CN107478612B - 用于检测过滤器积尘的传感器及方法 - Google Patents
用于检测过滤器积尘的传感器及方法 Download PDFInfo
- Publication number
- CN107478612B CN107478612B CN201710853727.8A CN201710853727A CN107478612B CN 107478612 B CN107478612 B CN 107478612B CN 201710853727 A CN201710853727 A CN 201710853727A CN 107478612 B CN107478612 B CN 107478612B
- Authority
- CN
- China
- Prior art keywords
- light
- filter
- reflected
- power
- reflected light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种用于检测过滤器积尘传感器及方法,该方法包括如下步骤:提供入射光线并向过滤器表面照射;接收所述过滤器表面反射的反射光并得到反射光功率;利用不同的两个入射光功率的光线在所述过滤器表面的光谱反射率相等计算得出反射立体角补偿值,并通过所述反射立体角补偿值对所得到的反射光功率进行补偿,从而得到补偿后反射光功率;以及利用所述的补偿后的反射光功率和所述入射光线的功率计算得出对应的光谱反射率,进而判断得出所述过滤器表面的积尘程度。通过相邻两次不同功率的入射光线得到反射立体角补偿值,进而对反射光功率进行补偿,提高了计算的光谱反射率的准确度,使得检测积尘的结果更加准确。
Description
技术领域
本发明涉及过滤器积尘检测领域,特指一种用于检测过滤器积尘的传感器及方法。
背景技术
过滤器包括过滤网是过滤空气、水体中粉尘、杂质等颗粒物最有效的方式之一,可用于空气净化机、空气过滤器、汽车空调、新风系统和净水器等相关设备中。但长时间粉尘颗粒物堆积会降低过滤器的过滤效率,此外,被过滤器捕集粉尘的再飞散和滤材本身物质的脱落,会引起过滤器使用设备和环境的二次污染,因此解决过滤器积尘的实时监测对上述设备的正常运用及环境保护具有十分重要的意义,是迫切需要解决的问题。
在GB/T14295空气过滤器,EN1822高效空气过滤器,EN779一般通风空气过滤器-过滤性能的测定中规定了过滤器分级体系,过滤器的性能试验方法等内容。但是该内容主要是针对实验室内测定过滤器的一种方法,而且规定了检测的限定条件,很难用于实际的设备当中。
中国在先专利(申请号为:201210411211.5,发明名称为:滤网灰尘的检测方法)提供了一种滤网灰尘的检测方法,定时向滤网发送反射光或直射光或声波,并检测漏网反射回的反射光或声波的强度值,然后判断该强度值是否超过一预设值,从而判断滤网是否发生阻塞。但是由于不同类型的灰尘堆积到过滤器表面或灰尘在表面的堆积方式不同,会导致过滤器表面的光谱反射率特征不同,可能产生不同方向和强度的反射光,仅仅依靠测量过滤器表面的光强的变化来判断过滤器是否堵塞存在较大误差。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种用于检测过滤器积尘的传感器及方法,解决现有的过滤器积尘检测方法中通过光强变化判断过滤器是否堵塞存在较大误差的问题。
实现上述目的的技术方案是:
本发明提供了一种用于检测过滤器积尘的方法,包括如下步骤:
提供入射光线并向过滤器表面照射;
接收所述过滤器表面反射的反射光并得到反射光功率;
利用不同的两个入射光功率的光线在所述过滤器表面的光谱反射率相等计算得出反射立体角补偿值,并通过所述反射立体角补偿值对所得到的反射光功率进行补偿,从而得到补偿后反射光功率;以及
利用所述的补偿后的反射光功率和所述入射光线的功率计算得出对应的光谱反射率,进而判断得出所述过滤器表面的积尘程度。
本发明通过前后两次对过滤器表面照射不同功率的光线,利用相邻两次照射到被测过滤器相同位置的光谱反射率不变化,校准反射立体角的误差从而得到反射立体角补偿值,进而根据反射立体角补偿值对反射光功率进行补偿,从而提高了计算过滤器表面的光谱反射率的准确度,使得检测积尘的结果更加准确,解决了仅靠光强来表征过滤器积尘状态的局限性,本发明提供的检测方法简单可行,能有效解决对过滤器积尘程度实时监控的问题。
本发明用于检测过滤器积尘的方法的进一步改进在于,利用不同的两个入射光功率的光线在所述过滤器表面的光谱反射率相等计算得出反射立体角补偿值,包括:
提供另一入射光线并向所述过滤器表面照射,接收所述另一入射光线经所述过滤器表面反射的反射光并得到对应的另一反射光功率,所述另一入射光线的功率与所述入射光线的功率不同,进而通过所述另一入射光线的光谱反射率与所述入射光线的光谱反射率相等而计算得出所述反射立体角补偿值;或者
以第一发射光功率向过滤器表面照射第一光线,并接收所述过滤器表面反射的反射光得到对应的第一反射光功率;以第二发射光功率向所述过滤器表面照射第二光线,并接收所述过滤器表面反射的反射光得到对应的第二反射光功率;通过所述第一光线和所述第二光线的光谱反射率相等,进而计算得到所述反射立体角补偿值。
本发明用于检测过滤器积尘的方法的进一步改进在于,通过所述反射立体角补偿值对所得到的反射光功率进行补偿,包括:
利用所述反射立体角补偿值和反射立体角标准值的差值计算得出对应的非漫反射产生的反射光功率偏差值;
将所述反射光功率偏差值与所述反射光功率求和从而实现了对所述反射光功率进行补偿。
本发明用于检测过滤器积尘的方法的进一步改进在于,提供入射光线并向过滤器表面照射包括:
