first operational amplifier A1 and the input end A of the voltage compensation unit (4);
所述第四联动开关S4跨接第二运算放大器A2的反向输入端和输出端;The fourth linkage switch S4 is connected across the reverse input end and the output end of the second operational amplifier A2;
所述第五联动开关S5连接第二电容C2的上极板和第二运算放大器A2的正向输入端;The fifth linkage switch S5 is connected to the upper plate of the second capacitor C2 and the forward input terminal of the second operational amplifier A2;
所述第六联动开关S6连接第二运算放大器A2的正向输入端和电压补偿单元(4)的输入端A;The sixth linkage switch S6 is connected to the forward input terminal of the second operational amplifier A2 and the input terminal A of the voltage compensation unit (4);
所述第七联动开关S7跨接第一运算放大器A1的反向输入端和输出端;The seventh linkage switch S7 is connected across the reverse input end and the output end of the first operational amplifier A1;
所述第八联动开关S8连接第一电容C1的上极板和第一运算放大器A1的正向输入端;The eighth linkage switch S8 is connected to the upper plate of the first capacitor C1 and the forward input terminal of the first operational amplifier A1;
所述第九联动开关S9连接第一运算放大器A1的正向输入端和电压补偿单元(4)的输入端A;The ninth linkage switch S9 is connected to the forward input terminal of the first operational amplifier A1 and the input terminal A of the voltage compensation unit (4);
所述第十联动开关S10连接采样单元(2)的输出端BFETH和第二电容C2的上极板,第二电容C2的下极板与第二运算放大器A2的反向输入端相连;The tenth linkage switch S10 is connected to the output end BFETH of the sampling unit (2) and the upper plate of the second capacitor C2, and the lower plate of the second capacitor C2 is connected to the reverse input end of the second operational amplifier A2;
所述第十一联动开关S11连接锂电池的阳极电压BAT和第二运算放大器A2的正向输入端;The eleventh linkage switch S11 is connected to the anode voltage BAT of the lithium battery and the forward input terminal of the second operational amplifier A2;
所述第十二联动开关S12连接第二运算放大器A2的输出端和电压补偿单元(4)的输入端A。The twelfth linkage switch S12 is connected to the output end of the second operational amplifier A2 and the input end A of the voltage compensation unit (4).
参考图4,所述电压补偿单元4包括第三晶体管MN3和一个恒定电流源I1;第三晶体管MN3的栅端作为电压补偿单元4的输入端A,漏端连接至电源电压VCC,源端作为电压补偿单元4的输出端B;电流源I1跨接于第三晶体管MN3的源端和地之间;MN3接成源跟随器的形式,用于对开关电容电路单元3的输出电压进行电压补偿,减小开关电容电路单元3中第一运算放大器A1和第二运算放大器A2的正负输入端寄生电容对精度产生的影响。4, the voltage compensation unit 4 includes a third transistor MN3 and a constant current source I1; the gate terminal of the third transistor MN3 is used as the input terminal A of the voltage compensation unit 4, the drain terminal is connected to the power supply voltage VCC, and the source terminal is used as the input terminal A of the voltage compensation unit 4. The output terminal B of the voltage compensation unit 4; the current source I1 is connected across the source terminal of the third transistor MN3 and the ground; , reducing the influence of the parasitic capacitance of the positive and negative input terminals of the first operational amplifier A1 and the second operational amplifier A2 in the switched capacitor circuit unit 3 on the accuracy.
参考图5,所述信号转换单元5包括第四晶体管MP1和第一电阻R1;第四晶体管MP1的栅端作为信号转换单元5的输入端,源端连接至采样单元2的输出端BFETH,漏端作为信号转换单元5的输出端;第一电阻R1跨接于第四晶体管MP1的漏端和地之间。5 , the
进一步的,参考图3,4,5;采样单元2的输出端电压BFETH经过开关电容电路单元3,电压补偿单元4得到输出电压B并连接至第四晶体管MP1的栅端,该第四晶体管MP1将输出电压B反馈回开关电容电路单元3的输入端,形成负反馈环路。以保证开关电容电路单元3的两个输入端BFETH和BAT电压相等,即保证采样单元2中的MN2的漏端电压与充电单元1中的MN1的漏端电压相等,此时MN2与MN1的源端、栅端、漏端电压都相等,保证采样单元2可以按比例精确采样充电电流。Further, referring to FIGS. 3 , 4 and 5 ; the output voltage BFETH of the sampling unit 2 passes through the switched capacitor circuit unit 3 , and the voltage compensation unit 4 obtains the output voltage B and connects to the gate terminal of the fourth transistor MP1 , the fourth transistor MP1 The output voltage B is fed back to the input end of the switched capacitor circuit unit 3 to form a negative feedback loop. In order to ensure that the voltages of the two input terminals BFETH and BAT of the switched capacitor circuit unit 3 are equal, that is, to ensure that the voltage of the drain terminal of MN2 in the sampling unit 2 is equal to the voltage of the drain terminal of MN1 in the
参考图6,所述充电电流调节单元6包括第三运算放大器A3,第五晶体管MN4和一个电阻R2;所述第三运算放大器A3的反向输入端作为充电电流调节单元6的第一输入端,正向输入端作为充电电流调节单元6的第二输入端,并连接基准电压REF;其输出端连接至第五晶体管MN4的栅端;所述第五晶体管MN4的源端接地,其漏端通过第二电阻R2连接至外部电荷泵输出电压PUMPC;第五晶体管MN4和电阻R2的公共端PUMP作为充电电流调节单元6的输出端;第五晶体管MN4的漏端作为本单元的输出连接至充电单元1的栅端,用以调节充电单元1的恒流充电电流。Referring to FIG. 6 , the charging
本发明的数字控制单元7用于产生逻辑控制信号,用于控制开关电容电路单元3中的联动开关的导通和关断,从而改变电路的工作状态。控制开关电容电路单元3的工作控制时序如图7所示,其中高电平代表开关闭合,低电平代表开关断开。The
图8为本发明具有高精度高稳定性的恒流充电电路的整体工作示意图,假设第一运算放大器A1和第二运算放大器A2的失调电压分别为VOS1和VOS2。8 is a schematic diagram of the overall operation of the constant current charging circuit with high precision and high stability of the present invention, assuming that the offset voltages of the first operational amplifier A1 and the second operational amplifier A2 are V OS1 and V OS2 , respectively.
结合图7和图8,本发明具体工作过程说明如下:In conjunction with Fig. 7 and Fig. 8, the concrete working process of the present invention is described as follows:
定义联动开关S1~S6闭合,联动开关S7~S12断开时,整体电路处于T1阶段,其等效结构如图9a所示。此时第二运算放大器A2接成深度负反馈形式,正负输入端电压相等,那么有第二电容C2两端电压VC2=VOS2,这也就意味着第二运算放大器A2的失调电压VOS2被存储于第二电容C2中;It is defined that when the linkage switches S1-S6 are closed and the linkage switches S7-S12 are disconnected, the overall circuit is in the stage T1, and its equivalent structure is shown in Figure 9a. At this time, the second operational amplifier A2 is connected in the form of deep negative feedback, and the positive and negative input terminal voltages are equal, then there is a voltage V C2 =V OS2 across the second capacitor C2 , which means that the offset voltage V of the second operational amplifier A2 OS2 is stored in the second capacitor C2;
定义联动开关S7~S12闭合,联动开关S1~S6断开时,整体电路处于T2阶段,其等效结构如图9b所示。此时第二运算放大器A2、第二电容C2与电压补偿单元4和信号转换单元5构成电压信号环路,那么第二运算放大器A2的正负输入端电压相等,即BFETH-VC2=BAT-VOS2,由于在T1阶段,第二电容C2两端电压VC2等于失调电压VOS2,且电容电压不能突变,则BFETH=BAT,消除了失调电压VOS2对电路精度的影响(传统电路中BAT-VOS=BFETH,及BAT=BFETH+VOS)。It is defined that when the linkage switches S7-S12 are closed and the linkage switches S1-S6 are disconnected, the overall circuit is in the stage T2, and its equivalent structure is shown in Figure 9b. At this time, the second operational amplifier A2, the second capacitor C2, the voltage compensation unit 4 and the
同理,第一运算放大器A1的失调电压VOS1也可以被消除,T2阶段时第一电容C1记录第一运算放大器A1的失调电压VOS1,T1状态时,失调电压VOS1与第一电容C1两端电压VC1相抵消,BFETH仍等于BAT。Similarly, the offset voltage V OS1 of the first operational amplifier A1 can also be eliminated. In the T2 stage, the first capacitor C1 records the offset voltage V OS1 of the first operational amplifier A1. In the T1 state, the offset voltage V OS1 and the first capacitor C1 The voltages V C1 at both ends cancel each other out, and BFETH is still equal to BAT.
因为T1、T2阶段表示一个完整的信号采集与放大处理周期,则在整个周期中BFETH恒等于BAT,那么运算放大器失调电压不会对电流采样精度产生影响。Because the T1 and T2 stages represent a complete signal acquisition and amplification processing cycle, BFETH is always equal to BAT in the entire cycle, so the offset voltage of the operational amplifier will not affect the current sampling accuracy.
以上描述仅是本发明的一个具体实例,不构成对本发明的任何限制,显然对于本领域的技术人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。The above description is only a specific example of the present invention, and does not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the content and principle of the present invention, they may not deviate from the principle and structure of the present invention. Under certain circumstances, various corrections and changes in form and details are made, but these corrections and changes based on the idea of the present invention are still within the scope of protection of the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710739758.0A CN107482722B (en) | 2017-08-25 | 2017-08-25 | A constant current charger circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710739758.0A CN107482722B (en) | 2017-08-25 | 2017-08-25 | A constant current charger circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107482722A CN107482722A (en) | 2017-12-15 |
CN107482722B true CN107482722B (en) | 2020-06-30 |
Family
ID=60601539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710739758.0A Active CN107482722B (en) | 2017-08-25 | 2017-08-25 | A constant current charger circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107482722B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109038741B (en) * | 2018-08-16 | 2023-11-28 | 上海艾为电子技术股份有限公司 | Charging circuit, switch charging chip and charging current sampling circuit thereof |
KR20210054331A (en) * | 2019-11-05 | 2021-05-13 | 주식회사 엘지화학 | Apparatus for battery diagnosis, nergy storage system including same, and method thereof |
TWI739363B (en) * | 2020-03-27 | 2021-09-11 | 矽統科技股份有限公司 | Constant current charging device |
CN113448371B (en) * | 2020-03-27 | 2023-02-17 | 矽统科技股份有限公司 | Constant current charging device |
CN113970664B (en) * | 2020-07-24 | 2024-04-12 | 圣邦微电子(北京)股份有限公司 | High-precision current sampling circuit, constant-current control circuit and sampling method |
CN115037024B (en) * | 2022-08-09 | 2022-11-08 | 成都信息工程大学 | A high-efficiency milliwatt-level photovoltaic energy harvesting and energy storage management circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346765A (en) * | 2013-07-09 | 2013-10-09 | 东南大学 | Gate-source following sampling switch |
CN103595098A (en) * | 2013-11-19 | 2014-02-19 | 上海艾为电子技术有限公司 | Charging control circuit of battery |
CN103972938A (en) * | 2013-02-04 | 2014-08-06 | 扬州奥凯新能源科技有限公司 | Efficient charging device of electromobile accumulator |
CN204559950U (en) * | 2015-03-27 | 2015-08-12 | 绵阳豪迈电子科技有限公司 | For the current feedback LED constant current controller of cctv surveillance |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8854121B2 (en) * | 2012-05-16 | 2014-10-07 | Lsi Corporation | Self-calibrating differential current circuit |
-
2017
- 2017-08-25 CN CN201710739758.0A patent/CN107482722B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103972938A (en) * | 2013-02-04 | 2014-08-06 | 扬州奥凯新能源科技有限公司 | Efficient charging device of electromobile accumulator |
CN103346765A (en) * | 2013-07-09 | 2013-10-09 | 东南大学 | Gate-source following sampling switch |
CN103595098A (en) * | 2013-11-19 | 2014-02-19 | 上海艾为电子技术有限公司 | Charging control circuit of battery |
CN204559950U (en) * | 2015-03-27 | 2015-08-12 | 绵阳豪迈电子科技有限公司 | For the current feedback LED constant current controller of cctv surveillance |
Also Published As
Publication number | Publication date |
---|---|
CN107482722A (en) | 2017-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107482722B (en) | A constant current charger circuit | |
US7999554B2 (en) | Single floating battery cell voltage level translator circuitry | |
US9634685B2 (en) | Telescopic amplifier with improved common mode settling | |
CN101471632B (en) | Self-biased low-voltage operational transconductance amplifier circuit with controllable loop gain | |
CN106292824B (en) | Low-dropout regulator circuit | |
CN109861329B (en) | Linear charging system, constant-current constant-voltage control circuit and voltage following control method thereof | |
CN105955387B (en) | A kind of bicyclic protection low voltage difference LDO linear voltage regulators | |
CN103034275A (en) | Low noise voltage regulator and method with fast settling and low-power consumption | |
CN104503531A (en) | Low dropout regulator circuit of transient response enhancing on-chip capacitor | |
CN101621292A (en) | Switch-capacitor integrator | |
CN103760943B (en) | A kind of slew rate enhancing circuit being applied to LDO | |
CN108508951A (en) | The LDO regulator circuit of capacitance outside a kind of no piece | |
CN103941792B (en) | Bandgap voltage reference circuit | |
CN105242734A (en) | High-power LDO circuit without externally setting capacitor | |
CN111245413A (en) | High-speed high-linearity grid voltage bootstrap switch circuit | |
CN104679086A (en) | Quick transient response CMOS (Complementary Metal Oxide Semiconductor) low-dropout regulator | |
CN105573391A (en) | Open-circuit voltage control circuit of solar array simulator and open-circuit voltage control method thereof | |
CN115542997B (en) | Linear voltage regulator supporting bidirectional current and control method | |
CN111463850A (en) | Charging current control circuit and control method, electronic equipment and charging method thereof | |
CN116301162A (en) | A Compatible Sampling Shunt Regulator Suitable for Loop Current Source | |
Noh et al. | A unified amplifier-based CC-CV linear charger for energy-constrained low-power applications | |
CN204515576U (en) | A kind of fast transient response CMOS low pressure difference linear voltage regulator | |
CN102355012B (en) | Numerical-control constant current driving circuit | |
CN209844567U (en) | Linear charging system and constant-current and constant-voltage control circuit | |
CN103457320B (en) | Lithium ion battery switch charging circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |