CN107450062B - 天线延时校准的方法、装置及系统 - Google Patents

天线延时校准的方法、装置及系统 Download PDF

Info

Publication number
CN107450062B
CN107450062B CN201710550630.XA CN201710550630A CN107450062B CN 107450062 B CN107450062 B CN 107450062B CN 201710550630 A CN201710550630 A CN 201710550630A CN 107450062 B CN107450062 B CN 107450062B
Authority
CN
China
Prior art keywords
node
actual time
time delay
delay
detecting distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710550630.XA
Other languages
English (en)
Other versions
CN107450062A (zh
Inventor
陈如申
黎勇跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Shenhao Technology Co Ltd
Original Assignee
Hangzhou Shenhao Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Shenhao Technology Co Ltd filed Critical Hangzhou Shenhao Technology Co Ltd
Priority to CN201710550630.XA priority Critical patent/CN107450062B/zh
Priority to PCT/CN2017/093496 priority patent/WO2019006780A1/zh
Priority to US16/474,489 priority patent/US10673522B2/en
Publication of CN107450062A publication Critical patent/CN107450062A/zh
Application granted granted Critical
Publication of CN107450062B publication Critical patent/CN107450062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/767Responders; Transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及定位领域,特别涉及一种天线延时校准的方法、装置及系统。本发明一个实施例提供的一种天线延时校准的方法,接收第一节点与第二节点间的延时和位置距离;根据所述第一节点与第二节点间的延时计算,得到第一节点与第二节点间的检测距离;根据所述位置距离和所述检测距离计算,得到实际延时;将得到的所述实际延时进行天线延时标定或校准。本方案实施例通过计算位置距离和检测距离,得到实际延时,相对于通过采用专业设备,分别对每个节点进行测量和校准,实施成本低,方便快捷,适用性高,可以进行批量测量。