提供光源,利用所述光源产生设定发射光功率的入射光线并向所述过滤器表面照射;
提供准直透镜,将所述准直透镜设于所述光源的前方,使得所述光源产生的入射光线经过所述准直透镜后形成均匀的平行光线照射于所述过滤器表面。
本发明用于检测过滤器积尘的方法的进一步改进在于,接收所述过滤器表面反射的反射光时,包括:
提供光接收探测器,利用所述光接收探测器接收所述过滤器表面反射的反射光;
提供聚焦透镜,将所述聚焦透镜设于所述光接收探测器的前方,使得所述过滤器表面反射的反射光经过所述聚焦透镜聚集在所述光接收探测器上。
本发明还提供了一种用于检测过滤器积尘的传感器,包括:
光发射单元,用于产生入射光线并向过滤器表面照射;
光接收单元,用于接收所述过滤器表面反射的反射光并形成光接收信号;
与所述光发射单元和所述光接收单元连接的校准单元,用于根据不同的两个入射光功率的光线在所述过滤器表面的光谱反射率相等计算得出反射立体角补偿值;以及
与所述光发射单元、所述光接收单元以及所述校准单元连接的处理单元,所述处理单元用于根据所述光接收单元形成的光接收信号计算得到对应的反射光功率,并通过所述校准单元得出的所述反射立体角补偿值对所述反射光功率进行补偿从而得到补偿后的反射光功率,进而利用所述的补偿后的反射光功率和所述光发射单元产生的所述入射光线的功率计算得出对应的光谱反射率,并判断得出所述过滤器表面的积尘程度。
本发明用于检测过滤器积尘的传感器的进一步改进在于,所述处理单元包括补偿计算模块,所述补偿计算模块与所述校准单元和所述光接收单元连接;
所述补偿计算模块内存储有反射立体角标准值,用于通过所述校准单元得出的所述反射立体角补偿值和所述反射立体角标准值的差值计算得出对应的非漫反射的反射光功率偏差值并反馈给所述处理单元。
本发明用于检测过滤器积尘的传感器的进一步改进在于,所述光发射单元包括光源和设于所述光源前方的准直透镜;
所述光源用于产生设定发射功率的入射光线并向所述过滤器表面照射;
所述准直透镜用于将所述光源产生的入射光线形成均匀的平行光线并照射于所述过滤器表面。
本发明用于检测过滤器积尘的传感器的进一步改进在于,所述光接收单元包括光接收探测器和设于所述光接收探测器前方的聚焦透镜;
所述光接收探测器用于接收所述过滤器表面反射的反射光;
所述聚焦透镜用于将所述过滤器表面反射的反射光聚集在所述光接收探测器上。
本发明用于检测过滤器积尘的传感器的进一步改进在于,所述光发射单元还包括设于所述准直透镜的背部并套设于所述光源上的第一消光结构,所述第一消光结构上对应所述准直透镜的一面形成有出光口,使得所述光源产生的光线从所述出光口射出;
所述光接收单元还包括设于所述聚焦透镜的背部并套设于所述光接收探测器上的第二消光结构,所述第二消光结构上对应所述聚焦透镜的一面形成有入光口,使得所述聚焦透镜聚集的光线从所述入光口射入。
附图说明
图1为本发明用于检测过滤器积尘的传感器的结构示意图。
图2为本发明用于检测过滤器积尘的传感器的爆炸分解结构示意图。
图3为本发明用于检测过滤器积尘的传感器的分解结构的侧视图。
图4为本发明用于检测过滤器积尘的传感器中上壳体的结构示意图。
图5为本发明用于检测过滤器积尘的传感器的工作原理图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
参阅图1,本发明提供了一种用于检测过滤器积尘的传感器及方法,通过测量过滤器表面光谱反射率的变化,来判断过滤器的积尘程度,从而明确过滤器是否堵塞。由于过滤器表面存在积尘时,其光谱反射率会随着表面积尘状态的变化而发生改变,且该变化趋势是单调的,故而利用光谱反射率来判断过滤器的积尘程度相对于利用反射光的强度值的变化来判断过滤器的积尘程度结果更加准确。本发明的传感器及检测方法能够解决仅靠光强来表征过滤器状态的局限性,还可以连续输出过滤器表面的积尘的状态信息,且实现方法简单可行,能有效解决对过滤器积尘程度实时监控的问题。下面结合附图对本发明用于检测过滤器积尘的传感器及方法进行说明。
如图1和图5所示,本发明提供了一种用于检测过滤器积尘的传感器20,该传感器20可集成于过滤器10内,使得过滤器10具有检测自身积尘程度的功能,该传感器20还可以为独立的器件,应用于各种过滤器10的积尘检测。传感器20包括光发射单元21、光接收单元22、校准单元23以及处理单元24,校准单元23与光发射单元21和光接收单元22连接,处理单元24与光发射单元21、光接收单元22以及校准单元23连接,上述的连接可以为电连接,也可以为通信连接,使得处理单元24能够接收到光发射单元21和光接收单元22产生的信号,还能够接收校准单元23产生的信息,校准单元23能够接收到光发射单元21和光接收单元22所产生的信号。
光发射单元21用于产生入射光线向过滤器表面101照射。该光发射单元21可产生一种或多种入射光线,且产生的入射光线的功率可根据需要进行调整。结合图2和图3所示,光发射单元21包括光源211和设于光源211前方的准直透镜212,光源211用于发射一定功率的光线,在一较佳实施方式中,该光源211采用红外发射管,可产生不同功率的红外入射光线。该光源211还可以采用激光管,可产生不同功率的入射激光。在另一较佳实施方式中,光源211采用两种不同类型的光源,包括红外发射管和激光管,通过红外发射管和激光管可产生不同类型的光线向过滤器表面101照射。准直透镜212设置在光源211的前方,用于将光源211产生的入射光线形成均匀的平行光线并照射在过滤器表面101。通过准直透镜212控制入射光线照射到过滤器表面101的均匀性,消除了发射角度不同引起的不同光功率变化的影响,将光源产生的不均匀的光线进行准直,使光线均匀照射到被测的过滤器表面101,从而提高了过滤器的检测精度。准直透镜212采用高抛光表面,提高了光源211产生的入射光线的透过率,而且使得灰尘不易堆积到其表面。准直透镜212的表面高出传感器20的壳体25的表面,当放置在风道中时,如果准直透镜212的表面出现积灰,更容易被吹走。
