CN107445885B - 可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用 - Google Patents

可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用 Download PDF

Info

Publication number
CN107445885B
CN107445885B CN201710596403.0A CN201710596403A CN107445885B CN 107445885 B CN107445885 B CN 107445885B CN 201710596403 A CN201710596403 A CN 201710596403A CN 107445885 B CN107445885 B CN 107445885B
Authority
CN
China
Prior art keywords
formula
sensing material
organic fluorescent
compound
fluorescent sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710596403.0A
Other languages
English (en)
Other versions
CN107445885A (zh
Inventor
车延科
郑英璇
熊伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
University of Chinese Academy of Sciences
Original Assignee
Institute of Chemistry CAS
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS, University of Chinese Academy of Sciences filed Critical Institute of Chemistry CAS
Priority to CN201710596403.0A priority Critical patent/CN107445885B/zh
Publication of CN107445885A publication Critical patent/CN107445885A/zh
Application granted granted Critical
Publication of CN107445885B publication Critical patent/CN107445885B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

本发明属于有机半导体纳米材料领域,具体涉及可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用。本发明制备出一种可选择性检测神经性毒剂的有机荧光传感材料。基于咔唑分子的一系列的P型有机荧光传感材料,通过改变咔唑分子侧链及其聚合度,合成出具有不同侧链的咔唑衍生物的结构,通过自组装的方法获得一种一维有机半导体纳米线,即本发明的可选择性检测神经性毒剂的有机荧光传感材料。本发明的纳米线具有比表面积大,表面孔隙多等特征,有利于被检测神经性毒剂蒸汽在纳米线表面的吸附扩散,大大地降低了检出限。因此,本发明的有机荧光传感材料可以作为性能优异的识别神经性毒剂的荧光传感器。