Description

天线延时校准的方法、装置及系统
技术领域
本发明涉及定位领域,尤其涉及一种天线延时校准的方法、装置及系统。
背景技术
无线通讯或测距芯片,主要用于精确的室内定位,比如电厂的电子栅栏系统中的无线通讯或测距芯片以及其他需要定位人员位置的监控系统。
无线通讯或测距芯片由于制造工艺的不同,导致每个芯片之间都是存在差异的,尤其是芯片的天线的硬件存在差异;此外,无线通讯或测距芯片本身存在天线延时,所谓天线延时,就是芯片的处理器认为已经发出信号,但是由于天线硬件的问题,信号实际发出是存在延时的,如果芯片是为了测量距离,尤其是精确测量距离的测距芯片,如果不能有效准确的标定天线延时,根据通讯信号进行测距会存在误差,尤其是在室内测距这种需要精确到厘米级别,如果不能准确标定,则芯片则无法准确测距。
现有的技术方案通过采用专业设备,分别对每个无线通讯或测距芯片进行测量和校准,然后将延时写入到芯片中,但专业设备造价昂贵,并且难以进行批量测量,导致众多不便,适用性不高。
发明内容
本发明的一个目的旨在解决上述至少一个问题,提供了一种天线延时校准的方法、装置及系统,
为了实现上述目的,本发明采用如下技术方案:
本发明的一个实施例提供了一种天线延时校准的方法,其包括:
接收第一节点与第二节点间的延时和位置距离;
将所述第一节点与第二节点间的延时输入预设的检测距离计算公式,得到第一节点与第二节点间的检测距离;
将所述位置距离和所述检测距离输入预设的实际延时计算公式,得到实际延时;
将实际延时输入节点以对该节点进行标定及校验。
具体的,所述第一节点与第二节点间的延时包括:
第一轮延时,第一节点向第二节点发送信号到最近一次接收到所述第二节点反馈回的信号之间所用时间Trou1和第二节点接收到所述第一节点发送的信号到最近一次向所述第一节点反馈信号之间所用时间Trep1
第二轮延时,第二节点反向向第一节点发送信号到最近一次接收到所述第一节点反馈回的信号之间所用时间Trou1和第一节点接收到所述第二节点发送的信号到最近一次向所述第二节点反馈信号之间所用时间Trep1
进一步的,所述检测距离计算公式为:
其中,c代表光速。
进一步的,所述检测距离包括:
第一轮检测距离,根据所述第一节点与第二节点间的第一轮延时计算;
第二轮检测距离,根据所述第一节点与第二节点间的第二轮延时计算。
具体的,所述实际延时包括发射实际延时和接收实际延时。
进一步的,当所述第一轮检测距离与所述第二轮检测距离相等时,所述发射实际延时与所述接收实际延时相等。
进一步的,当所述节点为3个时,所述延时计算公式为:
其中,DT1,DT2,DT3依次为三个节点的发射实际延时,DR1,DR2,DR3依次为三个节点的接收实际延时,d′1,d′2,d′3依次为三个节点间的第一轮检测距离,d″1,d″2,d″3依次为三个节点间的第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
进一步的,当所述节点为3个时,所述延时计算公式为:
其中,D1,D2,D3依次为三个节点间发射实际延时或接收实际延时,d′1,d′2,d′3依次为三个节点间的第一轮检测距离或第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
进一步的,当所述节点为n个时,所述延时计算公式为:
其中,DT1,DT2,DT3...DTn依次为节点的发射实际延时,DR1,DR2,DR3...DRn依次为节点的接收实际延时,d′1,d′2,d′3...d′n依次为节点间的第一轮检测距离,d″1,d″2,d″3...d″n依次为节点间的第二轮检测距离,d1,d2,d3...dn依次为节点间的位置距离,c为光速。
可选的,所述位置距离包括人工设置的距离或测量出的实际距离。
本发明的又一个实施例提供了一种天线延时校准的装置,其包括:
接收模块,用于接收第一节点与第二节点间的延时和位置距离;
检测距离计算模块,用于根据所述第一节点与第二节点间的延时计算第一节点与第二节点间的检测距离;
实际延时计算模块,用于根据所述位置距离和所述检测距离计算实际延时;
校准模块,用于将实际延时输入节点以对该节点进行标定及校验。
具体的,所述第一节点与第二节点间的延时包括:
第一轮延时,第一节点向第二节点发送信号到最近一次接收到所述第二节点反馈回的信号之间所用时间Trou1和第二节点接收到所述第一节点发送的信号到最近一次向所述第一节点反馈信号之间所用时间Trep1
第二轮延时,第二节点反向向第一节点发送信号到最近一次接收到所述第一节点反馈回的信号之间所用时间Trou1和第一节点接收到所述第二节点发送的信号到最近一次向所述第二节点反馈信号之间所用时间Trep1
进一步的,所述检测距离计算公式为:
其中,c代表光速。
具体的,所述检测距离包括:
第一轮检测距离,根据所述第一节点与第二节点间的第一轮延时计算;
第二轮检测距离,根据所述第一节点与第二节点间的第二轮延时计算。
进一步的,所述实际延时包括发射实际延时和接收实际延时。
进一步的,当所述第一轮检测距离与所述第二轮检测距离相等时,所述发射实际延时与所述接收实际延时相等。
进一步的,当所述节点为3个时,所述延时计算公式为:
其中,DT1,DT2,DT3依次为三个节点的发射实际延时,DR1,DR2,DR3依次为三个节点的接收实际延时,d′1,d′2,d′3依次为三个节点间的第一轮检测距离,d″1,d″2,d″3依次为三个节点间的第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
进一步的,当所述节点为3个时,所述延时计算公式为:
其中,D1,D2,D3依次为三个节点间发射实际延时或接收实际延时,d′1,d′2,d′3依次为三个节点间的第一轮检测距离或第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
进一步的,当所述节点为n个时,所述延时计算公式为:
其中,DT1,DT2,DT3...DTn依次为节点的发射实际延时,DR1,DR2,DR3...DRn依次为节点的接收实际延时,d′1,d′2,d′3...d′n依次为节点间的第一轮检测距离,d″1,d″2,d″3...d″n依次为节点间的第二轮检测距离,d1,d2,d3...dn依次为节点间的位置距离,c为光速。
可选的,所述位置距离包括人工设置的距离或测量出的实际距离。
本发明的另一个实施例提供了一种天线延时校准的系统,包括存储器及处理器,所述存储器用于存储包括程序指令的信息,所述处理器用于控制程序指令的执行,所述程序指令被处理器加载并执行时实现前面任一所述延时校准方法的步骤。
相比现有技术,本发明的方案具有以下优点:
1.本发明一个实施例提供的一种天线延时校准的方法,接收第一节点与第二节点间的延时和位置距离;将所述第一节点与第二节点间的延时输入预设的检测距离计算公式,得到第一节点与第二节点间的检测距离;将所述位置距离和所述检测距离输入预设的实际延时计算公式,得到实际延时;将实际延时输入节点以对该节点进行标定及校验。本方案实施例通过计算位置距离和检测距离,得到实际延时,相对于通过采用专业设备,分别对每个节点进行测量和校准,实施成本低,方便快捷,适用性高。
2.本发明一个实施例中通过延时计算公式可同时对多个节点进行测量,获得各个节点的实际延时,从而实现节点的批量测量。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,但本发明不限于此。
图1为本发明天线延时校准方法的一个实施例中的流程示意图;
图2为本发明天线延时校准方法的一个实施例中Anchor作为发射机、Tag作为接收机的运行原理图;
图3为本发明天线延时校准方法的一个实施例中Tag作为发射机、Anchor作为接收机的运行原理图;
图4为本发明天线延时校准方法的一个实施例中3节点架设示意图
图5为本发明天线延时校准装置的一个实施例中的结构示意图;
图6为本发明天线延时校准系统的一个实施例中的结构示意图;
具体实施方式
下面结合附图和示例性实施例对本发明作进一步地描述,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。此外,如果已知技术的详细描述对于示出本发明的特征是不必要的,则将其省略。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
请参阅图1,本发明的一种天线延时校准方法的一个典型实施例,具体包括以下步骤:
S11,接收第一节点与第二节点间的延时和位置距离。
需要说明的是,为了便于说明本发明的技术方案,以无线通讯或测距芯片为例来说明本发明的技术方案,即所述第一节点、第二节点为无线通讯或测距芯片;当然,本实施例并不能构成对本发明方案的限制。
在本发明一个实施例中,第一节点与第二节点间的位置距离可以是人工设置的距离,也可以是测量出的实际距离。
所述第一节点与第二节点间的延时包括:第一轮延时,第一节点向第二节点发送信号到最近一次接收到所述第二节点反馈回的信号之间所用时间Trou1和第二节点接收到所述第一节点发送的信号到最近一次向所述第一节点反馈信号之间所用时间Trep1;如图2所示,Tag代表第一节点,Anchor代表第二节点。首先,Tag作为发射机,Anchor作为接收机,t1时刻发射range信号,Anchor在t2时刻接收到range信号,接下来,Anchor在t3时刻向Tag发送reply信号,Tag在t4时刻接收到reply信号,因此,Trou1=t4-t1,Trep1=t3-t2,第一轮延时为Trou1和Trep1
所述第一节点与第二节点间的延时还包括:第二轮延时,第二节点反向向第一节点发送信号到最近一次接收到所述第一节点反馈回的信号之间所用时间Trou1和第一节点接收到所述第二节点发送的信号到最近一次向所述第二节点反馈信号之间所用时间Trep1。如图3所示,Tag代表第一节点,Anchor代表第二节点,此时,Anchor作为发射机,Tag作为接收机,t1时刻发射range信号,Tag在t2时刻接收到range信号,接下来,Tag在t3时刻向Anchor发送reply信号,Anchor在t4时刻接收到reply信号,因此,Trou1=t4-t1,Trep1=t3-t2,第二轮延时为Trou1和Trep1
进一步的,请参见附图1,本发明所述的天线延时校准的方法,还包括步骤:
S12,将所述第一节点与第二节点间的延时输入预设的检测距离计算公式,得到第一节点与第二节点间的检测距离。所述检测距离计算公式为:其中,c代表光速。