光接收单元22用于接收过滤器表面101反射的反射光并形成光接收信号,光接收单元22接收过滤器表面101反射的光功率信息,并将其转换成电信号。该光接收单元22包括光接收探测器221和设于光接收探测器221前方的聚焦透镜222,光接收探测器221用于接收过滤器表面101反射的反射光,聚焦透镜222用于将过滤器表面101反射的反射光聚焦在光接收探测器221上。光接收探测器221接收过滤器表面101反射回来的光功率,并将其转换成可检测的电信号,将光接收探测器221的光谱选用宽波段的范围,提高其在宽范围内的光谱光功率强度,从而增加过滤器表面101的光谱的分辨率。聚焦透镜222用于汇聚过滤器表面101产生的反射光线,并将其聚集在光接收探测器221上,聚焦透镜222的表面采用高抛光表面,使得灰尘不易堆积到其表面上,该聚焦透镜222的表面高出传感器20的壳体25的表面,当放置在风道中时,如果聚焦透镜222的表面出现积灰,更容易被吹走。
校准单元23用于计算反射立体角补偿值,该反射立体角与反射光功率有关,反射立体角的准确性关系到了反射光功率的准确性,进而能够影响积尘程度的检测结果的准确性。校准单元23用于根据不同的两个入射光功率的光线在过滤器表面101的光谱反射率相等而计算得出反射立体角补偿值,并将该反射立体角补偿值提供给处理单元24,使得处理单元24能够根据反射立体角补偿值为反射光功率进行补偿。校准单元23在计算时所需要的两个不同功率的入射光线由光发射单元21的光源211发出,该两个不同功率的入射光线可以为不同类型的光线,也可以为相同类型的光线。
下面对校准单元23计算反射立体角补偿值的过程进行说明。
光谱反射率的计算公式可表示为:
公式一中,ρ为光谱反射率,Q为接收到的反射光功率,l为入射光线的功率,θi为入射光线的立体角,为入射光线的方位角,θr为反射光线的立体角,/>为反射光线的方位角。当传感器20和过滤器表面101的位置固定后,θi和/>为常数,较佳地,传感器20的入射光线垂直于过滤器表面101设置。当光接收单元22的位置确定后,接收的反射光的方位角/>也为常量。所以在计算反射光功率Q时,其与反射光线的立体角有关。
根据两个不同功率的入射光线照射到过滤器表面101相同位置后,得到的反射光功率不同,但相邻的两次过滤器表面的光谱反射率不变化,从而可知:
利用光发射单元21产生功率为的入射光线照射到过滤器表面101,光接收单元22接收到的反射光所对应的反射光功率的可表示/>对应的光谱反射率为/>
利用光发射单元21产生功率为的入射光线照射到过滤器表面101,光接收单元22接收到的反射光所对应的反射光功率的可表示/>对应的光谱反射率为/>
校准单元根据两次的光谱反射率相等,即,ρx1=ρx2,从而能够得出反射立体角补偿值θrx。
处理单元24用于根据光接收单元22形成的光接收信号计算得到对应的反射光功率Q,并通过校准单元23得出的反射立体角补偿值对反射光功率进行补偿从而得到补偿后的反射光功率,进而利用补偿后的反射光功率和光发射单元21产生的入射光线的功率计算得出对应的光谱反射率,并判断得出过滤器表面的积尘程度。
处理单元24在计算反射光功率时,通过上述公式一的分析,反射光线的立体角θr可通过如下方式计算:
利用标准朗伯体表面计算反射光线的立体角,标准朗伯体表面的光谱反射率为已知,且在标准朗伯体表面光线只存在漫反射。
向标准朗伯体表面入射功率为的光线,接收到的反射光功率为光谱反射率为/>
向标准朗伯体表面入射功率为的光线,接收到的反射光功率为光谱反射率为/>
由于为ρ1和ρ2已知,可解出反射立体角的标准值θr。
利用反射立体角的标准值θr来计算过滤器表面101的反射光功率时,由于被测的表面不是标准朗伯体表面,被测的表面存在双向反射,包括漫反射和非漫反射,其中的非漫反射包括有镜面反射,若利用反射立体角的标准值来计算过滤器表面101的发射光功率时,由于有非漫反射的光功率未在立体角θr内,而没有被光接收单元22所接收,从而在判断积尘程度时会产生误差,为将该没有被接收到的非漫反射的光功率补偿到反射光功率中,处理单元24利用反射立体角补偿值θrx来计算出非漫反射的光功率,进而将其加入到反射光功率中。
作为本发明的一较佳实施方式,处理单元24包括有补偿计算模块,该补偿计算模块与校准单元23和光接收单元22连接,补偿计算模块内存储有反射立体角标准值θr,该补偿计算模块用于通过反射立体角补偿值θrx和发射立体角标准值θr的差值计算得出对应的非漫反射的反射光功率偏差值并反馈给处理单元24。具体地,非漫反射的反射光功率偏差值表达式为:
处理单元24将非漫反射的发射光功率偏差值Qx和其计算的反射光功率Q求和,得到补偿后的反射光功率,从而修正了反射光功率的偏差,再利用该补偿后的反射光功率和入射光线的功率求出光谱反射率,进而根据光谱反射率判断得出过滤器表面的积尘程度。
在处理单元24内存储有光谱反射率和积尘程度的对照关系表,根据计算得出的光谱反射率来查找对照关系表从而获得对应的积尘程度。处理单元得到的过滤器积尘的信息以积尘百分比的形式表现出来,可以连续输出0-100%的信息表示过滤器表面的积尘状态。也可以把处理后数据以电压、电流信号,或PWM波形信号,或数字信号输出给用户。
较佳地,校准单元23的运行可在传感器20的初次运行时进行校准为处理单元提供反射立体角补偿值,也可以根据用户触发形成的控制指令来触发进行校准,还可以在每次处理单元进行积尘程度判断时均提供校准。