Description

可选择性检测神经性毒剂的有机荧光传感材料及其制备方法 和应用
技术领域
本发明属于有机半导体纳米材料领域,具体涉及可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用。
背景技术
自第一次世界大战伊始,化学战剂(CWAs)作为大规模杀伤性武器被多次使用。而在所有化学战剂中,毒性最强、杀伤力最强的化学战剂当数速杀型的神经性毒剂(nerveagents)。
神经性毒剂是一类剧毒的有机磷酸酯或有机磷酸酯类化合物,也称为有机磷毒剂。美军按化学结构和战术使用特点将之分为两大类:一类为G类毒剂,以呼吸道吸入为主要中毒途径,如沙林(Sarin,GB)、梭曼(Soman,GD)和塔崩(Tabun,GA)等;另一类为V类毒剂,以皮肤染毒吸收为主要中毒途径,如VX等。
神经性毒剂进入人体后作用于神经系统,通过抑制胆碱酯酶活性从而引起乙酰胆碱的蓄积,使胆碱能神经过度兴奋,最后导致呼吸、循环系统衰竭死亡。1995年3月20日的日本东京地铁毒气事件中就使用了GB,且造成了大量人员的伤亡。因此,发展神经性毒剂快速、准确及灵敏的分析检测方法是实现反恐的迫切需要,已得到世界各国军方和安全系统的高度重视。
由于神经性毒剂(如GB、GD、GA)毒性很强,因此在实验室里,普遍使用氯磷酸二乙酯(DCP)作为较安全的模拟物,其和神经性毒剂(如GB、GD、GA)具有相同的反应活性,而且毒性也相对弱很多,几种神经性毒剂的结构如下:
神经毒剂:
Figure BDA0001356003020000021
神经毒剂模拟物:
Figure BDA0001356003020000022
现有的神经性毒剂模拟物的检测方法包括比色检测方法、表面声波法、酶化验法、干涉法等。上述方法存在反应缓慢、缺乏特异性、灵敏度低、操作复杂等缺点。相对而言,神经性毒剂模拟物的荧光检测方法,具有操作简便、响应灵敏、信号反应快、检测的特异性、可制成小的荧光器件便于携带等优势。尽管如此,现有的用于检测神经性毒剂模拟物的荧光检测方法多数采用化学反应前后荧光光谱的变化来进行区分,这种方法需要配成一定浓度的溶液,反应时间长,影响了检测的时效性,并且材料不能重复利用,经济效益不高,因此有待开发时效性和重复性均好的荧光检测方法。尽管近几年,荧光检测方法得到了发展,但是报道的例子中还是有不少缺陷。其中最重要的是,在没有神经性毒剂模拟物的环境下,荧光检测也会对某些干扰物质比如酸类产生类似的信号,从而进行误报。
发明内容
本发明提供了可选择性检测神经性毒剂的有机荧光传感材料。
本发明还提供了可选择性检测神经性毒剂的有机荧光传感材料的制备方法。
本发明还提供了可选择性检测神经性毒剂的有机荧光传感材料的应用。
本发明制备出一种可选择性检测神经性毒剂的有机荧光传感材料。基于咔唑分子的一系列的P型有机荧光传感材料,通过改变咔唑分子侧链及其聚合度,合成出具有不同侧链的咔唑衍生物的结构,通过自组装的方法获得一种一维有机半导体纳米线,即本发明的可选择性检测神经性毒剂的有机荧光传感材料。本发明的纳米线具有比表面积大,表面孔隙多等特征,有利于被检测神经性毒剂蒸汽在纳米线表面的吸附扩散,大大地降低了检出限。因此,本发明的有机荧光传感材料可以作为性能优异的识别神经性毒剂的荧光传感器。
本发明的可选择性检测神经性毒剂的有机荧光传感材料是由一种或多种如下式(I)所示的咔唑衍生物通过π-π相互作用自组装得到:
Figure BDA0001356003020000031
式(I)中,n为3-50的整数;R'相同或不同,彼此独立地选自含有羟基、氨基、羧基等极性基团的芳香类取代基;R选自C3-10的直链或支链烷基、-(CH2)x-R1-O-R2、-(CH2)y-R1-R3或-(CH2)z-R4,其中,x为0、1或2,y为0、1或2,z为2-6的整数,R1为亚芳基,R2为C1-10的直链或支链烷基,R3为-H、-CF3、C1-10的直链或支链烷基或CF3取代的C1-10的直链或支链烷基,R4为-CF3
优选地,R'相同或不同,彼此独立地选自-(CH2)m-R5,其中,m为0-5的整数,例如为0、1或2,R5为被1-3个如下基团取代的芳基:羟基、氨基、羧基、羟基C1-6烷基、氨基C1-6烷基或羧基C1-6烷基,所述芳基还任选被取代基所取代,所述取代基可为烷基、烷氧基等。更优选地,所述R5选自被1-3个羟基、1-3个羟基C1-6烷基取代的芳基,例如,R5选自被1-3个羟基、1-3个羟基C1-6烷基取代的苯基。所述羟基C1-6烷基可以选自羟甲基、羟乙基、羟丙基、羟异丙基、羟丁基。
优选地,R'相同或不同,彼此独立地选自下述基团:
Figure BDA0001356003020000041
Figure BDA0001356003020000051
其中,下侧为连接位点。
优选地,R选自下列基团:
Figure BDA0001356003020000052
Figure BDA0001356003020000061
上述基团中,结构式的上侧为连接位点,当基团中有*标识时,*标识处为连接位点。
本发明中所述的咔唑具有以下结构:
Figure BDA0001356003020000062
本发明通过改变所述咔唑衍生物的侧链和聚合度,使其可通过π-π相互作用自组装,得到的材料对检测神经性毒剂具有专一选择性。具体而言,所述聚合度n为3到50,在两端的苯环上设定所述的侧链R',在咔唑的N原子上设定所述的侧链R。所述R例如为苯环上不同醚烷基取代的苯基、苯环上不同醚烷基取代的苯甲基、含氟取代基、不同长度的烷基或不对称烷基等等。所述R'为含有极性基团如羟基的芳香类取代基。
根据本发明,所述有机荧光传感材料为由一种或多种所述咔唑衍生物通过π-π相互作用自组装得到的有机半导体纳米线。
根据本发明,所述有机荧光传感材料为由有机半导体纳米线形成的网状结构的多孔膜。
本发明还提供可选择性检测神经性毒剂的有机荧光传感材料的制备方法,包括以下步骤:(1)合成式(I)所示的咔唑衍生物;(2)将步骤(1)得到的咔唑衍生物在良溶剂与不良溶剂的混合液中通过π-π相互作用自组装得到所述的有机荧光传感材料。
根据本发明,步骤(1)中,式(I)所示的咔唑衍生物可通过如下方法进行制备,当式(I)为n=3的咔唑衍生物时,所述步骤(1)包括:
步骤(1a):式(II)所示化合物与RX’反应,制得式(III)所示化合物;
Figure BDA0001356003020000071
式(II)和式(III)中X相同或不同,彼此独立地选自卤素(例如Br、I);RX’中X’选自卤素(例如Br,I);式(III)和RX’中的R的定义同式(I);
步骤(1b):将步骤(1a)中所得式(III)化合物与R’B(OH)2反应制得式(IV)所示化合物;
Figure BDA0001356003020000072
式(IV)和R’B(OH)2中,R’的定义同式(I);式(IV)中,R和X的定义同式(III);
步骤(1c):将步骤(1a)中所得式(III)化合物与双戊酰二硼反应制得式(V)所示化合物;
Figure BDA0001356003020000081
式(V)中,R的定义同式(I);
步骤(1d):步骤(1b)中所得式(IV)化合物与步骤(1c)中所得式(V)化合物反应得到式(I)所示咔唑衍生物;其中,式(IV)所示化合物与式(V)所示化合物的摩尔比为2.1:1~2.5:1(例如为2.2:1)。
根据本发明,当式(I)为3<n≤50的咔唑衍生物时,所述步骤(1)包括:
步骤(1a):式(II)所示化合物与RX’反应,制得式(III)所示化合物;
Figure BDA0001356003020000082
式(II)和式(III)中X相同或不同,彼此独立地选自卤素(例如Br、I);RX’中X’选自卤素(例如Br,I);式(III)和RX’中的R的定义同式(I);
步骤(1a’):式(II’)所示化合物与RX’反应,制得式(III’)所示化合物;
