CN107437560A - 氮化镓半导体器件及其制备方法 - Google Patents

氮化镓半导体器件及其制备方法 Download PDF

Info

Publication number
CN107437560A
CN107437560A CN201710488977.6A CN201710488977A CN107437560A CN 107437560 A CN107437560 A CN 107437560A CN 201710488977 A CN201710488977 A CN 201710488977A CN 107437560 A CN107437560 A CN 107437560A
Authority
CN
China
Prior art keywords
gallium nitride
layer
compound medium
contact hole
field plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710488977.6A
Other languages
English (en)
Other versions
CN107437560B (zh
Inventor
刘美华
林信南
刘岩军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN JINGXIANG TECHNOLOGY Co.,Ltd.
Suzhou Chenhua Semiconductor Technology Co.,Ltd.
Original Assignee
Shenzhen Crystal Phase Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Crystal Phase Technology Co Ltd filed Critical Shenzhen Crystal Phase Technology Co Ltd
Priority to CN202010532296.7A priority Critical patent/CN111969048B/zh
Priority to CN201710488977.6A priority patent/CN107437560B/zh
Publication of CN107437560A publication Critical patent/CN107437560A/zh
Application granted granted Critical
Publication of CN107437560B publication Critical patent/CN107437560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66871Processes wherein the final gate is made after the formation of the source and drain regions in the active layer, e.g. dummy-gate processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明涉及半导体材料技术领域,提供一种氮化镓半导体器件包括:氮化镓外延层;以及,设置于所述氮化镓外延层上的复合介质层;设置于所述复合介质层上的源极、漏极和栅极,所述源极、漏极和栅极分别贯穿所述复合介质层与所述氮化镓外延层连接;设置于所述源极、漏极和栅极以及所述复合介质层上的绝缘层,所述绝缘层的材质为二氧化硅。本发明的氮化镓半导体器件不易出现击穿氮化铝镓层的现象,进而避免了出现氮化镓半导体器件的漏电以及击穿的问题,有效的保护了氮化镓半导体器件,增强了氮化镓半导体器件的可靠性。