作为本发明的另一较佳实施方式,传感器20可实时监控过滤器表面101的积尘程度,即通过光发射单元21实时向过滤器表面101发射入射光线,光接收单元22接收反射的反射光并转换成电信号,处理单元24实时计算出光谱反射率,进而判断出过滤器表面的积尘程度。
作为本发明的又一较佳实施方式,如图2至图4所示,光发射单元21还包括设于准直透镜212背部并套设在光源211上的第一消光结构213,该第一消光结构213为柱状结构,且两端为开口结构,该第一消光结构213上对应准直透镜212的一面形成有出光口,使得光源211产生的光线从出光口射出,进而经过准直透镜212的准直后均匀的照射到过滤器表面101。通过第一消光结构213的设置,避免了光源211产生的光线直接传入到光接收探测器表面,消除了对过滤器表面反射光线的影响,确保了光谱反射率的准确性,提高了对过滤器表面光功率的检测的信噪比。光接收单元22还包括设于聚焦透镜222的背部并套设在光接收探测器221上的第二消光结构223,该第二消光结构223上对应聚焦透镜222的一面形成有入光口,使得聚焦透镜222聚集的光线从入光口射入到光接收探测器221上。设置第二消光结构223,用于防止外界环境光在一定角度汇聚到光接收探测器221上形成干扰杂散光噪声信号,第二消光结构223保证只接收来自过滤器表面101反射的反射光,从而提高了过滤器表面反射光功率的信噪比。
作为本发明的再一较佳实施方式,如图2和图3所示,传感器20包括有壳体25,该壳体25包括上壳体251和下壳体252,上壳体251和下壳体252对接连接从而使得该壳体25内部形成有容置空间,传感器20的光发射单元21、光接收单元22、校准单元23以及处理单元24均置于该壳体25的容置空间内,在上壳体251上设置有第一安装孔2511和第二安装孔2512,用于入射光线的射出和反射光线的进入,在壳体25还设置有电路板26,该电路板26上固定连接有固定支架261,光源211和光接收探测器221均安装在固定支架261上。结合图4所示,第一消光结构213和第二消光结构223形成在上壳体251的内侧面上并与第一安装孔2511和第二安装孔2512对应设置,第一消光结构213的开口与第一安装孔2511对应设置,从而在第一消光结构213前端处的准直透镜212设于第一安装孔2511处,且该准直透镜212有部分凸伸出第一安装孔2511,结合图1所示,使得准直透镜212的外表面凸伸出上壳体251的外表面,第二消光结构223的开口与第二安装孔2512对应设置,从而在第二消光结构223的前端处的聚焦透镜222设于该第二安装孔2512处,且该聚焦透镜222有部分凸伸出第二安装孔2512。电路板26上安装有校准单元23和处理单元24。
作为本发明的再又一较佳实施方式,如图5所示,为方便对光发射单元21的控制,传感器20还包括与光发射单元21控制连接的光控制单元27,该光控制单元27与处理单元24连接,处理单元24发送控制指令给光控制单元27,使得光控制单元27控制光发射单元21产生指定功率的入射光线,光控制单元27用于控制光发射单元21的运行,并在另光发射单元21保持发射光线的功率恒定,从而得到准确的光谱反射率。光控制单元27可控制光发射单元21产生两种不同光功率的光线,分别照射到过滤器表面,还用控制两种不同类型的光源分时段地向过滤器表面发射两种光功率信号。为提高检测精度,在光接收单元22和处理单元24与校准单元23之间设置有信号调理单元28,该信号调理单元28连接光接收单元22,用于对光接收单元22形成的电信号进行调理,并将调理的信号传送给处理单元24和校准单元23,信号调理单元28包括前置放大反馈模块281和滤波处理模块282,前置放大反馈模块281与光接收单元22连接,由于光接收单元22将光功率信号直接转化得到电信号极其微弱,容易受到噪声的影响,利用前置放大反馈模块281对获得的与过滤器积尘程度有关的电信号进行处理和放大,光接收单元22将电信号发送给前置放大模块进行放大后,再把信号回授到放大器的输入端,该传感器电路采反馈电路的高精度的信号提取和处理方法,降低探测器暗电流带来的影响,使探测器对输入光功率具有高的分辨率和大的测量范围,从而探测器检测到的两种不同光功率信号不被放大到饱和状态,提高了整个探测器系统的分辨率,得到更准确的过滤器表面不同积尘程度的电信号。滤波处理模块282采用以一级低通滤波器和一级高通滤波器组合电路,使特定频率范围的信号才能通过并传送给后端处理器。该特定频率范围与过滤器表面的反射的光功率调制的频率信号相符合,并且能够隔离通常的电源噪声频率,或大功率电器产能干扰信号频率,提高抗电磁干扰的能力。
下面对本发明提供的用于过滤器积尘检测的方法进行说明。
本发明提供了一种用于检测过滤器积尘的方法,包括如下步骤:
提供入射光线并向过滤器表面照射;
接收过滤器表面反射的反射光并得到反射光功率;
利用不同的两个入射光功率的光线在过滤器表面的光谱反射率相等计算得出反射立体角补偿值,并通过反射立体角补偿值对所得到的反射光功率进行补偿,从而得到补偿后反射光功率;以及
利用补偿后的反射光功率和入射光线的功率计算得出对应的光谱反射率,进而判断得出过滤器表面的积尘程度。
由于过滤器表面存在积尘时,光谱反射率会随着表面积尘状态的变化而发生变化,且变化趋势是单调的,从而能够得到光谱反射率与积尘程度的对照关系表,根据计算得出的光谱反射率来查找对照关系表从而获得对应的积尘程度。得到的过滤器积尘程度的信息以积尘百分比的形式表现出来,可以连续输出0-100%的信息表示过滤器表面的积尘状态。也可以把处理后的数据以电压、电流信号,或PWM波形信号,或数字信号输出给用户。