Figure BDA0001356003020000083
式(II’)和式(III’)中X相同或不同,彼此独立地选自卤素(例如Br、I);RX’中X’选自卤素(例如Br,I);式(III’)和RX’中的R的定义同式(I);m为2-48的整数;
步骤(1b):将步骤(1a)中所得式(III)化合物与R’B(OH)2反应制得式(IV)所示化合物;
Figure BDA0001356003020000091
式(IV)和R’B(OH)2中,R’的定义同式(I);式(IV)中,R和X的定义同式(III);
步骤(1c’):将步骤(1a’)中所得式(III’)化合物与双戊酰二硼反应制得式(V’)所示化合物;
Figure BDA0001356003020000092
式(V’)中,R的定义同式(I),m为2-48的整数;
步骤(1d’):将步骤(1b)中所得式(IV)化合物与步骤(1c’)中所得式(V’)化合物反应得到式(I)所示咔唑衍生物;其中,式(IV)所示化合物与式(V’)所示化合物的摩尔比为2.1:1~2.5:1(例如为2.2:1)。
根据本发明,步骤(2)中,所述良溶剂与不良溶剂的体积比(ml:ml)为1:2~1:15,优选1:5。
根据本发明,所述的良溶剂选自氯代烃类溶剂,例如选自二氯甲烷、氯仿、1,2-二氯乙烷或其混合物。
根据本发明,所述的不良溶剂选自醇类溶剂或环烷烃类溶剂,例如选自甲醇、乙醇、环己烷或其混合物。
根据本发明,所述步骤(2)包括:将步骤(1)得到的咔唑衍生物溶解在良溶剂中,然后加入不良溶剂,静置,所述咔唑衍生物通过自组装方式得到本发明的有机荧光传感材料的悬浮液。
根据本发明,步骤(2)还包括:将步骤(2)自组装反应后得到的悬浮液静置,取出位于容器底部的有机荧光传感材料,将有机荧光传感材料置于不良溶剂中摇匀分散并反复洗涤。
本发明所述的有机半导体纳米线形成的网状结构的多孔膜,具有高比表面积,用于检测不同的神经性毒剂和挥发性有机化合物气体,并能有效地区分神经性毒剂。
本发明还提供所述有机荧光传感材料的用途,其用于检测神经性毒剂。
所述神经性毒剂包括但不限于沙林(Sarin,GB)、梭曼(Soman,GD)、塔崩(Tabun,GA)、VX及神经性毒剂模拟物氯磷酸二乙酯(DCP)。
本发明中,所述有机荧光传感材料在与微量的神经性毒剂蒸气接触时,其荧光会发生淬灭现象。所述神经性毒剂蒸气的浓度可为ppb~ppm级别(如浓度为十个ppb到几百ppm)。本发明的有机荧光传感材料不仅可以快速、灵敏地检测神经性毒剂,而且在检测过程中可避免常见挥发气体对检测结果的干扰,造成假阳性现象。具体为,所述有机荧光传感材料与常见挥发性有机化合物气体(如酸类,酯类,醇类,胺类,酮类等)(几千到几万ppm)接触时,其荧光会发生无响应或者增强的现象,这与其对神经性毒剂的荧光淬灭信号相反。由此可见,本发明的有机荧光传感材料可选择性检测神经性毒剂,并应用于实际极微量的神经性毒剂的区分检测。
本发明还提供一种检测神经性毒剂的方法,包括:
S1使用光源激发有机荧光传感材料;
S2将步骤S1激发后的有机荧光传感材料与待检测气体接触,然后检测所述有机荧光传感材料的荧光强度,当有机荧光传感材料的荧光强度发生淬灭时,则说明所述气体中含有神经性毒剂。
步骤S1中,所述光源可以选自波长为330nm~400nm的光源,例如385nm的光源。
步骤S2中,
所述神经性毒剂具有如上所述的定义;
所述气体中神经性毒剂的浓度范围优选为10ppb到200ppm;
所述待检测气体可以为实际空气,该空气中可以含有任何其他气氛,例如可以含有挥发性有机化合物,如醇类、酮类、酯类,酸类、胺类、烷烃等。
作为实例,本发明检测神经性毒剂可以采用如下方法:
将本发明所述有机荧光材料涂覆在石英管的内壁,然后将石英管与抽速为150mL/min的泵相连接,用385nm的激发光源激发半导体网状多孔膜。将待检测气体吹入石英管内,通过荧光传感器检测所述多孔膜的荧光强度,当荧光强度发生淬灭时,说明待检测气体中含有神经性毒剂气体。
本发明的有益效果是:
1、本发明提供了一种对神经性毒剂气体具有专一选择性检测的一维有机半导体纳米线。
2、本发明还提供了一种含羟基、氨基或羧基取代的咔唑衍生物自组装成的一维有机半导体纳米线形成的多孔膜对神经性毒剂气体进行选择性荧光检测的实际应用方法。
3、本发明还提供了一种灵敏、简便、快速的对神经性毒剂进行选择性检测的荧光检测方法。通过荧光强度改变(增强或者淬灭),来达到对神经性毒剂做出快速区分的目的,对其最低检测限可以达到13ppb。
附图说明
图1、本发明实施例1中化合物1咔唑衍生物的核磁数据谱图。
图2、本发明实施例2中化合物2咔唑衍生物的核磁数据谱图。
图3、本发明实施例3中化合物3咔唑衍生物的核磁数据谱图。
图4、本发明实施例4中化合物4咔唑衍生物的核磁数据谱图。
图5、本发明实施例1中化合物1咔唑衍生物自组装形成的有机半导体纳米线的SEM图像。
图6、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对二乙基磷酰氯(DCP)气体的检测荧光曲线图,最低检测限为13.2ppb,荧光淬灭的响应。
图7、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对乙酸气体的检测荧光曲线图,最低检测限为1505ppm,荧光淬灭的响应。
图8、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对氯仿气体的检测荧光曲线图,最低检测限为42178ppm,荧光增强的响应。
图9、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对乙酸乙酯气体的检测荧光曲线图,最低检测限为2040ppm,荧光增强的响应。
图10、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对苯乙胺气体的检测荧光曲线图,最低检测限为285ppm,荧光增强的响应。
图11、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对乙腈气体的检测荧光曲线图,最低检测限为1920ppm,荧光增强的响应。
图12、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线编织成的网状结构多孔膜对正己烷气体的检测荧光曲线图,即使是31683ppm的浓度,也几乎没有响应。
图13、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对甲醇气体的检测荧光曲线图,最低检测限为13168ppm的甲醇,荧光淬灭的响应。
图14、本发明实施例1中化合物1咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对丙酮气体的检测荧光曲线图,最低检测限为4891ppm的丙酮,荧光增强的响应。
图15、本发明实施例2中化合物2咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对二乙基磷酰氯(DCP)气体的检测荧光曲线图,最低检测限为13.2ppb,荧光淬灭的响应。
图16、本发明实施例3中化合物3咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对二乙基磷酰氯(DCP)气体的检测荧光曲线图,最低检测限为13.2ppb,荧光淬灭的响应。
图17、本发明实施例4中分子4咔唑衍生物自组装的具有超灵敏荧光响应的有机半导体纳米线形成的网状结构多孔膜对二乙基磷酰氯(DCP)气体的检测荧光曲线图,最低检测限为13.2ppb,荧光淬灭的响应。
具体实施方式
如前所述,本发明公开了一种可选择性检测神经性毒剂有机荧光传感材料的制备方法,其包括以下步骤:(1)合成出式(I)所示的咔唑衍生物;(2)将步骤(1)得到的式(I)所示的咔唑衍生物在良溶剂与不良溶剂的混合液中通过π-π相互作用自组装得到所述的有机荧光传感材料。
在本发明的一个优选实施方式中,制备式(I)中n=3的咔唑衍生物,所述步骤(1)具体包括:
步骤(1a):式(II)所示化合物与RX’反应,制得式(III)所示化合物;
Figure BDA0001356003020000131
式(II)和式(III)中的X相同或不同,彼此独立地选自卤素(例如Br、I);RX’中的X’选自卤素(例如Br,I);式(III)和RX’中的R的定义同式(I);
步骤(1b):式(III)所示化合物与R’B(OH)2反应制得式(IV)所示化合物;
Figure BDA0001356003020000141
式(IV)和R’B(OH)2中,R’的定义同式(I);式(IV)中,R和X的定义同式(III);
步骤(1c)式(III)所示化合物与双戊酰二硼反应制得式(V)所示化合物;
Figure BDA0001356003020000142
式(V)中,R的定义同式(I);
步骤(1d):式(IV)所示化合物与式(V)所示化合物反应得到式(I)所示咔唑衍生物,其中n=3;其中,式(IV)所示化合物与式(V)所示化合物的摩尔比为2.1:1~2.5:1(例如为2.2:1)。
在本发明的另一个优选实施方式中,制备式(I)中3<n≤50的咔唑衍生物,所述步骤(1)具体包括:
步骤(1a):式(II)所示化合物与RX’反应,制得式(III)所示化合物;
Figure BDA0001356003020000143
式(II)和式(III)中的X相同或不同,彼此独立地选自卤素(例如Br、I);RX’中的X’选自卤素(例如Br,I);式(III)和RX’中的R的定义同式(I);
步骤(1a’):式(II’)所示化合物与RX’反应,制得式(III’)所示化合物;
Figure BDA0001356003020000144
式(II’)和式(III’)中的X相同或不同,彼此独立地选自卤素(例如Br、I);RX’中的X’选自卤素(例如Br,I);式(III’)和RX’中的R的定义同式(I);m为2-48的整数;
步骤(1b):式(III)所示化合物与R’B(OH)2反应制得式(IV)所示化合物;
Figure BDA0001356003020000151
式(IV)和R’B(OH)2中,R’的定义同式(I);式(IV)中,R和X的定义同式(III);
步骤(1c’):式(III’)所示化合物与双戊酰二硼反应制得式(V’)所示化合物;
Figure BDA0001356003020000152
式(V’)中,R的定义同式(I),m为2-48的整数;
步骤(1d’):式(IV)所示化合物与式(V’)所示化合物反应得到式(I)所示咔唑衍生物,其中3<n≤50;其中,式(IV)所示化合物与式(V’)所示化合物的摩尔比为2.1:1~2.5:1(例如为2.2:1)。
上述步骤(1a)或(1a’)中,所述反应在溶剂中进行。所述溶剂为可以溶解式(II)或式(II’)所示化合物的有机溶剂,例如为酰胺类化合物,具体可以选自N,N-二甲基-甲酰胺。
上述步骤(1a)或(1a’)中,所述反应在-10~10℃的温度下进行,优选,-5~5℃。
上述步骤(1a)中,所述反应在催化剂的作用下进行。所述催化剂例如为氢化钠。式(II)所示化合物与催化剂的当量比为1:1.1~1:1.3,优选为1:1.2。
上述步骤(1a’)中,所述反应在催化剂的作用下进行。所述催化剂例如为氢化钠。式(II’)所示化合物与催化剂的当量比为1:(m+0.1)~1:(m+0.3),优选为1:(m+0.2),m为2-48的整数。
上述步骤(1a)中,式(II)化合物与RX’的当量比为1.1.2~1:1.5,优选为1:1.3。
上述步骤(1a’)中,式(II’)化合物与RX’的当量比为1:(m+0.2)~1:(m+0.5),优选为1:(m+0.3),m为2-48的整数。
在一个优选的技术方案中,制备式(I)中n=3的咔唑衍生物,所述步骤(1a)具体为:将1当量的2,7-二溴咔唑溶于N,N-二甲基-甲酰胺中配置成浓度为1g/30ml的溶液,将上述溶液置于0℃冰浴中,缓慢加入1.2当量的氢化钠固体,持续搅拌半小时后,缓慢加入1.5当量的1-溴辛烷、2-溴丁烷、4-三氟甲基卞溴、卞溴或4-氧甲基卞溴,在室温下反应过夜后,通过柱层析得到产物。
上述步骤(1b)中,所述反应在溶剂中进行。所述溶剂为可以溶解式(III)所示化合物的有机溶剂,例如为环氧化合物,具体可以是1,4-二氧六环。
上述步骤(1b)中,式(III)化合物与R’B(OH)2的当量比为1:1。
上述步骤(1b)中,所述反应在催化剂体系中进行,所述催化剂体系包括四(三苯基膦)钯和碳酸铯。相对于1当量的式(III)化合物,四(三苯基膦)钯的添加量为5-15%当量,碳酸铯的添加量为2.5~3.5当量。
上述步骤(1b)中,所述反应在惰性气体保护下进行,反应温度为70~90℃,反应时间为6~8小时。
在一个优选的实施方式中,所述步骤(1b)具体为:(1b)取1当量的步骤(1a)得到的产物,溶于1,4-二氧六环和水体积比为5比1的混合溶液中,配置成浓度为1g/20ml的溶液,加入1当量的对甲基羰基苯硼酸、10%当量的四(三苯基膦)钯、3当量的碳酸铯在80℃氩气保护下,反应6小时后,通过柱层析得到产物。
上述步骤(1c)或(1c’)中,所述反应在溶剂中进行。所述溶剂为可以溶解式(III)或式(III’)所示化合物的有机溶剂,例如为环氧化合物,具体可以是1,4-二氧六环。
上述步骤(1c)或(1c’)中,式(III)或式(III’)化合物与双戊酰二硼的当量比为1:4~6。
上述步骤(1c)或(1c’)中,所述反应在催化剂体系中进行,所述催化剂体系包括醋酸钾和[1,1'-双(二苯基膦基)二茂铁]二氯化钯。相对于1当量的式(III)式(III’)化合物,醋酸钾的添加量为10~20当量,[1,1'-双(二苯基膦基)二茂铁]二氯化钯的添加量为5~15%当量。
上述步骤(1c)或(1c’)中,所述反应在惰性气体保护下进行,反应温度为70~80℃,反应时间为4~8小时。
在一个优选的实施方式中,制备式(I)中n=3的咔唑衍生物,所述步骤(1c)具体为:取1当量的步骤(1a)得到的产物,加入1,4-二氧六环溶液中,配置成浓度为1g/20ml的溶液,加入5当量的双戊酰二硼、14当量的醋酸钾、10%当量的[1,1'-双(二苯基膦基)二茂铁]二氯化钯在80℃氩气保护下,反应6小时后,通过柱层析得到产物。
上述步骤(1d)或(1d’)中,所述反应在溶剂中进行。所述溶剂为可以溶解式(VI)、式(V)和式(V’)所示化合物的有机溶剂,例如为环氧化合物,具体可以是1,4-二氧六环。
上述步骤(1d)或(1d’)中,式(VI)化合物与式(V)或式(V’)化合物的当量比为1:2.2。
上述步骤(1d)或(1d’)中,所述反应在催化剂体系中进行,所述催化剂体系包括四(三苯基膦)钯和碳酸钾。相对于1当量的式(III)化合物,碳酸钾的添加量为3~5当量,四(三苯基膦)钯的添加量为5~15%当量。
上述步骤(1d)或(1d’)中,所述反应在惰性气体保护下进行,反应温度为70~90℃,反应时间为12~48小时。
在一个优选的实施方式中,制备式(I)中n=3的咔唑衍生物,所述步骤(1d)具体为:分别取步骤(1c)和步骤(1b)得到的产物1mmol和2.2mmol,加入到20mL1,4-二氧六环和水体积比为5比1的混合溶液中,加入10%的四(三苯基膦)钯、3当量的碳酸钾在80℃氩气保护下,反应过夜后,通过柱层析得到产物。
下文将结合具体实施例对本发明的有机荧光传感材料及其制备方法和应用做更进一步的详细说明。下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1
制备化合物1,n为3的咔唑衍生物,其制备方法如下所示:
Figure BDA0001356003020000181
(1)将1克的2,7-二溴咔唑溶于30毫升的N,N-二甲基-甲酰胺(DMF)溶液中,将上述溶液置于0℃冰浴中,缓慢加入1.2当量的74mg的氢化钠固体,持续搅拌半小时后,缓慢加入1.5当量的1-溴辛烷,在室温下反应过夜后,通过柱层析得到产物。
(2)取步骤(1)得到的产物500mg,加入20ml 1,4-二氧六环溶液中,加入5当量的双戊酰二硼、14当量的醋酸钾、10%当量的[1,1'-双(二苯基膦基)二茂铁]二氯化钯在80℃氩气保护下,反应6小时后,通过柱层析得到产物(TM-1)。
(3)取步骤(1)得到的产物500mg,加入20ml 1,4-二氧六环溶液和4mL水混合溶液中,加入1当量的4-(2-羟基-2-丙基)苯硼酸、10%当量的四(三苯基膦)钯、3当量的碳酸铯在80℃氩气保护下,反应6小时后,通过柱层析得到产物(TM-2)。
(4)分别取步骤(2)和步骤(3)得到的产物1mmol和2.2mmol,加入到20ml 1,4-二氧六环溶液和4mL水混合溶液中,加入10%的四(三苯基膦)钯、3当量的碳酸钾在80℃氩气保护下,反应过夜后,通过柱层析得到产物(化合物1);其核磁共振数据图如图1所示。
(5)将步骤(4)得到的n为3的咔唑衍生物(化合物1)溶解在良溶剂中后加入不良溶剂,所述良溶剂为二氯甲烷、氯仿或1,2-二氯乙烷中的一种,所述不良溶剂为甲醇、乙醇或环己烷中的一种,良溶剂与不良溶剂的体积比为1:2~1:15;静置,所述咔唑衍生物(化合物1)通过自组装方式得到可选择性检测神经性毒剂的有机半导体纳米线的悬浮液。
实施例2
制备如下化合物2,n为3的咔唑衍生物,其制备方法如下所示:
Figure BDA0001356003020000201
(1)将1克的2,7-二溴咔唑溶于30毫升的N,N-二甲基-甲酰胺(DMF)溶液中,将上述溶液置于0℃冰浴中,缓慢加入1.2当量的74mg的氢化钠固体,持续搅拌半小时后,缓慢加入1.5当量的1-溴辛烷,在室温下反应过夜后,通过柱层析得到产物。
(2)取步骤(1)得到的产物500mg,加入20ml 1,4-二氧六环溶液中,加入5当量的双戊酰二硼、14当量的醋酸钾、10%当量的[1,1'-双(二苯基膦基)二茂铁]二氯化钯在80℃氩气保护下,反应6小时后,通过柱层析得到产物(TM-1)。
(3)取2g1-(4-溴苯)丙酮溶于30毫升甲醇(MeOH)中,将上述溶液置于0℃冰浴中,然后除氧,在氩气保护下,缓慢加入硼氢化钠,加完后密封,室温下反应2小时,然后通过柱层得到产物。
(4)将步骤(3)得到的产物500mg,加入20ml 1,4-二氧六环溶液中,加入5当量的双戊酰二硼、14当量的醋酸钾、10%当量的[1,1'-双(二苯基膦基)二茂铁]二氯化钯在80℃氩气保护下,反应6小时后,通过柱层析得到产物。
(5)取步骤(1)得到的产物500mg和1当量的步骤(4)得到的产物,加入20ml 1,4-二氧六环溶液和4mL水混合溶液中,加入10%当量的四(三苯基膦)钯、3当量的碳酸铯在80℃氩气保护下,反应6小时后,通过柱层析得到产物(TM-3)。
(6)分别取步骤(2)和步骤(5)得到的产物1mmol和2.2mmol,加入到20ml 1,4-二氧六环溶液和4mL水混合溶液中,加入10%的四(三苯基膦)钯、3当量的碳酸钾在80℃氩气保护下,反应过夜后,通过柱层析得到产物(化合物2);其核磁共振数据图如图2所示。
(7)将步骤(6)得到的n为3的咔唑衍生物(化合物2)溶解在良溶剂中后加入不良溶剂,所述良溶剂为二氯甲烷、氯仿或1,2-二氯乙烷中的一种,所述不良溶剂为甲醇、乙醇或环己烷中的一种,良溶剂与不良溶剂的体积比为1:2~1:15;静置,所述咔唑衍生物(化合物2)通过自组装方式得到可选择性检测神经性毒剂的有机半导体纳米线的悬浮液。
实施例3
制备如下化合物3,n为3的咔唑衍生物,其制备方法如下所示:
Figure BDA0001356003020000211
(1)将1克的2,7-二溴咔唑溶于30毫升的N,N-二甲基-甲酰胺(DMF)溶液中,将上述溶液置于0℃冰浴中,缓慢加入1.2当量的74mg的氢化钠固体,持续搅拌半小时后,缓慢加入1.5当量的1-溴辛烷,在室温下反应过夜后,通过柱层析得到产物。
(2)取步骤(1)得到的产物500mg,加入20ml 1,4-二氧六环溶液中,加入5当量的双戊酰二硼、14当量的醋酸钾、10%当量的[1,1'-双(二苯基膦基)二茂铁]二氯化钯在80℃氩气保护下,反应6小时后,通过柱层析得到产物(TM-1)。
(3)将1克的1-(4-溴苯)乙醇溶于30ml 1,4-二氧六环溶液中,加入2当量的双戊酰二硼、3当量的醋酸钾、5%当量的[1,1'-双(二苯基膦基)二茂铁]二氯化钯在80℃氩气保护下,反应6小时后,通过柱层析得到产物。
(4)取步骤(1)得到的产物500mg,加入20ml 1,4-二氧六环溶液和4mL水混合溶液中,加入1当量的(4-(1-羟乙基))苯硼酸、10%当量的四(三苯基膦)钯、3当量的碳酸铯在80℃氩气保护下,反应6小时后,通过柱层析得到产物(TM-4)。
(5)分别取步骤(2)和步骤(4)得到的产物1mmol和2.2mmol,加入到20ml 1,4-二氧六环溶液和4mL水混合溶液中,加入10%的四(三苯基膦)钯、3当量的碳酸钾在80℃氩气保护下,反应过夜后,通过柱层析得到产物(化合物3);其核磁共振数据图如图3所示。
(6)将步骤(5)得到的n为3的咔唑衍生物(分子3)溶解在良溶剂中后加入不良溶剂,所述良溶剂为二氯甲烷、氯仿或1,2-二氯乙烷中的一种,所述不良溶剂为甲醇、乙醇或环己烷中的一种,良溶剂与不良溶剂的体积比为1:2~1:15;静置,所述咔唑衍生物通过自组装方式得到可选择性检测神经性毒剂的有机半导体纳米线的悬浮液。
实施例4
制备如下化合物4,n为3的咔唑衍生物,其制备方法如下所示:
Figure BDA0001356003020000231
(1)将1克的2,7-二溴咔唑溶于30毫升的N,N-二甲基-甲酰胺(DMF)溶液中,将上述溶液置于0℃冰浴中,缓慢加入1.2当量的74mg的氢化钠固体,持续搅拌半小时后,缓慢加入1.5当量的1-溴辛烷,在室温下反应过夜后,通过柱层析得到产物。
(2)取步骤(1)得到的产物500mg,加入20ml 1,4-二氧六环溶液中,加入5当量的双戊酰二硼、14当量的醋酸钾、10%当量的[1,1'-双(二苯基膦基)二茂铁]二氯化钯在80℃氩气保护下,反应6小时后,通过柱层析得到产物(TM-1)。
(3)将1克的对溴苯甲醇溶于30ml 1,4-二氧六环溶液中,加入2当量的双戊酰二硼、3当量的醋酸钾、5%当量的[1,1'-双(二苯基膦基)二茂铁]二氯化钯在80℃氩气保护下,反应6小时后,通过柱层析得到产物。
(4)取步骤(1)得到的产物500mg,加入20ml 1,4-二氧六环溶液和4mL水混合溶液中,加入1当量的(4-羟甲基)苯硼酯、10%当量的四(三苯基膦)钯、3当量的碳酸铯在80℃氩气保护下,反应6小时后,通过柱层析得到产物(TM-5)。
(5)分别取步骤(2)和步骤(4)得到的产物1mmol和2.2mmol,加入到20ml 1,4-二氧六环溶液和4mL水混合溶液中,加入10%的四(三苯基膦)钯、3当量的碳酸钾在80℃氩气保护下,反应过夜后,通过柱层析得到产物(化合物4);其核磁共振数据图如图4所示。
(6)将步骤(5)得到的n为3的咔唑衍生物(化合物4)溶解在良溶剂中后加入不良溶剂,所述良溶剂为二氯甲烷、氯仿或1,2-二氯乙烷中的一种,所述不良溶剂为甲醇、乙醇或环己烷中的一种,良溶剂与不良溶剂的体积比为1:2~1:15;静置,所述咔唑衍生物通过自组装方式得到可选择性检测神经性毒剂的有机半导体纳米线的悬浮液。
实施例5