具体的,所述检测距离包括:
第一轮检测距离,根据所述第一节点与第二节点间的第一轮延时计算;
第二轮检测距离,根据所述第一节点与第二节点间的第二轮延时计算。
进一步的,请参见附图1,本发明所述的天线延时校准的方法,还包括步骤:
S13,将所述位置距离和所述检测距离输入预设的实际延时计算公式,得到实际延时。
所述实际延时包括发射实际延时和接收实际延时;当所述第一轮检测距离与所述第二轮检测距离相等时,所述发射实际延时与所述接收实际延时相等。
进一步的,基于发射实际延时和接收实际延时是相等的前提下,在本发明一个实施例中,同时对3个节点进行延时测量,如图4所示,
架设包括Tag,Anchor1和Anchor2的天线延时标定系统,架设它们三者之间的位置距离为d1,d2,d3,;tag与anchor1进行第一轮检测距离过程,得到tag和anchor1之间的检测距离d′1,同样地,anchor1与anchor2以及anchor2与tag进行第一轮检测距离过程,得到anchor1与anchor2以及anchor2与tag之间的检测距离分别为d′2,d′3,从而完成检测距离。
假设Tag以及Anchor1、2的天线实际延时分别为D1,D2,D3;根据测量计算得到的d′1,d′2,d′3以及已知的位置距离d1,d2,d3,可以得到三个节点的实际延时计算公式:
解上述方程组,即可得到Tag以及Anchor1、2的天线实际延时分别为D1,D2,D3
从而得知,Tag,Anchor1和Anchor2的实际延时。
进一步的,在本发明的又一个实施例中,当发射实际延时和接收实际延时不相等时,tag与anchor1进行第一轮检测距离过程,得到tag和anchor1之间的检测距离d′1,同样地,anchor1与anchor2以及anchor2与tag进行第一轮检测距离过程,得到anchor1与anchor2以及anchor2与tag之间的检测距离分别为d′2,d′3,从而完成第一轮检测距离。
反向进行与上述相同的检测距离过程,即tag与anchor2,anchor2与anchor1,anchor1与tag进行第二轮检测距离过程,得到tag与anchor2,anchor2与anchor1,anchor1与tag之间的检测距离分别为d″3,d″2,d″1,从而完成第二轮检测距离过程。
设tag以及anchor1、2的发送天线实际延时分别为DT1,DT2,DT3,接收天线实际延时分别为DR1,DR2,DR3,根据测量得到的d′1,d′2,d′3,d″1,d″2,d″3以及已知的位置距离d1,d2,d3,可以列出实际延时计算公式,如下由6个方程组成的方程组:
解方程组即可得到tag以及anchor1、2的发送天线实际延时分别为DT1,DT2,DT3,接收天线实际延时分别为DR1,DR2,DR3
进一步的,本发明的又一个实施例中,当所述节点为n个时,所述延时计算公式为:
其中,DT1,DT2,DT3...DTn依次为节点的发射实际延时,DR1,DR2,DR3...DRn依次为节点的接收实际延时,d′1,d′2,d′3...d′n依次为节点间的第一轮检测距离,d″1,d″2,d″3...d″n依次为节点间的第二轮检测距离,d1,d2,d3...dn依次为节点间的位置距离,c为光速。解方程组即可得到各节点发射实际延时和接收实际延时。
进一步的,请参见附图1,本发明所述的天线延时校准的方法,还包括步骤:
S14,将实际延时输入节点以对该节点进行标定及校验。
将检测出的实际延时写入无线通讯或测距芯片从而当芯片在运行测距程序时能够计算出因为天线延时带来的误差,从而实现更精确地测量。
综上所述,本发明一个实施例提供的一种天线延时校准的方法,接收第一节点与第二节点间的延时和位置距离;根据所述第一节点与第二节点间的延时计算,得到第一节点与第二节点间的检测距离;根据所述位置距离和所述检测距离计算,得到实际延时;将得到的所述实际延时进行天线延时标定或校准。本方案实施例通过计算位置距离和检测距离,得到实际延时,相对于通过采用专业设备,分别对每个节点进行测量和校准,实施成本低,方便快捷,适用性高。
进一步的,依据计算机软件的功能模块化思维,本发明的一个实施例还提供了一种天线延时校准的装置。请参见附图5,所述识别装置包括有接收模块11、检测距离计算模块12、实际延时计算模块13和校准模块14,利用该接收模块11、检测距离计算模块12、实际延时计算模块13和校准模块14来搭建起识别装置的原理框架,从而实现模块化实施方案。以下具体揭示各模块实现的具体功能。
所述接收模块11,用于接收第一节点与第二节点间的延时和位置距离。
需要说明的是,为了便于说明本发明的技术方案,以无线通讯或测距芯片为例来说明本发明的技术方案,即所述第一节点、第二节点为无线通讯或测距芯片;当然,本实施例并不能构成对本发明方案的限制。
在本发明一个实施例中,所述接收模块接收第一节点与第二节点间的位置距离,第一节点与第二节点间的位置距离可以是人工设置的距离,也可以是测量出的实际距离。