本发明通过前后两次对过滤器表面照射不同功率的光线,利用相邻两次照射到被测过滤器相同位置的光谱反射率不变化,校准反射立体角的误差从而得到反射立体角补偿值,进而根据反射立体角补偿值对反射光功率进行补偿,从而提高了计算过滤器表面的光谱反射率的准确度,使得检测积尘的结果更加准确,解决了仅靠光强来表征过滤器积尘状态的局限性,本发明提供的检测方法简单可行,能有效解决对过滤器积尘程度实时监控的问题。
作为本发明的一较佳实施方式,利用不同的两个入射光功率的光线在过滤器表面的光谱反射率相等计算得出反射立体角补偿值,包括:
提供另一入射光线并向过滤器表面照射,接收另一入射光线经过滤器表面反射的反射光并得到对应的另一反射光功率,另一入射光线的功率与入射光线的功率不同,进而通过另一入射光线的光谱反射率与入射光线的光谱反射率相等而计算得出反射立体角补偿值;或者
以第一发射光功率向过滤器表面照射第一光线,并接收过滤器表面反射的反射光得到对应的第一反射光功率;以第二发射光功率向过滤器表面照射第二光线,并接收过滤器表面反射的反射光得到对应的第二反射光功率;通过第一光线和第二光线的光谱反射率相等,进而计算得到反射立体角补偿值。
两个不同功率的入射光线可以为相同类型的光线,也可以采用不同类型的光线。反射立体角与反射光功率有关,反射立体角的准确性关系到了反射光功率的准确性,进而能够影响积尘程度的检测结果的准确性。反射立体角补偿值的计算可通过上述传感器20的校准单元23来实现,本发明检测方法中的计算反射立体角补偿值的过程与校准单元23的计算过程相同,可参见上述校准单元23的过程描述,在此不再赘述。
作为本发明的又一较佳实施方式,通过反射立体角补偿值对所得到的反射光功率进行补偿,包括:
利用反射立体角补偿值和反射立体角标准值的差值计算得出对应的非漫反射产生的反射光功率偏差值;
将反射光功率偏差值与反射光功率求和从而实现了对反射光功率进行补偿。该非漫反射产生的反射光功率偏差值可通过处理单元24中的补偿计算模块来实现,其计算的过程与补偿计算模块的计算过程相同,可参见上述补偿计算模块的描述,在此不再赘述。
作为本发明的再一较佳实施方式,提供入射光线并向过滤器表面照射包括:
如图2至图5所示,提供光源211,利用光源211产生设定发射光功率的入射光线并向过滤器表面101照射;
提供准直透镜212,将准直透镜212设于光源的前方,使得光源211产生的入射光线经过准直透镜后形成均匀的平行光线照射于过滤器表面。
光源211用于发射一定功率的光线,在一较佳实施方式中,该光源211采用红外发射管,可产生不同功率的红外入射光线。该光源211还可以采用激光管,可产生不同功率的入射激光。在另一较佳实施方式中,光源211采用两种不同类型的光源,包括红外发射管和激光管,通过红外发射管和激光管可产生不同类型的光线向过滤器表面101照射。通过准直透镜212控制入射光线照射到过滤器表面101的均匀性,消除了发射角度不同引起的不同光功率变化的影响,将光源产生的不均匀的光线进行准直,是光线均匀照射到被测的过滤器表面101,从而提高了过滤器的检测精度。准直透镜212采用高抛光表面,提高了光源211产生的入射光线的透过率,而且使得灰尘不易堆积到其表面。准直透镜212的表面高出传感器20的壳体25的表面,当放置在风道中时,如果准直透镜212的表面出现积灰,更容易被吹走。
作为本发明的再又一较佳实施方式,接收过滤器表面反射的反射光时,包括:
提供光接收探测器221,利用光接收探测器221接收过滤器表面101反射的反射光;
提供聚焦透镜222,将聚焦透镜222设于光接收探测器221的前方,使得过滤器表面101反射的反射光经过聚焦透镜222聚集在光接收探测器221上。
光接收探测器221接收过滤器表面101反射回来的光功率,并将其转换成可检测的电信号,将光接收探测器221的光谱选用宽波段的范围,提高其在宽范围内的光谱光功率强度,从而增加过滤器表面101的光谱的分辨率。聚焦透镜222用于汇聚过滤器表面101产生的反射光线,并将其聚集在光接收探测器221上,聚焦透镜222的表面采用高抛光表面,使得灰尘不易堆积到其表面上,该聚焦透镜222的表面高出传感器20的壳体25的表面,当放置在风道中时,如果聚焦透镜222的表面出现积灰,更容易被吹走。
作为本发明的再又一较佳实施方式,该方还包括:
提供第一消光结构213,将第一消光结构213设于准直透镜212背部并套设在光源211上,该第一消光结构213为柱状结构,且两端为开口结构,该第一消光结构213上对应准直透镜212的一面形成有出光口,使得光源211产生的光学从出光口射出,进而经过准直透镜212的准直后均匀的照射到过滤器表面101。通过第一消光结构213的设置,避免了光源211产生的光线直接传入到过滤器表面,消除了对过滤器表面反射光线的影响,确保了光谱反射率的准确性,提高了对过滤器表面光功率的检测的信噪比。
提供第二消光结构223,将第二消光结构223设于聚焦透镜222的背部并套设在光接收探测器221上,该第二消光结构223上对应聚焦透镜222的一面形成有入光口,使得聚焦透镜222聚集的光线从入光口射入到光接收探测器221上。设置第二消光结构223,用于防止外界环境光在一定角度汇聚到光接收探测器221上形成干扰杂散光噪声信号,第二消光结构223保证只接收来自过滤器表面101反射的反射光,从而提高了过滤器表面反射光功率的信噪比。
以上结合附图实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。
Claims (10)
1.一种用于检测过滤器积尘的方法,其特征在于,包括如下步骤:
提供入射光线并向过滤器表面照射;