将实施例1制备好的悬浊液分别用移液枪取出容器底部的样品并置于干净的硅片表面,待乙醇溶液挥发干净后将其放置于离子溅射机中(Leica),抽真空到真空度为10-5pa后开始表面溅射金属铂颗粒120s。取出硅片并将其置于扫描电镜(Hitachi S4800)观察其形貌。如图5中的a,b,c和d可以观察到,一维有机半导体纳米线形成的网状的多孔结构,这为传感性能提供了足够的比表面积。
实施例6
将实施例1步骤(5)得到的悬浮液静置20小时后,取出容器底部的有机半导体纳米线置于石英管内,溶剂挥发后形成多孔膜(如实施例5测试的,其为由一维有机半导体纳米线形成的网状结构的多孔膜)。将石英管与一台微型流量泵连接,抽速为150mL/min。使用385纳米激发光源激发所述网状结构的多孔膜。用10mL的注射器,以2mL/s的速度向所述的石英管内推入不同浓度的二乙基磷酰氯(DCP)气体。检测结果都表现为出现了明显的荧光淬灭。如图6所示,浓度为13.2ppb的二乙基磷酰氯(DCP)蒸汽有1.2%左右的荧光淬灭,浓度为132ppb的二乙基磷酰氯(DCP)蒸汽有1.3%左右的荧光淬灭,浓度为1.32ppm的二乙基磷酰氯(DCP)蒸汽有3%左右的荧光淬灭,浓度为2.64ppm的二乙基磷酰氯(DCP)蒸汽有3.5%左右的荧光淬灭。在停止吹气后荧光恢复到基线状态。因此,所述一维有机半导体纳米线编织形成网状结构的膜对于神经性毒剂模拟物气体二乙基磷酰氯(DCP)体现了高的灵敏度。
为了探究所述有机荧光材料是否能专一选择性区分DCP,我们用同样的方法检测了多种挥发性有机化合物气体,如实施例7-14。
实施例7
采用实施例6同样的方法,将检测物替换为15ppm、150ppm、300ppm、1505ppm的乙酸蒸汽,检测结果表现出所述多孔膜最低能够检测到1505ppm乙酸,是荧光淬灭的响应。而对于更低的1000ppm以下的乙酸则检测不出来,这样在痕量检测神经性毒剂模拟物气体二乙基磷酰氯(DCP)时,低浓度的乙酸不会进行信号的干扰。(如图7所示)。
实施例8
采用实施例6同样的方法,只是将检测物替换为2108ppm、21089ppm、42178ppm的氯仿蒸汽,检测结果表现出所述多孔膜最低能够检测到42178ppm的氯仿,而且是荧光增强的响应,(如图8所示),和实施例6中对二乙基磷酰氯(DCP)蒸汽荧光淬灭的响应相反,因此可以选择区分出神经性毒剂模拟物气体二乙基磷酰氯(DCP)。
实施例9
采用实施例6同样的方法,只是将检测物替换为1020ppm、2040ppm、10198ppm的乙酸乙酯蒸汽,检测结果表现出所述多孔膜最低能够检测到2040ppm的乙酸乙酯,而且是荧光增强的响应,(如图9所示),和实施例6中对二乙基磷酰氯(DCP)蒸汽荧光淬灭的响应相反,因此可以选择区分出神经性毒剂模拟物气体二乙基磷酰氯(DCP)。
实施例10
采用实施例6同样的方法,只是将检测物替换为2ppm、28ppm、57ppm、142ppm的苯乙胺蒸汽,检测结果表现出所述多孔膜最低能够检测到28ppm的苯乙胺,而且是荧光增强的响应(如图10所示),和实施例6中对二乙基磷酰氯(DCP)蒸汽荧光淬灭的响应相反,因此可以选择区分出神经性毒剂模拟物气体二乙基磷酰氯(DCP)。
实施例11
采用实施例6同样的方法,只是将检测物替换为960ppm、1920ppm、9604ppm、19208ppm的乙腈蒸汽,检测结果表现出所述多孔膜最低能够检测到1920ppm的乙腈,而且是荧光增强的响应,(如图11所示),和实施例6中对二乙基磷酰氯(DCP)蒸汽荧光淬灭的响应相反,因此可以选择区分出神经性毒剂模拟物气体二乙基磷酰氯(DCP)。
实施例12
采用实施例6同样的方法,只是将检测物替换为1584ppm、15842ppm、31683ppm的正己烷蒸汽,检测结果表现出所述多孔膜对正己烷几乎没有响应(如图12所示),和实施例6中对二乙基磷酰氯(DCP)蒸汽荧光淬灭的响应不同,因此可以选择区分出神经性毒剂模拟物气体二乙基磷酰氯(DCP)。
实施例13
采用实施例6同样的方法,只是将检测物替换为1317ppm、2634ppm、13168ppm,、26337ppm的甲醇蒸汽,检测结果表现出所述多孔膜最低能够检测到13168ppm的甲醇蒸汽,而且是荧光增强的响应(如图13所示),和实施例6中对二乙基磷酰氯(DCP)蒸汽荧光淬灭的响应相反,因此可以选择区分出神经性毒剂模拟物气体二乙基磷酰氯(DCP)。
实施例14
采用实施例6同样的方法,只是将检测物替换为2445ppm、4891ppm、24454ppm的丙酮蒸汽,检测结果表现出所述多孔膜最低能够检测到4891ppm的丙酮蒸汽,而且是荧光增强的响应(如图14所示),和实施例6中对二乙基磷酰氯(DCP)蒸汽荧光淬灭的响应相反,因此可以选择区分出神经性毒剂模拟物气体二乙基磷酰氯(DCP)。
实施例15
将实施例2步骤(7)得到的悬浮液静置20小时后,取出容器底部的有机半导体纳米线置于石英管内,溶剂挥发后在石英管内形成多孔膜。将石英管与一台微型流量泵连接,抽速为150mL/min。使用385纳米激发光源激发由一维有机半导体纳米线编织形成网状结构的多孔膜。用10mL的注射器,以2mL/s的速度向所述的石英管内推入不同浓度的二乙基磷酰氯(DCP)气体,检测结果都表现为出现了明显的荧光淬灭。如图15所示,浓度为13.2ppb的二乙基磷酰氯(DCP)蒸汽有1%左右的荧光淬灭,浓度为132ppb的二乙基磷酰氯(DCP)蒸汽有1.8%左右的荧光淬灭,浓度为1.32ppm的二乙基磷酰氯(DCP)蒸汽有2.8%左右的荧光淬灭,浓度为2.64ppm的二乙基磷酰氯(DCP)蒸汽有3.3%左右的荧光淬灭。在停止吹气后荧光恢复到基线状态。因此所述一维有机半导体纳米线编织形成网状结构的膜对于神经性毒剂模拟物气体二乙基磷酰氯(DCP)体现了高的灵敏度。
实施例16
将实施例3步骤(6)得到的悬浮液静置20小时后,取出容器底部的有机半导体纳米线置于石英管内,溶剂挥发后在石英管内形成多孔膜。将石英管与一台微型流量泵连接,抽速为150mL/min。使用385纳米激发光源激发由一维有机半导体纳米线编织形成网状结构的膜。用10mL的注射器,以2mL/s的速度向所述的石英管内推入不同浓度的二乙基磷酰氯(DCP)气体,检测结果都表现为出现了明显的荧光淬灭。如图16所示,浓度为13.2ppb的二乙基磷酰氯(DCP)蒸汽有1.2%左右的荧光淬灭,浓度为132ppb的二乙基磷酰氯(DCP)蒸汽有1.8%左右的荧光淬灭,浓度为1.32ppm的二乙基磷酰氯(DCP)蒸汽有3.7%左右的荧光淬灭,浓度为2.64ppm的二乙基磷酰氯(DCP)蒸汽有5%左右的荧光淬灭。在停止吹气后荧光恢复到基线状态。因此,所述一维有机半导体纳米线编织形成网状结构的膜对于神经性毒剂模拟物气体二乙基磷酰氯(DCP)体现了高的灵敏度。
实施例17
将实施例4步骤(6)得到的悬浮液静置20小时后,取出容器底部的有机半导体纳米线置于石英管内,溶剂挥发后在石英管内形成多孔膜。将石英管与一台微型流量泵连接,抽速为150mL/min。使用385纳米激发光源激发由一维有机半导体纳米线编织形成网状结构的膜。用10mL的注射器,以2mL/s的速度向所述的石英管内推入不同浓度的二乙基磷酰氯(DCP)气体,检测结果都表现为出现了明显的荧光淬灭。如图17所示,浓度为13.2ppb的二乙基磷酰氯(DCP)蒸汽有0.9%左右的荧光淬灭,浓度为132ppb的二乙基磷酰氯(DCP)蒸汽有1.3%左右的荧光淬灭,浓度为1.32ppm的二乙基磷酰氯(DCP)蒸汽有2.6%左右的荧光淬灭,浓度为2.64ppm的二乙基磷酰氯(DCP)蒸汽有4%左右的荧光淬灭。在停止吹气后荧光恢复到基线状态。因此,所述一维有机半导体纳米线编织形成网状结构的膜对于神经性毒剂模拟物气体二乙基磷酰氯(DCP)体现了高的灵敏度。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