Description

氮化镓半导体器件及其制备方法
技术领域
本发明涉及半导体工艺领域,尤其涉及一种氮化镓半导体器件及其制备方法。
背景技术
氮化镓具有大禁带宽度、高电子饱和速率、高击穿电场、较高热导率、耐腐蚀以及抗辐射性能等优点,从而可以采用氮化镓制作半导体材料,而得到氮化镓半导体器件。
现有技术中,氮化镓半导体器件的制备方法为:在氮化镓外延层的表面上形成氮化硅层,在氮化硅层上刻蚀出源极接触孔和漏极接触孔,源极接触孔和漏极接触孔内沉积金属,从而形成源极和漏极;再刻蚀氮化硅层以及氮化镓外延层中的氮化铝镓层,形成一个凹槽,在凹槽中沉积金属层,从而形成栅极;然后沉积二氧化硅层以及场板金属层,从而形成氮化镓半导体器件。
然而现有技术中,由于电场密度较大,从而会造成氮化镓半导体器件的漏电以及击穿的问题,进而会损坏氮化镓半导体器件,降低氮化镓半导体器件的可靠性。人们希望减少电场强度、进一步改善氮化镓半导体器件的耐压性能。
发明内容
为解决上述问题,本发明提供一种氮化镓半导体器件,包括:氮化镓外延层;以及,
设置于所述氮化镓外延层上的复合介质层,所述复合介质层材质为氮化硅和等离子体增强正硅酸乙脂;
设置于所述复合介质层上的源极、漏极和栅极,所述源极、漏极和栅极分别贯穿所述复合介质层与所述氮化镓外延层连接;其中,在所述栅极接触孔中的栅极呈倒置的梯形;
设置于所述源极、漏极和栅极以及所述复合介质层上的绝缘层,所述绝缘层的材质为二氧化硅;
还包括设置于所述绝缘层上的场板金属层,所述场板金属层贯穿所述绝缘层与所述源极连接;
还包括设置在所述复合介质层上的若干个浮空场板,所述浮空场板贯穿所述复合介质层与所述氮化镓外延层连接。
本发明还提供这种氮化镓半导体器件的制备方法,包括:
提供一氮化镓外延层,其中,所述氮化镓外延层包括由下而上依次设置的硅衬底层、氮化镓层和氮化铝镓层;
在所述氮化镓外延层表面沉积氮化硅和等离子体增强正硅酸乙脂,形成复合介质层;
漏极接触孔的获得:刻蚀所述复合介质层以形成漏极接触孔,所述漏极接触孔贯穿所述复合介质层到达所述氮化铝镓层;在所述源极接触孔内、以及所述复合介质层的表面上,沉积第一金属,以获得漏极;
源极接触孔、浮空场板孔的获得:刻蚀所述复合介质层以形成源极接触孔、浮空场板孔,所述源极接触孔、浮空场板孔贯穿所述复合介质层到达所述氮化铝镓层;在所述源极接触孔、浮空场板孔内、以及所述复合介质层的表面上,沉积第一金属,以获得源极、浮空场板;
对所述第一金属进行光刻和刻蚀,形成欧姆接触电极窗口;此时获得第一组件;
对所述第一组件进行高温退火处理,以使得容置在所述源极接触孔和所述漏极接触孔内的所述第一金属形成合金并与所述氮化铝镓层进行反应;
栅极接触孔的获得:通过所述欧姆接触电极窗口,对所述复合介质层和所述氮化铝镓层进行干法刻蚀,形成栅极接触孔,其中,所述栅极接触孔的底部与所述氮化铝镓层的底部之间具有预设距离;
在所述栅极接触孔和所述栅极接触孔的外边缘沉积第二金属件,以获得栅极,此时获得第二组件;
在所述第二组件的表面沉积一层绝缘层;
在所述绝缘层上进行干法刻蚀,以形成开孔,所述开孔与所述源极接触孔对应;
在所述开孔以及所述绝缘层上沉积场板金属层,所述场板金属层的投影至少
覆盖所述开孔、以及从所述源极接触孔至所述栅极接触孔之间的区域。
有益效果:
本发明通过在氮化镓外延层的表面的复合介质层应用了多种新颖材料,还通过沉积第一金属在进行高温退火处理,以通过相互接触的刻蚀后的第一金属与氮化铝镓层进行反应之后形成合金,以降低刻蚀后的第一金属与氮化铝镓层的接触电阻;
本实施例结合浮空场板,扩展了功率器件的耗尽区,减小了主肖特基结的电场强度,从而改善器件耐压。从而有效的保护了氮化镓半导体器件,增强了氮化镓半导体器件的可靠性。
附图说明
图1a为本发明实施例的氮化镓半导体器件的结构示意图。
图1b为本发明实施例的氮化镓半导体器件的制备流程示意图。
图2a为本发明又一实施例的氮化镓半导体器件的结构示意图。
图2b为本发明又一实施例的氮化镓半导体器件的栅极结构示意图。
图2c为本发明又一实施例的氮化镓半导体器件的栅极结构示意图。
图2d为本发明又一实施例的氮化镓半导体器件的栅极结构示意图。
图2e为本发明又一实施例的氮化镓半导体器件的制备流程示意图。
图3a为本发明另一实施例的氮化镓半导体器件的结构示意图。
图3b为本发明另一实施例的氮化镓半导体器件的栅极结构示意图。
图3c为本发明另一实施例的氮化镓半导体器件的制备流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1a所示,本发明实施例提供一种氮化镓半导体器件,其从下至上包括:氮化镓外延层510、复合介质层520、源极520和漏极532、栅极533、绝缘层540、场板金属层550。
其中,氮化镓外延层510由硅(Si)衬底512、氮化镓(GaN)层513和氮化铝镓(AlGaN)层514构成,其中,硅衬底512、氮化镓层513和氮化铝镓层514由下而上依次设置。
复合介质层520设置于所述氮化镓外延层510上;本实施例的所述复合介质层520材质可例如为氮化硅和等离子体增强正硅酸乙脂(PETEOS)。该氮化硅和等离子体增强正硅酸乙脂属于一种高介电常数(high‐k)介质。
源极520、漏极532和栅极533设置于所述复合介质层520上。具体地,源极520、漏极532和栅极533外形像“钉子”般一部分插入至所述复合介质层 520中,所述源极520、漏极532和栅极33分别贯穿所述复合介质层520与所述氮化镓外延层510连接;而一部分突出于所述复合介质层520顶部。所述源极520和/或漏极532由第一金属组成。第一金属的组分结构如上述实施例所示。采用第一金属材质形成的源极520、漏极532,能够在器件高温退火过程中与所述氮化镓外延层510中的氮化镓铝层514发生反应,生成合金,从而使得源极 520、漏极532与氮化铝镓层的接触面的接触良好,可以有效的降低源极520、漏极532与氮化铝镓层的接触电阻;避免出现氮化镓半导体器件的漏电以及软击穿的问题。
优选地,所述栅极533往下延伸入所述氮化铝镓层514中,所述栅极533 底端到所述氮化铝镓层514底部的距离H优选为整个所述氮化铝镓层514的一半。栅极533由第二金属组成,所述第二金属为镍、金合金。
优选地,包括设置在所述复合介质层520上的若干个浮空场板529,所述浮空场板529贯穿所述复合介质层520与所述氮化镓外延层510连接,且所述浮空场板529独立设置于所述源极、漏极之间并呈现环状。
每个浮空场板529的高度可优选为0.25~6微米。