接收所述过滤器表面反射的反射光并得到反射光功率;
利用不同的两个入射光功率的光线在所述过滤器表面的光谱反射率相等计算得出反射立体角补偿值,并通过所述反射立体角补偿值对所得到的反射光功率进行补偿,从而得到补偿后反射光功率;光谱反射率的计算公式可表示为:
公式一中,ρ为光谱反射率,Q为接收到的反射光功率,l为入射光线的功率,θi为入射光线的立体角,为入射光线的方位角,θr为反射光线的立体角,/>为反射光线的方位角;
根据两个不同功率的入射光线照射到过滤器表面相同位置后,得到的反射光功率不同,但相邻的两次过滤器表面的光谱反射率不变化,从而可知:
利用功率为的入射光线照射到过滤器表面,接收到的反射光所对应的反射光功率的可表示/>对应的光谱反射率为/>
利用功率为的入射光线照射到过滤器表面,接收到的反射光所对应的反射光功率的可表示/>对应的光谱反射率为/>
根据两次的光谱反射率相等,即,ρx1=ρx2,从而能够得出反射立体角补偿值θrx;以及
利用所述的补偿后的反射光功率和所述入射光线的功率计算得出对应的光谱反射率,进而判断得出所述过滤器表面的积尘程度。
2.如权利要求1所述的用于检测过滤器积尘的方法,其特征在于,利用不同的两个入射光功率的光线在所述过滤器表面的光谱反射率相等计算得出反射立体角补偿值,包括:
提供另一入射光线并向所述过滤器表面照射,接收所述另一入射光线经所述过滤器表面反射的反射光并得到对应的另一反射光功率,所述另一入射光线的功率与所述入射光线的功率不同,进而通过所述另一入射光线的光谱反射率与所述入射光线的光谱反射率相等而计算得出所述反射立体角补偿值;或者
以第一发射光功率向过滤器表面照射第一光线,并接收所述过滤器表面反射的反射光得到对应的第一反射光功率;以第二发射光功率向所述过滤器表面照射第二光线,并接收所述过滤器表面反射的反射光得到对应的第二反射光功率;通过所述第一光线和所述第二光线的光谱反射率相等,进而计算得到所述反射立体角补偿值。
3.如权利要求1或2所述的用于检测过滤器积尘的方法,其特征在于,通过所述反射立体角补偿值对所得到的反射光功率进行补偿,包括:
利用所述反射立体角补偿值和反射立体角标准值的差值计算得出对应的非漫反射产生的反射光功率偏差值;
将所述反射光功率偏差值与所述反射光功率求和从而实现了对所述反射光功率进行补偿。
4.如权利要求1所述的用于检测过滤器积尘的方法,其特征在于,提供入射光线并向过滤器表面照射包括:
提供光源,利用所述光源产生设定发射光功率的入射光线并向所述过滤器表面照射;
提供准直透镜,将所述准直透镜设于所述光源的前方,使得所述光源产生的入射光线经过所述准直透镜后形成均匀的平行光线照射于所述过滤器表面。
5.如权利要求1所述的用于检测过滤器积尘的方法,其特征在于,接收所述过滤器表面反射的反射光时,包括:
提供光接收探测器,利用所述光接收探测器接收所述过滤器表面反射的反射光;
提供聚焦透镜,将所述聚焦透镜设于所述光接收探测器的前方,使得所述过滤器表面反射的反射光经过所述聚焦透镜聚集在所述光接收探测器上。
6.一种用于检测过滤器积尘的传感器,其特征在于,包括:
光发射单元,用于产生入射光线并向过滤器表面照射;
光接收单元,用于接收所述过滤器表面反射的反射光并形成光接收信号;
与所述光发射单元和所述光接收单元连接的校准单元,用于根据不同的两个入射光功率的光线在所述过滤器表面的光谱反射率相等计算得出反射立体角补偿值;光谱反射率的计算公式可表示为:
公式一中,ρ为光谱反射率,Q为接收到的反射光功率,l为入射光线的功率,θi为入射光线的立体角,为入射光线的方位角,θr为反射光线的立体角,/>为反射光线的方位角;
根据两个不同功率的入射光线照射到过滤器表面相同位置后,得到的反射光功率不同,但相邻的两次过滤器表面的光谱反射率不变化,从而可知:
利用光发射单元产生功率为的入射光线照射到过滤器表面,光接收单元接收到的反射光所对应的反射光功率的可表示/>对应的光谱反射率为
利用光发射单元产生功率为的入射光线照射到过滤器表面,光接收单元接收到的反射光所对应的反射光功率的可表示/>对应的光谱反射率为
校准单元根据两次的光谱反射率相等,即,ρx1=ρx2,从而能够得出反射立体角补偿值θrx;以及
与所述光发射单元、所述光接收单元以及所述校准单元连接的处理单元,所述处理单元用于根据所述光接收单元形成的光接收信号计算得到对应的反射光功率,并通过所述校准单元得出的所述反射立体角补偿值对所述反射光功率进行补偿从而得到补偿后的反射光功率,进而利用所述的补偿后的反射光功率和所述光发射单元产生的所述入射光线的功率计算得出对应的光谱反射率,并判断得出所述过滤器表面的积尘程度。
7.如权利要求6所述的用于检测过滤器积尘的传感器,其特征在于,所述处理单元包括补偿计算模块,所述补偿计算模块与所述校准单元和所述光接收单元连接;
所述补偿计算模块内存储有反射立体角标准值,用于通过所述校准单元得出的所述反射立体角补偿值和所述反射立体角标准值的差值计算得出对应的非漫反射的反射光功率偏差值并反馈给所述处理单元。
8.如权利要求6或7所述的用于检测过滤器积尘的传感器,其特征在于,所述光发射单元包括光源和设于所述光源前方的准直透镜;
所述光源用于产生设定发射功率的入射光线并向所述过滤器表面照射;
所述准直透镜用于将所述光源产生的入射光线形成均匀的平行光线并照射于所述过滤器表面。
9.如权利要求8所述的用于检测过滤器积尘的传感器,其特征在于,所述光接收单元包括光接收探测器和设于所述光接收探测器前方的聚焦透镜;
所述光接收探测器用于接收所述过滤器表面反射的反射光;
所述聚焦透镜用于将所述过滤器表面反射的反射光聚集在所述光接收探测器上。