1.一种有机荧光传感材料,其特征在于,由一种或多种如下式(I)所示的咔唑衍生物通过π-π相互作用自组装得到:
Figure FDA0002422458290000011
式(I)中,n为3-50的整数;R'相同或不同,彼此独立地选自-(CH2)m-R5,其中,m为0-5的整数,R5为被1-3个如下基团取代的苯基:羟基C1-6烷基、氨基C1-6烷基;R选自C3-10的直链或支链烷基。
2.如权利要求1所述的有机荧光传感材料,其特征在于,m为0、1或2。
3.如权利要求2所述的有机荧光传感材料,其特征在于,式(I)中R5选自被1-3个羟基C1-6烷基取代的苯基。
4.如权利要求3所述的有机荧光传感材料,其特征在于,式(I)中所述羟基C1-6烷基选自羟甲基、羟乙基、羟丙基、羟异丙基、羟丁基。
5.如权利要求4所述的有机荧光传感材料,其特征在于,式(I)中R'相同或不同,彼此独立地选自下述基团:
Figure FDA0002422458290000012
Figure FDA0002422458290000021
其中,下侧为连接位点。
6.如权利要求5所述的有机荧光传感材料,其特征在于,式(I)中R选自下列基团:
Figure FDA0002422458290000031
上述基团中,结构式的上侧为连接位点,当基团中有*标识时,*标识处为连接位点。
7.如权利要求1-6任一项所述的有机荧光传感材料,其特征在于,由一种或多种式(I)所述咔唑衍生物通过π-π相互作用自组装得到的有机半导体纳米线。
8.如权利要求7所述的有机荧光传感材料,其特征在于,所述有机荧光传感材料为由有机半导体纳米线形成的网状结构的多孔膜。
9.如权利要求1-8任一项所述的有机荧光传感材料的制备方法,其特征在于,包括以下步骤:(1)合成式(I)所示的咔唑衍生物;(2)将步骤(1)得到的咔唑衍生物在良溶剂与不良溶剂的混合液中通过π-π相互作用自组装得到所述的有机荧光传感材料。
10.如权利要求9所述的制备方法,其特征在于,步骤(1)中,式(I)所示的咔唑衍生物通过如下方法进行制备,当式(I)为n=3的咔唑衍生物时,所述步骤(1)包括:
步骤(1a):式(II)所示化合物与RX’反应,制得式(III)所示化合物;
Figure FDA0002422458290000041
式(II)和式(III)中X相同或不同,彼此独立地选自卤素;RX’中X’选自卤素;式(III)和RX’中的R的定义同式(I);
步骤(1b):将步骤(1a)中所得式(III)化合物与R’B(OH)2反应制得式(IV)所示化合物;
Figure FDA0002422458290000042
式(IV)和R’B(OH)2中,R’的定义同式(I);
步骤(1c):将步骤(1a)中所得式(III)化合物与双戊酰二硼反应制得式(V)所示化合物;
Figure FDA0002422458290000043
式(V)中,R的定义同式(I);
步骤(1d):步骤(1b)中所得式(IV)化合物与步骤(1c)中所得式(V)化合物反应得到式(I)所示咔唑衍生物;其中,式(IV)所示化合物与式(V)所示化合物的摩尔比为2.1:1~2.5:1;
当式(I)为3<n≤50的咔唑衍生物时,所述步骤(1)包括:
步骤(1a):式(II)所示化合物与RX’反应,制得式(III)所示化合物;
Figure FDA0002422458290000051
式(II)和式(III)中X相同或不同,彼此独立地选自卤素;RX’中X’选自卤素;式(III)和RX’中的R的定义同式(I);
步骤(1a’):式(II’)所示化合物与RX’反应,制得式(III’)所示化合物;
Figure FDA0002422458290000052
式(II’)和式(III’)中X相同或不同,彼此独立地选自卤素;RX’中X’选自卤素;式(III’)和RX’中的R的定义同式(I);m为2-48的整数;
步骤(1b):将步骤(1a)中所得式(III)化合物与R’B(OH)2反应制得式(IV)所示化合物;
Figure FDA0002422458290000053
式(IV)和R’B(OH)2中,R’的定义同式(I);式(IV)中,R和X的定义同式(III);
步骤(1c’):将步骤(1a’)中所得式(III’)化合物与双戊酰二硼反应制得式(V’)所示化合物;
Figure FDA0002422458290000054
式(V’)中,R的定义同式(I),m为2-48的整数;
步骤(1d’):将步骤(1b)中所得式(IV)化合物与步骤(1c’)中所得式(V’)化合物反应得到式(I)所示咔唑衍生物;其中,式(IV)所示化合物与式(V’)所示化合物的摩尔比为2.1:1~2.5:1。
11.如权利要求10所述的制备方法,其特征在于,步骤(2)中,所述良溶剂与不良溶剂的体积比ml:ml为1:2~1:15;
所述的良溶剂选自氯代烃类溶剂;
所述的不良溶剂选自醇类溶剂或环烷烃类溶剂;
所述步骤(2)包括:将步骤(1)得到的咔唑衍生物溶解在良溶剂中,然后加入不良溶剂,静置,所述咔唑衍生物通过自组装方式得到本发明的有机荧光传感材料的悬浮液;
步骤(2)还包括:将步骤(2)自组装反应后得到的悬浮液静置,取出位于容器底部的有机荧光传感材料,将有机荧光传感材料置于不良溶剂中摇匀分散并反复洗涤。
12.如权利要求11所述的制备方法,其特征在于,步骤(2)中,所述的良溶剂选自二氯甲烷、氯仿、1,2-二氯乙烷或其混合物;
所述的不良溶剂选自甲醇、乙醇、环己烷或其混合物;
所述良溶剂与不良溶剂的体积比ml:ml为1:5。
13.如权利要求1-8任一项所述有机荧光传感材料的用途,其特征在于,用于检测神经性毒剂。
14.如权利要求13所述的用途,其特征在于,所述神经性毒剂选自沙林、梭曼、塔崩、VX及神经性毒剂模拟物氯磷酸二乙酯。
15.一种检测神经性毒剂的方法,其特征在于,包括:
S1使用光源激发权利要求1-8任一项所述有机荧光传感材料;
S2将步骤S1激发后的有机荧光传感材料与待检测气体接触,然后检测所述有机荧光传感材料的荧光强度,当有机荧光传感材料的荧光强度发生淬灭时,则说明所述气体中含有神经性毒剂;
步骤S1中,所述光源选自波长为330nm~400nm的光源。
16.如权利要求15所述的检测神经性毒剂的方法,其特征在于,所述待检测气体中神经性毒剂浓度范围为10ppb到200ppm;
所述待检测气体为实际空气,该空气中含有任何其他气氛。
17.如权利要求15所述的检测神经性毒剂的方法,其特征在于,所述待检测气体中含有挥发性醇类、酮类、酯类,酸类、胺类、烷烃有机化合物。
18.如权利要求15-17任一项所述的检测神经性毒剂的方法,其特征在于,所述方法采用如下步骤:
将所述有机荧光材料涂覆在石英管的内壁,然后将石英管与抽速为150mL/min的泵相连接,用385nm的激发光源激发半导体网状多孔膜,将待检测气体吹入石英管内,通过荧光传感器检测所述多孔膜的荧光强度,当荧光强度发生淬灭时,说明待检测气体中含有神经性毒剂气体。
CN201710596403.0A 2017-07-20 2017-07-20 可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用 Active CN107445885B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710596403.0A CN107445885B (zh) 2017-07-20 2017-07-20 可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710596403.0A CN107445885B (zh) 2017-07-20 2017-07-20 可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107445885A CN107445885A (zh) 2017-12-08
CN107445885B true CN107445885B (zh) 2020-07-14

Family

ID=60488814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710596403.0A Active CN107445885B (zh) 2017-07-20 2017-07-20 可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107445885B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205857B (zh) * 2018-11-22 2021-04-27 中国科学院化学研究所 检测或区分神经性毒剂和糜烂性毒剂的有机荧光传感材料及其制备方法和应用
CN109776290B (zh) * 2019-01-21 2021-03-16 中国科学院化学研究所 一种基于硫-π相互作用检测芥子气模拟物的荧光材料及其制备方法和应用
CN110156734B (zh) * 2019-04-17 2020-08-18 深圳大学 一种用于神经毒气模拟物检测的荧光探针、荧光试纸及其制备方法
CN110590704B (zh) * 2019-09-11 2021-09-28 中国科学院化学研究所 荧光传感材料及其制备方法以及在高灵敏度区分检测化学战剂方面的应用
CN110981821A (zh) * 2019-12-09 2020-04-10 吉林大学 荧光探针及其用于检测神经毒剂的用途
CN114517089B (zh) * 2020-11-18 2024-03-22 中国科学院化学研究所 一种有机荧光材料及其制备方法以及在检测神经性毒剂中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950629B1 (fr) * 2009-09-25 2013-12-06 Commissariat Energie Atomique Composes fluorescents, polymerisables, de la 7-hydroxycoumarine, leur preparation, polymeres fluorescents de ceux-ci et capteurs chimiques les comprenant.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A near infrared colorimetric and fluorometric probe for organophosphorus nerve agent mimics by intramolecular amidation;Xiao-Xiao Hu et al.;《Chem. Commun.》;20150820;第51卷;第15118-15121页 *
Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers;Samuel W. et al.;《Chem. Rev.》;20070327;第107卷;第1339-1386页 *
Conjugated Poly(fluorene-quinoxaline) for Fluorescence Imaging and Chemical Detection of Nerve Agents with Its Paper-Based Strip;Seonyoung Jo et al.;《ACS Appl. Mater. Interfaces》;20131230;第6卷;第1331页第1-2段、第1332页式1、第1334页结论部分 *

Also Published As

Publication number Publication date
CN107445885A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN107445885B (zh) 可选择性检测神经性毒剂的有机荧光传感材料及其制备方法和应用
US20140017803A1 (en) Detection of analytes including drugs
Sarkar et al. Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor
US7910058B2 (en) Chromophore and polymer capable of detecting the presence of various neurotoxins and method of use
CN109142289B (zh) 一种基于CsPbBr3钙钛矿量子点-分子印迹荧光传感器的辛硫磷的检测方法
He et al. A highly efficient fluorescent sensor of explosive peroxide vapor via ZnO nanorod array catalyzed deboronation of pyrenyl borate
CN108440256A (zh) 一种有机荧光传感材料及其制备方法和在分类检测挥发性有机化合物中的应用
CN111253307B (zh) 一种芥子气荧光探针及试剂盒、检测试纸及其制备方法
CN111205857B (zh) 检测或区分神经性毒剂和糜烂性毒剂的有机荧光传感材料及其制备方法和应用
CN110330497A (zh) 一种碟烯-苝二酰亚胺衍生物及其合成方法和对气相挥发性芳香烃的传感应用
CN112062752B (zh) 一种有机荧光分子及其制备方法、荧光传感器及其应用、标准荧光卡片
CN110862392B (zh) 一种纳米荧光传感材料及其荧光传感薄膜的制备方法和应用
CN109187476A (zh) 一种基于十元瓜环的超分子框架材料在吡啶检测中的应用
CN111269251B (zh) 神经毒剂模拟物的荧光探针及试纸及其制备方法
US8802444B1 (en) Detection of electrophilic and nucleophilic chemical agents
CN114560878A (zh) 一类碳硼烷-苯并噻唑衍生物及合成方法和基于其的荧光传感薄膜、制备方法和应用
CN101776602A (zh) 一种磷光化学传感器及其应用
CN111606896B (zh) 荧光探针在制备用于检测神经毒剂的试剂上的应用
CN110922568B (zh) 传感器及其应用、标准荧光卡片
CN109894103B (zh) 使用共轭聚合物和氮化硼复合材料吸附二氧化碳及监测其缓慢释放的方法
CN114230532B (zh) 一种三氮唑衍生物、基于该类材料的荧光传感器及其在检测化学战剂中的应用
CN114517089B (zh) 一种有机荧光材料及其制备方法以及在检测神经性毒剂中的应用
CN110981821A (zh) 荧光探针及其用于检测神经毒剂的用途
CN115124559B (zh) 一种用于神经毒剂沙林模拟物检测的荧光传感薄膜及其制备方法
CN110668957B (zh) 一种高灵敏度快速检出光气的荧光探针及其合成方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180130

Address after: 100190 Haidian District, Zhongguancun, North Street, No. 1, No. 2, Beijing

Applicant after: Institute of Chemistry, Chinese Academy of Sciences

Applicant after: University of Chinese Academy of Sciences

Address before: 100190 Haidian District, Zhongguancun, North Street, No. 1, No. 2, Beijing

Applicant before: Institute of Chemistry, Chinese Academy of Sciences

GR01 Patent grant
GR01 Patent grant