所述接收模块接收的第一节点与第二节点间的延时包括:第一轮延时,第一节点向第二节点发送信号到最近一次接收到所述第二节点反馈回的信号之间所用时间Trou1和第二节点接收到所述第一节点发送的信号到最近一次向所述第一节点反馈信号之间所用时间Trep1;如图2所示,Tag代表第一节点,Anchor代表第二节点。首先,Tag作为发射机,Anchor作为接收机,t1时刻发射range信号,Anchor在t2时刻接收到range信号,接下来,Anchor在t3时刻向Tag发送reply信号,Tag在t4时刻接收到reply信号,因此,Trou1=t4-t1,Trep1=t3-t2,第一轮延时为Trou1和Trep1
所述第一节点与第二节点间的延时还包括:第二轮延时,第二节点反向向第一节点发送信号到最近一次接收到所述第一节点反馈回的信号之间所用时间Trou1和第一节点接收到所述第二节点发送的信号到最近一次向所述第二节点反馈信号之间所用时间Trep1。如图3所示,Tag代表第一节点,Anchor代表第二节点,此时,Anchor作为发射机,Tag作为接收机,t1时刻发射range信号,Tag在t2时刻接收到range信号,接下来,Tag在t3时刻向Anchor发送reply信号,Anchor在t4时刻接收到reply信号,因此,Trou1=t4-t1,Trep1=t3-t2,第二轮延时为Trou1和Trep1
进一步的,请参见附图5,所述检测距离计算模块12,用于根据所述第一节点与第二节点间的延时计算第一节点与第二节点间的检测距离。
具体的,所述检测距离计算公式为:其中,c代表光速。
具体的,所述检测距离包括:
第一轮检测距离,根据所述第一节点与第二节点间的第一轮延时计算;
第二轮检测距离,根据所述第一节点与第二节点间的第二轮延时计算。
进一步的,请参见附图5,所述实际延时计算模块13,用于根据所述位置距离和所述检测距离计算实际延时。
所述实际延时包括发射实际延时和接收实际延时;当所述第一轮检测距离与所述第二轮检测距离相等时,所述发射实际延时与所述接收实际延时相等。
进一步的,基于发射实际延时和接收实际延时是相等的前提下,在本发明一个实施例中,同时对3个节点进行延时测量,如图4所示,
架设包括Tag,Anchor1和Anchor2的天线延时标定系统,架设它们三者之间的位置距离为d1,d2,d3;tag与anchor1进行第一轮检测距离过程,得到tag和anchor1之间的检测距离d′1,同样地,anchor1与anchor2以及anchor2与tag进行第一轮检测距离过程,得到anchor1与anchor2以及anchor2与tag之间的检测距离分别为d′2,d′3,从而完成检测距离。
假设Tag以及Anchor1、2的天线实际延时分别为D1,D2,D3;根据测量计算得到的d′1,d′2,d′3以及已知的位置距离d1,d2,d3,可以得到三个节点的实际延时计算公式:
解上述方程组,即可得到Tag以及Anchor1、2的天线实际延时为D1,D2,D3
从而得知,Tag,Anchor1和Anchor2的实际延时。
进一步的,在本发明的又一个实施例中,当发射实际延时和接收实际延时不相等时,tag与anchor1进行第一轮检测距离过程,得到tag和anchor1之间的距离d′1,同样地,anchor1与anchor2以及anchor2与tag进行第一轮检测距离过程,得到anchor1与anchor2以及anchor2与tag之间的检测距离分别为d′2,d′3,从而完成第一轮检测距离。
反向进行与上述相同的检测距离过程,即tag与anchor2,anchor2与anchor1,anchor1与tag进行第二轮检测距离过程,得到tag与anchor2,anchor2与anchor1,anchor1与tag之间的检测距离分别为d″3,d″2,d″1,从而完成第二轮检测距离过程。
设tag以及anchor1、2的发送天线实际延时分别为DT1,DT2,DT3,接收天线实际延时分别为DR1,DR2,DR3,根据测量得到的d′1,d′2,d′3,d″1,d″2,d″3以及已知的距离d1,d2,d3,可以列出实际延时计算公式,如下由6个方程组成的方程组:
解方程组即可得到tag以及anchor1、2的发送天线实际延时为DT1,DT2,DT3,接收天线实际延时为DR1,DR2,DR3
进一步的,本发明的又一个实施例中,当所述节点为n时,所述延时计算公式为:
其中,DT1,DT2,DT3...DTn依次为节点的发射实际延时,DR1,DR2,DR3...DRn依次为节点的接收实际延时,d′1,d′2,d′3...d′n依次为节点间的第一轮检测距离,d″1,d″2,d″3...d″n依次为节点间的第二轮检测距离,d1,d2,d3...dn依次为节点间的位置距离,c为光速。解方程组即可得到各节点发射实际延时和接收实际延时。
进一步的,请参见附图5,所述实际延时计算模块14,用于将实际延时输入节点以对该节点进行标定及校验。
实际延时计算模块14将检测出的实际延时写入无线通讯或测距芯片从而当芯片在运行测距程序时能够计算出因为天线延时带来的误差,从而实现更精确地测量。
综上所述,本发明一个实施例提供的一种天线延时校准的方法,接收第一节点与第二节点间的延时和位置距离;将所述第一节点与第二节点间的延时输入预设的检测距离计算公式,得到第一节点与第二节点间的检测距离;将所述位置距离和所述检测距离输入预设的实际延时计算公式,得到实际延时;将实际延时输入节点以对该节点进行标定及校验。本方案实施例通过计算位置距离和检测距离,得到实际延时,相对于通过采用专业设备,分别对每个节点进行测量和校准,实施成本低,方便快捷,适用性高。
进一步的,请参见附图6,其示出了本发明的一个实施例的天线延时校准的系统的结构方框图,该系统用于实现上述天线延时校准的方法。为了便于说明,仅仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。
所述识别系统包括有处理器40和存储器50。其中,存储器40可用于存储软件程序以及模块,处理器50通过运行存储在存储器40的软件程序以及模块,从而执行所述识别系统的各种功能应用以及数据处理。存储器40可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据所述识别系统的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器40可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
所述处理器50是系统的控制中心,利用各种接口和线路连接整个所述识别系统的各个部分,通过运行或执行存储在存储器40内的软件程序和/或模块,以及调用存储在存储器40内的数据,执行所述识别系统的各种功能和处理数据,从而对所述识别系统进行整体监控。可选的,处理器50可包括一个或多个处理单元;优选的,处理器50可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通讯。可以理解的是,上述调制解调处理器也可以不集成到处理器50中。
不难理解,尽管未示出,识别系统还包括给各个部件供电的电源,优选的,电源可以通过电源管理系统与处理器50逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能;还可以包括射频(Radio Frequency,RF)电路、输入单元、显示单元、传感器、音频电路、无线模块等部件。
在本方案的一个实施例中,所述存储器40用于存储包括程序指令的信息,所述处理器50用于控制程序指令的执行,其中,所述程序指令被处理器50加载并执行时实现以下功能:
接收第一节点与第二节点间的延时和位置距离;
将所述第一节点与第二节点间的延时输入预设的检测距离计算公式,得到第一节点与第二节点间的检测距离;
将所述位置距离和所述检测距离输入预设的实际延时计算公式,得到实际延时;
将实际延时输入节点以对该节点进行标定及校验。
具体的,所述第一节点与第二节点间的延时包括:
第一轮延时,第一节点向第二节点发送信号到最近一次接收到所述第二节点反馈回的信号之间所用时间Trou1和第二节点接收到所述第一节点发送的信号到最近一次向所述第一节点反馈信号之间所用时间Trep1
第二轮延时,第二节点反向向第一节点发送信号到最近一次接收到所述第一节点反馈回的信号之间所用时间Trou1和第一节点接收到所述第二节点发送的信号到最近一次向所述第二节点反馈信号之间所用时间Trep1
进一步的,所述检测距离计算公式为:
其中,c代表光速。
进一步的,所述检测距离包括:
第一轮检测距离,根据所述第一节点与第二节点间的第一轮延时计算;
第二轮检测距离,根据所述第一节点与第二节点间的第二轮延时计算。
具体的,所述实际延时包括发射实际延时和接收实际延时。
进一步的,当所述第一轮检测距离与所述第二轮检测距离相等时,所述发射实际延时与所述接收实际延时相等。
进一步的,当所述节点为3个时,所述延时计算公式为:
其中,DT1,DT2,DT3依次为三个节点的发射实际延时,DR1,DR2,DR3依次为三个节点的接收实际延时,d′1,d′2,d′3依次为三个节点间的第一轮检测距离,d″1,d″2,d″3依次为三个节点间的第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
进一步的,当所述节点为3个时,所述延时计算公式为:
其中,D1,D2,D3依次为三个节点间发射实际延时或接收实际延时,d′1,d′2,d′3依次为三个节点间的第一轮检测距离或第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
进一步的,当所述节点为n个时,所述延时计算公式为:
其中,DT1,DT2,DT3...DTn依次为节点的发射实际延时,DR1,DR2,DR3...DRn依次为节点的接收实际延时,d′1,d′2,d′3...d′n依次为节点间的第一轮检测距离,d″1,d″2,d″3...d″n依次为节点间的第二轮检测距离,d1,d2,d3...dn依次为节点间的位置距离,c为光速。
可选的,所述位置距离包括人工设置的距离或测量出的实际距离。
在此处所提供的说明书中,虽然说明了大量的具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实施例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
虽然上面已经示出了本发明的一些示例性实施例,但是本领域的技术人员将理解,在不脱离本发明的原理或精神的情况下,可以对这些示例性实施例做出改变,本发明的范围由权利要求及其等同物限定。

Claims (19)

1.一种天线延时校准的方法,其特征在于,
接收第一节点与第二节点间的延时和位置距离;
将所述第一节点与第二节点间的延时输入预设的检测距离计算公式,得到第一节点与第二节点间的检测距离;
将所述位置距离和所述检测距离输入预设的实际延时计算公式,得到实际延时;
将实际延时输入节点以对该节点进行标定及校验;
其中,所述第一节点与第二节点间的延时包括:
第一轮延时,第一节点向第二节点发送信号到最近一次接收到所述第二节点反馈回的信号之间所用时间Trou1和第二节点接收到所述第一节点发送的信号到最近一次向所述第一节点反馈信号之间所用时间Trep1
第二轮延时,第二节点反向向第一节点发送信号到最近一次接收到所述第一节点反馈回的信号之间所用时间Trou1和第一节点接收到所述第二节点发送的信号到最近一次向所述第二节点反馈信号之间所用时间Trep1
2.根据权利要求1所述的方法,其特征在于,所述检测距离计算公式为:
其中,c代表光速。
3.根据权利要求1所述的方法,其特征在于,所述检测距离包括:
第一轮检测距离,根据所述第一节点与第二节点间的第一轮延时计算;
第二轮检测距离,根据所述第一节点与第二节点间的第二轮延时计算。
4.根据权利要求3所述的方法,其特征在于,所述实际延时包括发射实际延时和接收实际延时。
5.根据权利要求4所述的方法,其特征在于,当所述第一轮检测距离与所述第二轮检测距离相等时,所述发射实际延时与所述接收实际延时相等。
6.根据权利要求4所述的方法,其特征在于,当所述节点为3个时,所述实际延时计算公式为:
其中,DT1,DT2,DT3依次为三个节点的发射实际延时,DR1,DR2,DR3依次为三个节点的接收实际延时,d1′,d2′,d3′依次为三个节点间的第一轮检测距离,d1″,d2″,d3″依次为三个节点间的第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
7.根据权利要求5所述的方法,其特征在于,当所述节点为3个时,所述实际延时计算公式为:
其中,D1,D2,D3依次为三个节点间的发射实际延时或接收实际延时,d1′,d2′,d3′依次为三个节点间的第一轮检测距离或第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
8.根据权利要求4所述的方法,其特征在于,当所述节点为n个时,所述实际延时计算公式为:
其中,DT1,DT2,DT3...DTn依次为节点的发射实际延时,DR1,DR2,DR3...DRn依次为节点的接收实际延时,d1′,d2′,d3′...dn′依次为节点间的第一轮检测距离,d1″,d2″,d3″...dn″依次为节点间的第二轮检测距离,d1,d2,d3...dn依次为节点间的位置距离,c为光速。
9.根据权利要求1所述的方法,其特征在于,所述位置距离包括人工设置的距离或测量出的实际距离。
10.一种天线延时校准的装置,其特征在于,包括:
接收模块,用于接收第一节点与第二节点间的延时和位置距离;
检测距离计算模块,用于根据所述第一节点与第二节点间的延时计算第一节点与第二节点间的检测距离;
实际延时计算模块,用于根据所述位置距离和所述检测距离计算实际延时;
校准模块,用于将实际延时输入节点以对该节点进行标定及校验;
其中,所述第一节点与第二节点间的延时包括:
第一轮延时,第一节点向第二节点发送信号到最近一次接收到所述第二节点反馈回的信号之间所用时间Trou1和第二节点接收到所述第一节点发送的信号到最近一次向所述第一节点反馈信号之间所用时间Trep1
第二轮延时,第二节点反向向第一节点发送信号到最近一次接收到所述第一节点反馈回的信号之间所用时间Trou1和第一节点接收到所述第二节点发送的信号到最近一次向所述第二节点反馈信号之间所用时间Trep1
11.根据权利要求10所述的装置,其特征在于,所述检测距离计算公式为:
其中,c代表光速。
12.根据权利要求10所述的装置,其特征在于,所述检测距离包括:
第一轮检测距离,根据所述第一节点与第二节点间的第一轮延时计算;
第二轮检测距离,根据所述第一节点与第二节点间的第二轮延时计算。
13.根据权利要求12所述的装置,其特征在于,所述实际延时包括发射实际延时和接收实际延时。
14.根据权利要求13所述的装置,其特征在于,当所述第一轮检测距离与所述第二轮检测距离相等时,所述发射实际延时与所述接收实际延时相等。
15.根据权利要求13所述的装置,其特征在于,当所述节点为3个时,所述实际延时计算公式为:
其中,DT1,DT2,DT3依次为三个节点的发射实际延时,DR1,DR2,DR3依次为三个节点的接收实际延时,d1′,d2′,d3′依次为三个节点间的第一轮检测距离,d1″,d2″,d3″依次为三个节点间的第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
16.根据权利要求14所述的装置,其特征在于,当所述节点为3个时,所述实际延时计算公式为:
其中,D1,D2,D3依次为三个节点间的发射实际延时或接收实际延时,d1′,d2′,d3′依次为三个节点间的第一轮检测距离或第二轮检测距离,d1,d2,d3依次为三个节点间的位置距离,c为光速。
17.根据权利要求13所述的装置,其特征在于,当所述节点为n个时,所述实际延时计算公式为:
其中,DT1,DT2,DT3...DTn依次为节点的发射实际延时,DR1,DR2,DR3...DRn依次为节点的接收实际延时,d1′,d2′,d3′...dn′依次为节点间的第一轮检测距离,d1″,d2″,d3″...dn″依次为节点间的第二轮检测距离,d1,d2,d3...dn依次为节点间的位置距离,c为光速。
18.根据权利要求10所述的装置,其特征在于,所述位置距离包括人工设置的距离或测量出的实际距离。
19.一种天线延时校准的系统,包括存储器及处理器,所述存储器用于存储包括程序指令的信息,所述处理器用于控制程序指令的执行,其特征在于:
所述程序指令被处理器加载并执行时实现权利要求1至9任一所述方法的步骤。
CN201710550630.XA 2017-07-07 2017-07-07 天线延时校准的方法、装置及系统 Active CN107450062B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710550630.XA CN107450062B (zh) 2017-07-07 2017-07-07 天线延时校准的方法、装置及系统
PCT/CN2017/093496 WO2019006780A1 (zh) 2017-07-07 2017-07-19 天线延时校准的方法、装置及系统
US16/474,489 US10673522B2 (en) 2017-07-07 2017-07-19 Method, device and system for antenna delay calibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710550630.XA CN107450062B (zh) 2017-07-07 2017-07-07 天线延时校准的方法、装置及系统

Publications (2)

Publication Number Publication Date
CN107450062A CN107450062A (zh) 2017-12-08
CN107450062B true CN107450062B (zh) 2019-11-19

Family

ID=60488313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710550630.XA Active CN107450062B (zh) 2017-07-07 2017-07-07 天线延时校准的方法、装置及系统

Country Status (3)

Country Link
US (1) US10673522B2 (zh)
CN (1) CN107450062B (zh)
WO (1) WO2019006780A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761388B (zh) * 2018-06-06 2022-02-11 上海交通大学 基于uwb高精度测距定位系统的天线延迟校准方法
CN111025339B (zh) * 2018-10-09 2022-04-15 百度在线网络技术(北京)有限公司 确定定位延时的方法、装置、设备和计算机可读存储介质
CN111175726B (zh) * 2019-12-23 2022-01-14 奥比中光科技集团股份有限公司 一种标定装置及方法
CN113132036B (zh) * 2019-12-30 2023-03-31 广东博智林机器人有限公司 一种天线延迟的测定方法及装置
CN113759180B (zh) * 2021-09-06 2022-05-24 西安电子科技大学 提高超宽带测距精度的天线延时校准方法及系统
EP4296704A1 (en) * 2022-06-22 2023-12-27 Nokia Technologies Oy Distance measurement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462123A (zh) * 2002-05-21 2003-12-17 日本电气株式会社 路径定时检测方法与设备以及自适应阵列天线系统
CN1620837A (zh) * 2001-12-27 2005-05-25 高通股份有限公司 用于无线移动站的位置定位确定的校准数据库的维护
CN101601251A (zh) * 2007-01-31 2009-12-09 国际商业机器公司 定义协调定时网络中的层-1配置
CN102749613A (zh) * 2012-06-20 2012-10-24 暨南大学 基于旋转天线的室内定位方法
CN103901412A (zh) * 2014-03-31 2014-07-02 中国科学院空间科学与应用研究中心 一种针对脉冲重建跟踪型有源定标器的定标方法及系统
CN106226760A (zh) * 2016-07-15 2016-12-14 中国电子科技集团公司第五十四研究所 一种具有无线设备时延标定的测量装置和方法
CN106855631A (zh) * 2016-12-02 2017-06-16 中国人民解放军63891部队 一种转发式gnss动态测量精度测试评估方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985005188A1 (en) * 1984-05-07 1985-11-21 Hughes Aircraft Company Microwave radiometer using fanbeam inversion
US5248982A (en) * 1991-08-29 1993-09-28 Hughes Aircraft Company Method and apparatus for calibrating phased array receiving antennas
US6957050B2 (en) * 2001-10-23 2005-10-18 Celletra Ltd. Time-delay transmit diversity add-on to a multicarrier base transceiver system
US6975268B2 (en) * 2004-02-26 2005-12-13 Harris Corporation Phased array antenna including a distributed phase calibrator and associated method
JP4254741B2 (ja) * 2005-04-27 2009-04-15 セイコーエプソン株式会社 測位システム
US8344949B2 (en) * 2008-03-31 2013-01-01 Golba Llc Wireless positioning approach using time-delay of signals with a known transmission pattern
KR101836427B1 (ko) * 2011-04-29 2018-03-09 오소트론 주식회사 거리 측정 방법 및 장치와, 측위 방법
CN102565764B (zh) 2011-11-25 2013-11-13 中国船舶重工集团公司第七二四研究所 一种宽带稀布阵雷达通道近场延时校准方法
CN103744076B (zh) 2013-12-25 2016-07-06 河海大学 基于非凸优化的mimo雷达动目标检测方法
CN103969631B (zh) 2014-04-30 2016-08-17 上海无线电设备研究所 星载微波雷达系统延时校准方法和校准设备
US9288625B2 (en) * 2014-06-30 2016-03-15 Qualcomm Technologies International, Ltd. Method for determining location of wireless devices based on information within messages received from other network devices
WO2016138430A1 (en) * 2015-02-26 2016-09-01 New York University Systems, methods, and computer-accessible media for measuring or modeling a wideband, millimeter-wave channel and methods and systems for calibrating same
US9788314B2 (en) * 2015-12-03 2017-10-10 Nxp Usa, Inc. Base transceiver station for reducing congestion in communcation network
JP6820427B2 (ja) * 2016-12-28 2021-01-27 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル待ち時間決定方法、測位方法および関連機器
EP3565134B1 (en) * 2017-01-24 2020-08-05 Huawei Technologies Co., Ltd. Antenna correction method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1620837A (zh) * 2001-12-27 2005-05-25 高通股份有限公司 用于无线移动站的位置定位确定的校准数据库的维护
CN1462123A (zh) * 2002-05-21 2003-12-17 日本电气株式会社 路径定时检测方法与设备以及自适应阵列天线系统
CN101601251A (zh) * 2007-01-31 2009-12-09 国际商业机器公司 定义协调定时网络中的层-1配置
CN102749613A (zh) * 2012-06-20 2012-10-24 暨南大学 基于旋转天线的室内定位方法
CN103901412A (zh) * 2014-03-31 2014-07-02 中国科学院空间科学与应用研究中心 一种针对脉冲重建跟踪型有源定标器的定标方法及系统
CN106226760A (zh) * 2016-07-15 2016-12-14 中国电子科技集团公司第五十四研究所 一种具有无线设备时延标定的测量装置和方法
CN106855631A (zh) * 2016-12-02 2017-06-16 中国人民解放军63891部队 一种转发式gnss动态测量精度测试评估方法

Also Published As

Publication number Publication date
US10673522B2 (en) 2020-06-02
WO2019006780A1 (zh) 2019-01-10
CN107450062A (zh) 2017-12-08
US20190349078A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
CN107450062B (zh) 天线延时校准的方法、装置及系统
US8044854B2 (en) Method for calculating current position coordinate and method for calculating pseudo range
CN105527643B (zh) 移动终端的定位方法和移动终端
US9686765B2 (en) Determining an angle of direct path of a signal
CN104144496A (zh) 基于信标设备的室内定位方法及系统
US9904818B2 (en) RFID system with location capability
JPH10282204A (ja) 移動体の位置検出設備
CN110611876A (zh) 室内资产管理的方法、装置及系统
CN107422298A (zh) 蓝牙测距参数优化方法、系统、存储介质及移动终端
CN104039011A (zh) 一种定位方法及装置
US20080204200A1 (en) Systems and methods of locating raido frequency identification tags by radio frequencey technology
CN107306175A (zh) 信息处理方法、装置及系统
US9225858B2 (en) Systems and methods for location-aware imaging devices
US20170374526A1 (en) Position calculation using bluetooth low energy
CN104685370A (zh) 用于定位无线节点的系统及方法
CN111563934B (zh) 单目视觉里程计尺度确定方法和装置
CN102542232A (zh) 基于toa测距的人员精确定位系统及其定位方法
CN109889977B (zh) 一种基于高斯回归的蓝牙定位方法、装置、设备和系统
CN102185669A (zh) 天馈系统状态的确定方法及装置
US20180329057A1 (en) Positioning system and positioning method
CN107040876A (zh) 一种基于wifi的定位方法和服务器
US20060050651A1 (en) Establishing a coordinate system and coordinates for nodes in a network
CN115529661A (zh) 定位处理方法、定位参考信号发送方法、装置及设备
CN111598192A (zh) 电子设备的定位方法、装置和系统、计算机系统和介质
US20240015692A1 (en) Robust indoor positioning systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Method, device, and system for antenna delay calibration

Effective date of registration: 20231108

Granted publication date: 20191119

Pledgee: Guotou Taikang Trust Co.,Ltd.

Pledgor: Hangzhou Shenhao Technology Co.,Ltd.

Registration number: Y2023980064429

PE01 Entry into force of the registration of the contract for pledge of patent right