10.如权利要求9所述的用于检测过滤器积尘的传感器,其特征在于,所述光发射单元还包括设于所述准直透镜的背部并套设于所述光源上的第一消光结构,所述第一消光结构上对应所述准直透镜的一面形成有出光口,使得所述光源产生的光线从所述出光口射出;
所述光接收单元还包括设于所述聚焦透镜的背部并套设于所述光接收探测器上的第二消光结构,所述第二消光结构上对应所述聚焦透镜的一面形成有入光口,使得所述聚焦透镜聚集的光线从所述入光口射入。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710853727.8A CN107478612B (zh) | 2017-09-20 | 2017-09-20 | 用于检测过滤器积尘的传感器及方法 |
PCT/CN2017/107081 WO2019056443A1 (zh) | 2017-09-20 | 2017-10-20 | 用于检测过滤器积尘的传感器及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710853727.8A CN107478612B (zh) | 2017-09-20 | 2017-09-20 | 用于检测过滤器积尘的传感器及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107478612A CN107478612A (zh) | 2017-12-15 |
CN107478612B true CN107478612B (zh) | 2023-08-04 |
Family
ID=60585643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710853727.8A Active CN107478612B (zh) | 2017-09-20 | 2017-09-20 | 用于检测过滤器积尘的传感器及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107478612B (zh) |
WO (1) | WO2019056443A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110438723B (zh) * | 2018-05-03 | 2022-03-25 | 无锡小天鹅电器有限公司 | 筒体组件、洗干一体机、干衣机及烘干控制方法 |
CN110687034A (zh) * | 2018-07-05 | 2020-01-14 | 深圳迈瑞生物医疗电子股份有限公司 | 流式细胞仪的激光照射系统及流式细胞仪 |
CN109091962A (zh) * | 2018-08-29 | 2018-12-28 | 莱克电气绿能科技(苏州)有限公司 | 气体净化装置及其控制方法 |
CN110160203B (zh) * | 2019-04-23 | 2021-05-25 | 青岛海尔空调器有限总公司 | 空调控制方法及装置、空调 |
CN110160202B (zh) * | 2019-04-23 | 2021-04-20 | 青岛海尔空调器有限总公司 | 空调控制方法及装置、空调 |
CN111220576A (zh) * | 2020-01-17 | 2020-06-02 | 中煤科工集团重庆研究院有限公司 | 激光自检式粉尘浓度检测装置及其自检方法 |
CN112213245B (zh) * | 2020-11-26 | 2021-05-28 | 江西嘉德物联传感技术有限责任公司 | 一种基于物联网的烟雾感应报警设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101178534A (zh) * | 2006-11-08 | 2008-05-14 | 明基电通股份有限公司 | 可检测更换滤网时机的电子装置 |
CN102928347A (zh) * | 2012-10-24 | 2013-02-13 | 中达电通股份有限公司 | 滤网灰尘的检测方法 |
CN204330623U (zh) * | 2014-07-30 | 2015-05-13 | 广东美的制冷设备有限公司 | 空调器的过滤网尘满检测装置和空调器的清洁系统 |
WO2016181746A1 (ja) * | 2015-05-14 | 2016-11-17 | コニカミノルタ株式会社 | 分光測色装置、および分光反射率の算出方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253141A (ja) * | 1989-03-27 | 1990-10-11 | Matsushita Electric Works Ltd | 空気清浄器の除塵フィルタの汚れ度検出装置 |
CN102162751B (zh) * | 2010-08-25 | 2012-12-05 | 中国计量科学研究院 | 空间光学分布函数测量方法 |
CN102507144A (zh) * | 2011-09-30 | 2012-06-20 | 上海理工大学 | 紫外传感增强膜变频效率的测试方法 |
JP6053506B2 (ja) * | 2012-12-25 | 2016-12-27 | キヤノン株式会社 | 反射特性の測定装置 |
CN103344612A (zh) * | 2013-06-20 | 2013-10-09 | 上海无线电设备研究所 | 消除盛装容器对水表面brdf测量影响的测量容器和测量方法 |