绝缘层540设置于漏极532、栅极533和一部分源极520上方,以及裸露出来的全部复合介质层520上,所述绝缘层540的材质为二氧化硅。其中,绝缘层540在整个器件的表面进行均匀沉积,各处沉淀的厚度相同。由于源极520、漏极532、栅极533的存在,从而在源极520与栅极533之间的绝缘层540、在栅极533与漏极532之间的绝缘层540是向下凹陷的,可利用磨平工艺使之平整。
还可例如包括有场板金属层550,其设置于所述绝缘层540上。所述场板金属层550贯穿所述绝缘层540与所述源极520连接。优选地,所述场板金属层 550的材质为铝硅铜金属层。
本发明还提供上述氮化镓半导体器件的制备方法。如图1b所示,具体步骤包括:
步骤501:在硅衬底512上依次沉积氮化镓层513和氮化铝镓层514,形成氮化镓外延层510。氮化镓是第三代宽禁带半导体材料,具有大禁带宽度、高电子饱和速率、高击穿电场、较高热导率、耐腐蚀和抗辐射性能等特性、并且在高压、高频、高温、大功率和抗辐照环境条件下具有较强的优势,从而是研究短波光电子器件和高压高频率大功率器件的最佳材料;其中,大禁带宽度为3.4 电子伏特,高电子饱和速率为2e7厘米每秒,高击穿电场为1e10~‐3e10伏特每厘米。
然后可以采用等离子体增强化学气相电积方法,在氮化镓外延层510的表面上沉积一层氮化硅和等离子体增强正硅酸乙脂(PETEOS),形成复合介质层520。其中,氮化硅和等离子体增强正硅酸乙脂的厚度例如可为2000埃。
步骤502,对所述复合介质层520进行干法刻蚀,形成相对设置的源极接触孔521和漏极接触孔522、以及多个浮空场板接触孔525;再在所述极接触孔521 和漏极接触孔522、以及多个浮空场板接触孔525内沉积第一金属形成相应的电极。
首先,先在复合介质层520上开设漏极接触孔522;然后可以采用磁控溅射镀膜工艺,在漏极接触孔内以及复合介质层的表面上,依次沉积第一钛金属层、铝金属层、第二钛金属层和氮化钛层,以形成第一金属;其中,第一钛金属层的厚度可例如为200埃,铝金属层的厚度可例如为1200埃,第二钛金属层的厚度可例如为200埃,氮化钛层的厚度可例如为200埃。形成漏极。
步骤5031,再在源极接触孔521以及多个浮空场板接触孔525复合介质层 520的表面上沉积第一金属。
类似地,可以采用磁控溅射镀膜工艺,在源极接触孔以及多个浮空场板接触孔525、部分复合介质层的表面上,依次沉积第一钛金属层、铝金属层、第二钛金属层和氮化钛层,以形成第一金属;其中,第一钛金属层的厚度可例如为 200埃,铝金属层的厚度可例如为1200埃,第二钛金属层的厚度可例如为200 埃,氮化钛层的厚度可例如为200埃。由此,获得源极531和浮空场板535。
其中,每个浮空场板535的长度可例如为0.25~6微米。
为了使得所述源极接触孔521、漏极接触孔522、多个浮空场板接触孔525 清洁少杂质,还包括除杂步骤。具体的,在对复合介质层520进行干法刻蚀之后,可以先采用“DHF(稀的氢氟酸)+化学清洗剂SC‐1+化学清洗剂SC‐2”的方法,例如,可以先采用稀释后的氢氟酸溶液处理器件,然后采用过氧化氢与氢氧化氨的碱性混合溶液处理器件,再采用过氧化氢与氯化氢的酸性混合溶液处理器件,进而可以去除整个器件的表面上的杂质物。
对第一金属进行光刻和刻蚀,形成欧姆接触电极窗口519。
对第一金属进行光刻和刻蚀,其中光刻的程序包括了涂胶、曝光和显影,从而可以形成一个欧姆接触电极窗口519;透过欧姆接触电极窗口519,可以看到复合介质层520的部分表面。如此,源极接触孔521上的第一金属构成了器件的源极131,漏极接触孔522上的第一金属构成了器件的漏极532。此时,为了能清楚表达本发明过程,命名此时获得的器件为第一组件。
步骤504、对整个第一组件进行高温退火处理,以通过相互接触的刻蚀后的第一金属与氮化铝镓层514进行反应之后形成合金。
在本实施例中,具体的,在反应炉中通入氮气气体,在840~850℃的环境下对整个第一组件进行30秒的高温退火处理,从而刻蚀后的第一金属会成为合金,并且相互接触的刻蚀后的第一金属与氮化铝镓层514进行反应之后也可以在其接触面上也形成合金,从而可以降低第一金属与氮化铝镓层514之间的接触电阻。即,降低源极531、漏极532与氮化铝镓层514之间的接触电阻。
步骤505、通过欧姆接触电极窗口519,对复合介质层520和氮化铝镓层514 进行干法刻蚀,形成栅极接触孔523,其中,栅极接触孔523的底部与氮化铝镓层514的底部具有预设距离。
在本实施例中,采用干法刻蚀的方法,通过欧姆接触电极窗口519,对复合介质层520以及部分的氮化铝镓层514,进行干法刻蚀,进而在第一器件上形成一个栅极接触孔523。其中,栅极接触孔523完全的穿透了复合介质层520,并穿过部分的氮化铝镓层514,使得栅极接触孔523的底部与氮化铝镓层514的底部的距离H优选为氮化铝镓层514的一半。
在本实施例中,形成一个栅极接触孔523之后,栅极接触孔523内会存在杂质、颗粒以及离子等杂质物,从而可以采用盐酸溶液清洗栅极接触孔520,将栅极接触孔520内的杂质物去除掉。
本实施例通过在对复合介质层520进行干法刻蚀之后,采用DHF+SC1+SC2 的方法去除器件上的杂质物;并形成栅极接触孔523之后,采用盐酸溶液将栅极接触孔523内的杂质物去除掉。从而可以有效的保证了复合介质层的表面以及栅极接触孔523内的清洁,进而保证了氮化镓半导体器件的性能。
步骤506、在本实施例中,具体的,采用磁控溅射镀膜工艺,在栅极接触孔 523和栅极接触孔523的外边缘沉积Ni/Au作为第二金属,金属厚度为 0.01~0.04μm/0.08~0.4μm;从而构成了栅极533。此时,为了更清楚表达本发明内容,命名此时获得的器件为第二组件。
步骤507、在整个第二组件的表面沉积一层绝缘层540。
在本实施例中,具体的,在整个第二组件的表面沉积一层二氧化硅(SiO2),厚度可例如为5000埃,形成二氧化硅层作为一层绝缘层540。其中,二氧化硅在整个器件的表面进行均匀沉积,各处厚度相同,由于源极531、漏极532和栅极533的存在,从而在源极531与栅极533之间的绝缘层540、在栅极533与漏极532之间的绝缘层540是向下凹陷的,可利用磨平工艺使之平整。
步骤508,对源极接触孔531上方的绝缘层540进行干法刻蚀之后,形成开孔541。所述栅极533具有凸出于所述栅极接触孔523外的凸出部533a,所述开孔541的宽度小于所述凸出部533a的宽度。
步骤509,在开孔541内、以及从源极接触孔531延伸至栅极接触孔523 上方的绝缘层540上沉积场板金属550,形成场板金属层550。
在本实施例中,具体的,可以采用磁控溅射镀膜工艺,在开孔541内、以及从源极接触孔521的外边缘的第一金属直至栅极接触孔523的外边缘的第一金属上方的复合介质层520上沉积场板金属,厚度可例如为10000埃,从而形成场板金属层550。场板金属层550的厚度是均匀的,场板金属层550在开孔 541的位置处、以及源极接触孔521与栅极接触孔523之间的位置处的是向下凹陷的。该状况可以在后续磨平工艺中处理平整。
本实施例结合浮空的金属环,通过这个浮空的金属环,扩展了功率器件的耗尽区,减小了主肖特基结的电场强度,从而改善器件耐压。本实施例获得的氮化镓半导体器件可应用于电力电子元件、滤波器、无线电通信元件等技术领域中,具有良好的应用前景。
如图2a所示,本发明实施例提供一种氮化镓半导体器件,其从下至上包括:氮化镓外延层710、复合介质层720、源极731和漏极732、栅极733、浮空板729、绝缘层740、场板金属层750。
其中,氮化镓外延层710由硅(Si)衬底712、氮化镓(GaN)层713和氮化铝镓(AlGaN)层714构成,其中,硅衬底712、氮化镓层713和氮化铝镓层714由下而上依次设置。
复合介质层720设置于所述氮化镓外延层710上;本实施例的所述复合介质层720材质可例如为氮化硅和等离子体增强正硅酸乙脂(PETEOS)。该氮化硅和等离子体增强正硅酸乙脂属于一种高介电常数(high‐k)介质。
源极731、漏极732和栅极733设置于所述复合介质层720上。具体地,源极731、漏极732和栅极733外形像“钉子”般一部分插入至所述复合介质层 720中,所述源极731、漏极732和栅极733分别贯穿所述复合介质层720与所述氮化镓外延层710连接;而一部分突出于所述复合介质层720顶部。所述源极731和/或漏极732由第一金属组成与上述实施例所示。采用第一金属材质形成的源极731、漏极732,能够在器件高温退火过程中与所述氮化镓外延层710 中的氮化镓铝层714发生反应,生成合金,从而使得源极731、漏极732与氮化铝镓层的接触面的接触良好,可以有效的降低源极731、漏极732与氮化铝镓层的接触电阻;避免出现氮化镓半导体器件的漏电以及软击穿的问题。
优选地,所述栅极733往下延伸入所述氮化铝镓层714中,所述栅极733 底端到所述氮化铝镓层714底部的距离H优选为整个所述氮化铝镓层714的一半。栅极733由第二金属组成,所述第二金属为Ni、Au合金。
优选地,所述栅极733具有特别的构型。结合图2、图2c和图2d所示,本实施例的栅极733还可以有多种变形。按照氮化镓半导体器件从下至上的观察顺序看,栅极733的横向宽度逐渐增加,呈现一“倒置梯形”。进一步地,栅极733的“倒置梯形”的部分可以是从栅极接触孔723中便呈现从下至上均匀变宽的形状(如图2b所示),在高出复合介质层720处具有凸出部733a则突然增加宽度使得完全覆盖栅极接触孔723;或可以是在氮化铝镓层714中的栅极 733部分仍保持矩形构造,在氮化铝镓层714以上至栅极接触孔714顶部的部分则从下至上均匀变宽(如图2c所示);还可以是构成可以从栅极接触孔723中便呈现从下至上均匀变宽的形状(如图2d所示),在高出复合介质层720凸出部733a则宽度保持不变,只增加厚度。
进一步地,包括设置在所述复合介质层720上的若干个浮空场板729,所述浮空场板729贯穿所述复合介质层720与所述氮化镓外延层710连接,且所述浮空场板729独立设置于所述源极731、漏极732之间并呈现环状。
每个浮空场板729的高度可优选为0.25~6微米。
绝缘层740设置于漏极732、栅极733和一部分源极731上方,以及裸露出来的全部复合介质层720上,所述绝缘层740的材质为二氧化硅。其中,绝缘层740在整个器件的表面进行均匀沉积,各处沉淀的厚度相同。由于源极731、漏极732、栅极733的存在,从而在源极731与栅极733之间的绝缘层740、在栅极733与漏极732之间的绝缘层740是向下凹陷的,可利用磨平工艺使之平整。
还可例如包括有场板金属层750,其设置于所述绝缘层740上。所述场板金属层750贯穿所述绝缘层740与所述源极731连接。优选地,所述场板金属层 750的材质为铝硅铜金属层。
上述氮化镓半导体器件中的栅极733的截面有别于现有栅极的“T型”结构,而是呈现上宽下窄的倒置“梯形”构造,抑制栅极边缘的高电场,有效地保证了氮化镓高压器件稳定的阻断特性,使器件在经过反复高压后,依旧能保持良好的可靠性。
本发明还提供上述氮化镓半导体器件的制备方法。如图2e所示,具体步骤包括:
步骤701:在硅衬底712上依次沉积氮化镓层713和氮化铝镓层714,形成氮化镓外延层710。氮化镓是第三代宽禁带半导体材料,具有大禁带宽度、高电子饱和速率、高击穿电场、较高热导率、耐腐蚀和抗辐射性能等特性、并且在高压、高频、高温、大功率和抗辐照环境条件下具有较强的优势,从而是研究短波光电子器件和高压高频率大功率器件的最佳材料;其中,大禁带宽度为3.4 电子伏特,高电子饱和速率为2e7厘米每秒,高击穿电场为1e10~‐3e10伏特每厘米。
然后可以采用等离子体增强化学气相电积方法,在氮化镓外延层710的表面上沉积一层氮化硅和等离子体增强正硅酸乙脂(PETEOS),形成复合介质层720。其中,氮化硅和等离子体增强正硅酸乙脂的厚度例如可为2000埃。
步骤702,对所述复合介质层720进行干法刻蚀,形成相对设置的源极接触孔721和漏极接触孔722、以及多个浮空场板接触孔725;再在所述极接触孔721 和漏极接触孔722、以及多个浮空场板接触孔725内沉积第一金属形成相应的电极。
首先,先在复合介质层720上开设漏极接触孔722;然后可以采用磁控溅射镀膜工艺,在漏极接触孔内以及复合介质层的表面上,依次沉积第一钛金属层、铝金属层、第二钛金属层和氮化钛层,以形成第一金属;其中,第一钛金属层的厚度可例如为200埃,铝金属层的厚度可例如为1200埃,第二钛金属层的厚度可例如为200埃,氮化钛层的厚度可例如为200埃。形成漏极。
步骤7031,再在源极接触孔721以及多个浮空场板接触孔725复合介质层 720的表面上沉积第一金属。
类似地,可以采用磁控溅射镀膜工艺,在源极接触孔以及多个浮空场板接触孔725、部分复合介质层的表面上,依次沉积第一钛金属层、铝金属层、第二钛金属层和氮化钛层,以形成第一金属;其中,第一钛金属层的厚度可例如为 200埃,铝金属层的厚度可例如为1200埃,第二钛金属层的厚度可例如为200 埃,氮化钛层的厚度可例如为200埃。由此,获得源极731和浮空场板735。
其中,每个浮空场板735的长度可例如为0.25~6微米。
为了使得所述源极接触孔721、漏极接触孔722、多个浮空场板接触孔725 清洁少杂质,还包括除杂步骤。具体的,在对复合介质层720进行干法刻蚀之后,可以先采用“DHF(稀的氢氟酸)+化学清洗剂SC‐1+化学清洗剂SC‐2”的方法,例如,可以先采用稀释后的氢氟酸溶液处理器件,然后采用过氧化氢与氢氧化氨的碱性混合溶液处理器件,再采用过氧化氢与氯化氢的酸性混合溶液处理器件,进而可以去除整个器件的表面上的杂质物。
对第一金属进行光刻和刻蚀,形成欧姆接触电极窗口719。
对第一金属进行光刻和刻蚀,其中光刻的程序包括了涂胶、曝光和显影,从而可以形成一个欧姆接触电极窗口719;透过欧姆接触电极窗口719,可以看到复合介质层720的部分表面。如此,源极接触孔721上的第一金属构成了器件的源极731,漏极接触孔722上的第一金属构成了器件的漏极732。此时,为了能清楚表达本发明过程,命名此时获得的器件为第一组件。
步骤704,对整个第一组件进行高温退火处理,以通过相互接触的刻蚀后的第一金属与氮化铝镓层714进行反应之后形成合金。
在本实施例中,具体的,在反应炉中通入氮气气体,在840~850℃的环境下对整个第一组件进行30秒的高温退火处理,从而刻蚀后的第一金属会成为合金,并且相互接触的刻蚀后的第一金属与氮化铝镓层714进行反应之后也可以在其接触面上也形成合金,从而可以降低第一金属与氮化铝镓层714之间的接触电阻。即,降低源极731、漏极732与氮化铝镓层14之间的接触电阻。
步骤705,通过欧姆接触电极窗口719,对复合介质层720和氮化铝镓层714 进行干法刻蚀,形成栅极接触孔723,其中,栅极接触孔723的底部与氮化铝镓层714的底部具有预设距离。
在本实施例中,采用干法刻蚀的方法,通过欧姆接触电极窗口719,对复合介质层720以及部分的氮化铝镓层714,进行干法刻蚀,进而在第一器件上形成一个栅极接触孔723。其中,栅极接触孔723完全的穿透了复合介质层720,并穿过部分的氮化铝镓层714,使得栅极接触孔723的底部与氮化铝镓层714的底部的距离H优选为氮化铝镓层714的一半。进一步地,刻蚀时使得栅极接触孔 723呈现一上宽下窄的、倒置的梯形。在本实施例中,形成一个栅极接触孔723 之后,栅极接触孔723内会存在杂质、颗粒以及离子等杂质物,从而可以采用盐酸溶液清洗栅极接触孔720,将栅极接触孔720内的杂质物去除掉。
本实施例通过在对复合介质层720进行干法刻蚀之后,采用DHF+SC1+SC2 的方法去除器件上的杂质物;并形成栅极接触孔723之后,采用盐酸溶液将栅极接触孔723内的杂质物去除掉。从而可以有效的保证了复合介质层的表面以及栅极接触孔723内的清洁,进而保证了氮化镓半导体器件的性能。
步骤706、在本实施例中,具体的,采用磁控溅射镀膜工艺,在栅极接触孔 723和栅极接触孔723的外边缘沉积Ni/Au作为第二金属,金属厚度为 0.01~0.04μm/0.08~0.4μm;从而构成了栅极733。此时,为了更清楚表达本发明内容,命名此时获得的器件为第二组件。
步骤707,在整个第二组件的表面沉积一层绝缘层740。
在本实施例中,具体的,在整个第二组件的表面沉积一层二氧化硅(SiO2),厚度可例如为5000埃,形成二氧化硅层作为一层绝缘层740。其中,二氧化硅在整个器件的表面进行均匀沉积,各处厚度相同,由于源极731、漏极732和栅极733的存在,从而在源极731与栅极733之间的绝缘层740、在栅极733与漏极732之间的绝缘层740是向下凹陷的,可利用磨平工艺使之平整。
步骤708,对源极接触孔731上方的绝缘层740进行干法刻蚀之后,形成开孔741。所述栅极33具有凸出于所述栅极接触孔723外的凸出部733a,所述开孔741的宽度小于所述凸出部733a的宽度。
步骤709,在开孔741内、以及从源极接触孔731延伸至栅极接触孔723 上方的绝缘层740上沉积场板金属750,形成场板金属层750。
在本实施例中,具体的,可以采用磁控溅射镀膜工艺,在开孔741内、以及从源极接触孔721的外边缘的第一金属直至栅极接触孔723的外边缘的第一金属上方的复合介质层720上沉积场板金属,厚度可例如为10000埃,从而形成场板金属层750。场板金属层750的厚度是均匀的,场板金属层750在开孔 741的位置处、以及源极接触孔721与栅极接触孔723之间的位置处的是向下凹陷的,通过在后续步骤的磨平工艺可使之平整。
本实施例通过在氮化镓外延基底的表面上沉积复合介质层代替现有的氧化硅层作为复合介质层;再利用高温退火处理工艺,使源极、漏极与氮化镓外延层中的氮化铝镓层进行反应之后形成合金,从而使得源极、漏极与氮化铝镓层的接触面的接触良好,可以有效的降低源极、漏极与氮化铝镓层的接触电阻;避免出现氮化镓半导体器件的漏电以及软击穿的问题。进一步地,结合浮空的金属环,通过这个浮空的金属环,扩展了功率器件的耗尽区,减小了主肖特基结的电场强度,从而改善器件耐压。本实施例获得的氮化镓半导体器件可应用于电力电子元件、滤波器、无线电通信元件等技术领域中,具有良好的应用前景。
如图3a所示,本发明实施例提供一种氮化镓半导体器件,其从下至上包括:氮化镓外延层810、复合介质层820、源极831和漏极832、栅极833、绝缘层 840。
其中,氮化镓外延层810由硅(Si)衬底812、氮化镓(GaN)层813和氮化铝镓(AlGaN)层814构成,其中,硅衬底812、氮化镓层813和氮化铝镓层814由下而上依次设置。
复合介质层820设置于所述氮化镓外延层810上;本实施例的所述复合介质层820材质可例如为氮化硅和等离子体增强正硅酸乙脂(PETEOS)。该氮化硅和等离子体增强正硅酸乙脂属于一种高介电常数(high‐k)介质。
源极831、漏极832和栅极833设置于所述复合介质层820上。具体地,源极831、漏极832和栅极833外形像“钉子”般一部分插入至所述复合介质层 820中,所述源极831、漏极832和栅极833分别贯穿所述复合介质层820与所述氮化镓外延层810连接;而一部分突出于所述复合介质层820顶部。所述源极831和/或漏极832由第一金属组成与上述实施例所示。采用第一金属材质形成的源极831、漏极832,能够在器件高温退火过程中与所述氮化镓外延层810 中的氮化镓铝层814发生反应,生成合金,从而使得源极831、漏极832与氮化铝镓层的接触面的接触良好,可以有效的降低源极831、漏极832与氮化铝镓层的接触电阻;避免出现氮化镓半导体器件的漏电以及软击穿的问题。
优选地,结合图3b所示,本实施例的栅极833包括并列相连的两个部分:较短的为增强型第一栅部833a、较长的为耗尽型第二栅部833b。所述第一栅部833a与所述氮化铝镓层814表面连接,所述第二栅部833b伸入所述氮化铝镓层 814中。这种长短两个部分构成的栅极区别于现有的栅极,而呈现“异型”。
进一步地,所述第一栅部833a的宽度D1优选不小于第二栅部833b的宽度 D2。当然,在其他实施例中,第一栅部833a和第二栅部833b的左右位置也可以互换。
所述栅极833b可以往下延伸入所述氮化铝镓层314中,所述栅极833b底端到所述氮化铝镓层814底部的距离H优选为整个所述氮化铝镓层814的一半。整个栅极833由第二金属组成,所述第二金属为Ni、Au合金。
进一步地,包括设置在所述复合介质层820上的若干个浮空场板829,所述浮空场板829贯穿所述复合介质层820与所述氮化镓外延层810连接,且所述浮空场板829独立设置于所述源极831、漏极832之间并呈现环状。
每个浮空场板829的高度可优选为0.25~6微米。
绝缘层840设置于漏极832、栅极833和一部分源极831上方,以及裸露出来的全部复合介质层820上,所述绝缘层840的材质为二氧化硅。其中,绝缘层840在整个器件的表面进行均匀沉积,各处沉淀的厚度相同。由于源极831、漏极832、栅极833的存在,从而在源极831与栅极833之间的绝缘层840、在栅极833与漏极832之间的绝缘层840是向下凹陷的,可利用磨平工艺使之平整。
还可例如包括有场板金属层850,其设置于所述绝缘层840上。所述场板金属层850贯穿所述绝缘层840与所述源极831连接。优选地,所述场板金属层 850的材质为铝硅铜金属层。
本实施例的氮化镓半导体器件采用混合栅结构,包括短的属于增强型的第一栅部和长的属于耗尽型的第二栅部。在关态条件下,第一栅部关断,而第二栅部可以在漏极电压下锁住沟道电势,提供高的阻断能力;开态时,增强型沟道和耗尽型沟道提供低的沟道电阻,保证高的导通电流和低的导通电阻。
本发明还提供上述氮化镓半导体器件的制备方法。如图3c所示,具体步骤包括:
步骤801:在硅衬底812上依次沉积氮化镓层813和氮化铝镓层814,形成氮化镓外延层810。氮化镓是第三代宽禁带半导体材料,具有大禁带宽度、高电子饱和速率、高击穿电场、较高热导率、耐腐蚀和抗辐射性能等特性、并且在高压、高频、高温、大功率和抗辐照环境条件下具有较强的优势,从而是研究短波光电子器件和高压高频率大功率器件的最佳材料;其中,大禁带宽度为3.4 电子伏特,高电子饱和速率为2e7厘米每秒,高击穿电场为1e10~‐3e10伏特每厘米。
然后可以采用等离子体增强化学气相电积方法,在氮化镓外延层810的表面上沉积一层氮化硅和等离子体增强正硅酸乙脂(PETEOS),形成复合介质层820。其中,氮化硅和等离子体增强正硅酸乙脂的厚度例如可为2000埃。
步骤802,对所述复合介质层820进行干法刻蚀,形成相对设置的源极接触孔821和漏极接触孔822、以及多个浮空场板接触孔825;再在所述极接触孔821 和漏极接触孔822、以及多个浮空场板接触孔825内沉积第一金属形成相应的电极。
首先,先在复合介质层820上开设漏极接触孔822;然后可以采用磁控溅射镀膜工艺,在漏极接触孔内以及复合介质层的表面上,依次沉积第一钛金属层、铝金属层、第二钛金属层和氮化钛层,以形成第一金属;其中,第一钛金属层的厚度可例如为200埃,铝金属层的厚度可例如为1200埃,第二钛金属层的厚度可例如为200埃,氮化钛层的厚度可例如为200埃。形成漏极。
步骤8031,再在源极接触孔821以及多个浮空场板接触孔825复合介质层 820的表面上沉积第一金属。
类似地,可以采用磁控溅射镀膜工艺,在源极接触孔以及多个浮空场板接触孔825、部分复合介质层的表面上,依次沉积第一钛金属层、铝金属层、第二钛金属层和氮化钛层,以形成第一金属;其中,第一钛金属层的厚度可例如为 200埃,铝金属层的厚度可例如为1200埃,第二钛金属层的厚度可例如为200 埃,氮化钛层的厚度可例如为200埃。由此,获得源极831和浮空场板835。
其中,每个浮空场板835的长度可例如为0.25~6微米。
为了使得所述源极接触孔821、漏极接触孔822、多个浮空场板接触孔825 清洁少杂质,还包括除杂步骤。具体的,在对复合介质层820进行干法刻蚀之后,可以先采用“DHF(稀的氢氟酸)+化学清洗剂SC‐1+化学清洗剂SC‐2”的方法,例如,可以先采用稀释后的氢氟酸溶液处理器件,然后采用过氧化氢与氢氧化氨的碱性混合溶液处理器件,再采用过氧化氢与氯化氢的酸性混合溶液处理器件,进而可以去除整个器件的表面上的杂质物。
对第一金属进行光刻和刻蚀,形成欧姆接触电极窗口819。
对第一金属进行光刻和刻蚀,其中光刻的程序包括了涂胶、曝光和显影,从而可以形成一个欧姆接触电极窗口819;透过欧姆接触电极窗口819,可以看到复合介质层820的部分表面。如此,源极接触孔821上的第一金属构成了器件的源极831,漏极接触孔822上的第一金属构成了器件的漏极832。此时,为了能清楚表达本发明过程,命名此时获得的器件为第一组件。
步骤804,对整个第一组件进行高温退火处理,以通过相互接触的刻蚀后的第一金属与氮化铝镓层814进行反应之后形成合金。
在本实施例中,具体的,在反应炉中通入氮气气体,在840~850℃的环境下对整个第一组件进行30秒的高温退火处理,从而刻蚀后的第一金属会成为合金,并且相互接触的刻蚀后的第一金属与氮化铝镓层814进行反应之后也可以在其接触面上也形成合金,从而可以降低第一金属与氮化铝镓层814之间的接触电阻。即,降低源极831、漏极832与氮化铝镓层14之间的接触电阻。
步骤805,通过欧姆接触电极窗口819,对复合介质层820和氮化铝镓层814 进行干法刻蚀,形成栅极接触孔823,其中,栅极接触孔823的底部与氮化铝镓层814的底部具有预设距离。
在本实施例中,采用干法刻蚀的方法,通过欧姆接触电极窗口819,对复合介质层820以及部分的氮化铝镓层814,进行干法刻蚀,进而在第一器件上形成一个栅极接触孔823。其中,栅极接触孔823完全的穿透了复合介质层820,并穿过部分的氮化铝镓层814,使得栅极接触孔823的底部与氮化铝镓层814的底部的距离H优选为氮化铝镓层814的一半。进一步地,刻蚀时使得栅极接触孔 823呈现一上宽下窄的、倒置的梯形。在本实施例中,形成一个栅极接触孔823 之后,栅极接触孔823内会存在杂质、颗粒以及离子等杂质物,从而可以采用盐酸溶液清洗栅极接触孔820,将栅极接触孔820内的杂质物去除掉。
本实施例通过在对复合介质层820进行干法刻蚀之后,采用DHF+SC1+SC2 的方法去除器件上的杂质物;并形成栅极接触孔823之后,采用盐酸溶液将栅极接触孔823内的杂质物去除掉。从而可以有效的保证了复合介质层的表面以及栅极接触孔823内的清洁,进而保证了氮化镓半导体器件的性能。
步骤806、在本实施例中,具体的,采用磁控溅射镀膜工艺,在栅极接触孔 823和栅极接触孔823的外边缘沉积Ni/Au作为第二金属,金属厚度为 0.01~0.04μm/0.08~0.4μm;从而构成了栅极833。此时,为了更清楚表达本发明内容,命名此时获得的器件为第二组件。
步骤808,在整个第二组件的表面沉积一层绝缘层840。
在本实施例中,具体的,在整个第二组件的表面沉积一层二氧化硅(SiO2),厚度可例如为5000埃,形成二氧化硅层作为一层绝缘层840。其中,二氧化硅在整个器件的表面进行均匀沉积,各处厚度相同,由于源极831、漏极832和栅极833的存在,从而在源极831与栅极833之间的绝缘层840、在栅极833与漏极832之间的绝缘层840是向下凹陷的,可利用磨平工艺使之平整。
步骤808,对源极接触孔831上方的绝缘层840进行干法刻蚀之后,形成开孔841。所述栅极833具有凸出于所述栅极接触孔823外的凸出部833a,所述开孔841的宽度小于所述凸出部833a的宽度。
步骤809,在开孔841内、以及从源极接触孔831延伸至栅极接触孔823 上方的绝缘层840上沉积场板金属850,形成场板金属层850。
在本实施例中,具体的,可以采用磁控溅射镀膜工艺,在开孔841内、以及从源极接触孔821的外边缘的第一金属直至栅极接触孔823的外边缘的第一金属上方的复合介质层820上沉积场板金属,厚度可例如为10000埃,从而形成场板金属层850。场板金属层850的厚度是均匀的,场板金属层850在开孔 841的位置处、以及源极接触孔821与栅极接触孔823之间的位置处的是向下凹陷的,通过在后续步骤的磨平工艺可使之平整。
本实施例的氮化镓半导体器件采用混合栅结构,包括短的属于增强型的第一栅部和长的属于耗尽型的第二栅部。在关态条件下,第一栅部关断,而第二栅部可以在漏极电压下锁住沟道电势,提供高的阻断能力;开态时,增强型沟道和耗尽型沟道提供低的沟道电阻,保证高的导通电流和低的导通电阻。结合浮空的金属环,通过这个浮空的金属环,扩展了功率器件的耗尽区,减小了主肖特基结的电场强度,从而改善器件耐压。本实施例获得的氮化镓半导体器件可应用于电力电子元件、滤波器、无线电通信元件等技术领域中,具有良好的应用前景。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种氮化镓半导体器件,其特征在于,包括:氮化镓外延层;以及,
设置于所述氮化镓外延层上的复合介质层,所述复合介质层材质为氮化硅和等离子体增强正硅酸乙脂;
设置于所述复合介质层上的源极、漏极和栅极,所述源极、漏极和栅极分别贯穿所述复合介质层与所述氮化镓外延层连接;
设置于所述源极、漏极和栅极以及所述复合介质层上的绝缘层,所述绝缘层的材质为二氧化硅;
还包括设置于所述绝缘层上的场板金属层,所述场板金属层贯穿所述绝缘层与所述源极连接;
还包括设置在所述复合介质层上的若干个浮空场板,所述浮空场板贯穿所述复合介质层与所述氮化镓外延层连接。
2.根据权利要求1所述氮化镓半导体器件,其特征在于,所述氮化镓外延层包括硅衬底,以及设置于所述硅衬底表面的氮化镓层、设置于所述氮化镓层表面的氮化铝镓层。
3.根据权利要求1所述氮化镓半导体器件,其特征在于,所述栅极往下延伸入所述氮化铝镓层中。
4.根据权利要求3所述氮化镓半导体器件,其特征在于,所述栅极底端到所述氮化铝镓层底部的距离为整个所述氮化铝镓层的一半。
5.根据权利要求1或2或3或所述氮化镓半导体器件,其特征在于,所述复合介质层的厚度为2000埃。
6.根据权利要求1或2或3或所述氮化镓半导体器件,其特征在于,每个浮空场板的高度为0.25~6微米。
7.一种氮化镓半导体器件的制备方法,其特征在于,包括如下步骤:
提供一氮化镓外延层,其中,所述氮化镓外延层包括由下而上依次设置的硅衬底层、氮化镓层和氮化铝镓层;
在所述氮化镓外延层表面沉积氮化硅和等离子体增强正硅酸乙脂,形成复合介质层;
漏极接触孔的获得:刻蚀所述复合介质层以形成漏极接触孔,所述漏极接触孔贯穿所述复合介质层到达所述氮化铝镓层;在所述源极接触孔内、以及所述复合介质层的表面上,沉积第一金属,以获得漏极;
源极接触孔、浮空场板孔的获得:刻蚀所述复合介质层以形成源极接触孔、浮空场板孔,所述源极接触孔、浮空场板孔贯穿所述复合介质层到达所述氮化铝镓层;在所述源极接触孔、浮空场板孔内、以及所述复合介质层的表面上,沉积第一金属,以获得源极、浮空场板;
对所述第一金属进行光刻和刻蚀,形成欧姆接触电极窗口;此时获得第一组件;
对所述第一组件进行高温退火处理,以使得容置在所述源极接触孔和所述漏极接触孔内的所述第一金属形成合金并与所述氮化铝镓层进行反应;
栅极接触孔的获得:通过所述欧姆接触电极窗口,对所述复合介质层和所述氮化铝镓层进行干法刻蚀,形成栅极接触孔,其中,所述栅极接触孔的底部与所述氮化铝镓层的底部之间具有预设距离;
在所述栅极接触孔和所述栅极接触孔的外边缘沉积第二金属件,以获得栅极,此时获得第二组件;
在所述第二组件的表面沉积一层绝缘层;
在所述绝缘层上进行干法刻蚀,以形成开孔,所述开孔与所述源极接触孔对应;
在所述开孔以及所述绝缘层上沉积场板金属层,所述场板金属层的投影至少覆盖所述开孔、以及从所述源极接触孔至所述栅极接触孔之间的区域。
8.根据权利要求7所述氮化镓半导体器件的制备方法,其特征在于,所述每个浮空场板的高度为0.25~6微米。
9.根据权利要求7所述氮化镓半导体器件的制备方法,其特征在于,所述高温退火处理步骤为:在保护氛围下,在840~850℃的温度下保持30~60秒。
10.根据权利要求7所述氮化镓半导体器件的制备方法,其特征在于,所述预设距离为所述氮化铝镓层的厚度的一半。
CN201710488977.6A 2017-06-23 2017-06-23 氮化镓半导体器件及其制备方法 Active CN107437560B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010532296.7A CN111969048B (zh) 2017-06-23 2017-06-23 氮化镓半导体功率器件及其制备方法
CN201710488977.6A CN107437560B (zh) 2017-06-23 2017-06-23 氮化镓半导体器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710488977.6A CN107437560B (zh) 2017-06-23 2017-06-23 氮化镓半导体器件及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010532296.7A Division CN111969048B (zh) 2017-06-23 2017-06-23 氮化镓半导体功率器件及其制备方法

Publications (2)

Publication Number Publication Date
CN107437560A true CN107437560A (zh) 2017-12-05
CN107437560B CN107437560B (zh) 2020-06-05

Family

ID=60458867

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010532296.7A Active CN111969048B (zh) 2017-06-23 2017-06-23 氮化镓半导体功率器件及其制备方法
CN201710488977.6A Active CN107437560B (zh) 2017-06-23 2017-06-23 氮化镓半导体器件及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010532296.7A Active CN111969048B (zh) 2017-06-23 2017-06-23 氮化镓半导体功率器件及其制备方法

Country Status (1)

Country Link
CN (2) CN111969048B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060175633A1 (en) * 2005-02-02 2006-08-10 Kinzer Daniel M III-nitride integrated schottky and power device
JP2007180143A (ja) * 2005-12-27 2007-07-12 Toshiba Corp 窒化物半導体素子
CN103000673A (zh) * 2011-09-09 2013-03-27 瑞萨电子株式会社 半导体器件及其制造方法
CN104934476A (zh) * 2014-03-19 2015-09-23 株式会社东芝 半导体装置及其制造方法
CN105720097A (zh) * 2016-04-28 2016-06-29 中国科学院半导体研究所 增强型高电子迁移率晶体管及制备方法、半导体器件
CN106601809A (zh) * 2015-10-15 2017-04-26 北京大学 一种氮化镓场效应晶体管及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211172A (ja) * 2007-01-31 2008-09-11 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
JP5864214B2 (ja) * 2011-10-31 2016-02-17 株式会社日立製作所 半導体装置
CN102361010B (zh) * 2011-11-01 2015-06-10 中国科学院微电子研究所 一种t型栅hemt器件及其制作方法
JP6301640B2 (ja) * 2013-11-28 2018-03-28 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060175633A1 (en) * 2005-02-02 2006-08-10 Kinzer Daniel M III-nitride integrated schottky and power device
JP2007180143A (ja) * 2005-12-27 2007-07-12 Toshiba Corp 窒化物半導体素子
CN103000673A (zh) * 2011-09-09 2013-03-27 瑞萨电子株式会社 半导体器件及其制造方法
CN104934476A (zh) * 2014-03-19 2015-09-23 株式会社东芝 半导体装置及其制造方法
CN106601809A (zh) * 2015-10-15 2017-04-26 北京大学 一种氮化镓场效应晶体管及其制作方法
CN105720097A (zh) * 2016-04-28 2016-06-29 中国科学院半导体研究所 增强型高电子迁移率晶体管及制备方法、半导体器件

Also Published As

Publication number Publication date
CN111969048A (zh) 2020-11-20
CN111969048B (zh) 2023-05-02
CN107437560B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
US20210384339A1 (en) Semiconductor device and manufacturing method thereof
CN106601809A (zh) 一种氮化镓场效应晶体管及其制作方法
WO2018233660A1 (zh) 氮化镓半导体器件及其制备方法
CN107275385A (zh) 氮化镓半导体器件及其制备方法
CN107230625A (zh) 氮化镓晶体管及其制造方法
CN107316892A (zh) 氮化镓半导体器件及其制备方法
CN107230617A (zh) 氮化镓半导体器件的制备方法
CN107393962A (zh) 氮化镓半导体器件及其制备方法
CN207116436U (zh) 氮化镓半导体器件
CN107293578A (zh) 氮化镓半导体器件及其制备方法
CN107437560A (zh) 氮化镓半导体器件及其制备方法
CN107316894A (zh) 氮化镓半导体器件及其制备方法
CN107293576A (zh) 氮化镓半导体器件及其制备方法
CN107293577A (zh) 氮化镓半导体器件及其制备方法
CN107275384A (zh) 氮化镓半导体器件及其制备方法
CN107230614B (zh) 氮化镓半导体器件的制备方法
CN107275386A (zh) 氮化镓半导体器件及其制备方法
CN107316891A (zh) 氮化镓半导体器件及其制备方法
CN107316895A (zh) 氮化镓半导体器件及其制备方法
CN107316893A (zh) 氮化镓半导体器件及其制备方法
CN107331696A (zh) 氮化镓半导体器件及其制备方法
CN107393963A (zh) 氮化镓半导体器件及其制备方法
CN107248524A (zh) 氮化镓半导体器件及其制备方法
CN107248526A (zh) 氮化镓半导体器件及其制备方法
CN107248525A (zh) 氮化镓半导体器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210201

Address after: 518000 s1704, building 17, merchants Garden City, Liuhe community, Pingshan street, Pingshan District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN JINGXIANG TECHNOLOGY Co.,Ltd.

Patentee after: Suzhou Chenhua Semiconductor Technology Co.,Ltd.

Address before: 518052 Room 201, building a, No.1 Qianhai 1st Road, Shenzhen Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN JINGXIANG TECHNOLOGY Co.,Ltd.