KR101621205B1 (ko) * | 2014-09-03 | 2016-05-16 | 레이트론(주) | 필터 오염 측정 장치 및 필터 오염 측정 방법 |
CN205826472U (zh) * | 2016-07-22 | 2016-12-21 | 安费诺(常州)连接系统有限公司 | 粉尘传感器 |
CN206411008U (zh) * | 2017-01-19 | 2017-08-15 | 华北电力大学(保定) | 一种新风系统的过滤网的灰尘量检测装置 |
-
2017
- 2017-09-20 CN CN201710853727.8A patent/CN107478612B/zh active Active
- 2017-10-20 WO PCT/CN2017/107081 patent/WO2019056443A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101178534A (zh) * | 2006-11-08 | 2008-05-14 | 明基电通股份有限公司 | 可检测更换滤网时机的电子装置 |
CN102928347A (zh) * | 2012-10-24 | 2013-02-13 | 中达电通股份有限公司 | 滤网灰尘的检测方法 |
CN204330623U (zh) * | 2014-07-30 | 2015-05-13 | 广东美的制冷设备有限公司 | 空调器的过滤网尘满检测装置和空调器的清洁系统 |
WO2016181746A1 (ja) * | 2015-05-14 | 2016-11-17 | コニカミノルタ株式会社 | 分光測色装置、および分光反射率の算出方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2019056443A1 (zh) | 2019-03-28 |
CN107478612A (zh) | 2017-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107478612B (zh) | 用于检测过滤器积尘的传感器及方法 | |
RU2351918C2 (ru) | Способ оценки сигнала рассеянного света и детектор рессеянного света для осуществления способа | |
KR101317982B1 (ko) | 원격먼지측정시스템 | |
US7292338B2 (en) | Particle detection apparatus and particle detection method used therefor | |
US4665311A (en) | Smoke detecting apparatus | |
US8482721B2 (en) | Multiple-wavelength capable laser receiver | |
US10495573B1 (en) | Instrument for measuring airborne particulate matter | |
CN108061722B (zh) | 一种一氧化碳浓度的检测装置及检测方法 | |
CN108827843B (zh) | 固定污染源颗粒物的质量浓度和粒度谱的测量装置及方法 | |
WO2018045768A1 (zh) | 家用电器、粉尘传感器及其标定方法、标定装置 | |
CN106033054B (zh) | 一种激光温湿度测量装置及方法 | |
US20100101300A1 (en) | Methods and apparatus for monitoring particles flowing in a stack | |
JP2012501438A (ja) | 低濃度ガスのスペクトル分析に適合したスペクトル分析装置 | |
CN103185706A (zh) | 无组织排放颗粒物烟羽不透光度的激光测量方法和装置 | |
CN109839363A (zh) | 多种气体检测仪 | |
US9678008B2 (en) | Device for measuring scattered light from a measurement volume with compensation for background signals | |
CN110799823A (zh) | 空中悬浮颗粒物测量仪器 | |
US11022489B2 (en) | Portable multi-spectrometry system for chemical and biological sensing in atmospheric air | |
JPH09269293A (ja) | 微粒子検知器 | |
GB2267963A (en) | Obscuration sensor | |
JP3255647B2 (ja) | 光電子増倍管用較正システム | |
CN106290096A (zh) | 一种家用电器、粉尘传感器及其标定方法、标定装置 | |
JP7110852B2 (ja) | 粒子センサおよび電子機器 | |
US7838813B2 (en) | Light beam receiver with interference signal suppression | |
CN221380900U (zh) | 一种多波段光伏组件积灰传感器及积灰监测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |